Journal of Physics: Conference

Series
OPEN ACCESS You may also like
. . - Urea oxidation in a paper-base
A holographic map of action onto entropy o fuel ol usiap Bate i oo

anode electrode
L C Castillo-Martinez, D M Amaya-Cruz, J

To cite this article: D Acosta et al 2012 J. Phys.: Conf. Ser. 361 012027 Gachuz et al.

- Optical fibres for a mini-dish/Stirling
system: thermodynamic optimization
O A Jaramillo and J A del Rio

View the article online for updates and enhancements. - Consequences of a generalized Ohm's law
for magnetic transport in conducting media

S Cuevas, J A del Rio and M Lépez de
Haro

; :Thﬂq HONOLULU, HI #olcl. Joint Meeting of
PACIFE RIM MEETING i WL

mmees  Oct 6-11, 2024 -

The Electrochemical Society

Abstract submission deadline: .| The Electrochemical Society of Japan
April 12,2024 .

Korea Electrochemical Society

Learn more and submit!

This content was downloaded from IP address 84.122.212.78 on 14/02/2024 at 16:49


https://doi.org/10.1088/1742-6596/361/1/012027
/article/10.1088/1742-6596/1119/1/012004
/article/10.1088/1742-6596/1119/1/012004
/article/10.1088/1742-6596/1119/1/012004
/article/10.1088/0022-3727/35/11/322
/article/10.1088/0022-3727/35/11/322
/article/10.1088/0022-3727/32/6/007
/article/10.1088/0022-3727/32/6/007
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjst5FbAbAYRAyK9OxlY-sx-taAMWOO0EHr4ExbP2hXRrgzsmuVt5_hB1Cm0JR9RKzQMMbdbtJDxo7ZmV62RqZVtUo6-4XxUPTs1xhMUIpgOQrbyXzHrryFDQBBn2rSRGJIv54ojS5U1JCt6FKVxbyC1tmxIiSOGEz_gy0PdtKCO0i5gE1kmmDOPmvoRAX8QrjW6ZpuVhCEBvA0s-uTXPP4Ru427z7ffUGmhmSyjx46chOAI7qkZbw8FWKmK0smh7aY10sJqjSF4aD-H3hUGtNMlZBG-ld8jcnpvYA1QIqu7YQzNGqSfZnnoEnRKvrJAO7VoGw_-2bA&sai=AMfl-YR2ZItGcV6VWQCXDCuAf-14CLHnrllw8DfWKahVgrkM66xO8dHmEh3Qx9kJH5Tu5J3IUctQtwhTY4_Eajo&sig=Cg0ArKJSzPBEQ4Ec7j-b&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://ecs.confex.com/ecs/prime2024/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3Dbanner%26utm_campaign%3Dprime_abstract_submission

EmerQuM 11: Emergent Quantum Mechanics 2011 IOP Publishing
Journal of Physics: Conference Series 361 (2012) 012027 doi:10.1088/1742-6596/361/1/012027

A holographic map of action onto entropy

D Acostal®, P Fernandez de Cérdoba??, J M Isidro®*¢, J L G
Santander>?

!Departamento de Mateméticas, Universidad de Pinar del Rio, Pinar del Rio, Cuba
2Instituto Universitario de Matematica Pura y Aplicada, Universidad Politécnica de Valencia,
Valencia 46022, Spain

3C4tedra Energesis de Tecnologia Interdisciplinar, Universidad Catélica de Valencia, Guillem
de Castro 94, Valencia 46003, Spain

E-mail: “dago@nmat.upr.edu.cu
E-mail: ®pfernandez@mat.upv.es
E-mail: “joissan®@mat.upv.es

E-mail: “martinez.gonzalez@ucv.es

Abstract. We propose a holographic correspondence between the action integral I describing
the mechanics of a finite number of degrees of freedom in the bulk, and the entropy S of the
boundary (a holographic screen) enclosing that same volume. The action integral must be
measured in units of (¢ times) Planck’s constant, while the entropy must be measured in units
of Boltzmann’s constant. In this way we are led to an intriguing relation between the second
law of thermodynamics and the uncertainty principle of quantum mechanics.

1. Introduction

There are compelling reasons to believe that quantum mechanics must be an emergent
phenomenon [2, 10, 11, 14, 15, 18, 19, 20, 21, 23, 24]. Actually not just quantum mechanics, but
also gravity and spacetime appear to be emergent phenomenona as well (for a comprehensive
review see [31] and refs. therein). The guiding principle in all emergent theories is the fact
that they provide a coarse—grained description of some underlying theory [9]. Due to our
ignorance of a full microscopic description, emergent phenomena are in principle amenable to a
thermodynamical description.

It is the purpose of this contribution to develop an approach to emergent quantum mechanics
from the entropic point of view presented in ref. [1]. We take the view that, apart from other
important reasons [3, 16, 25, 26, 28, 29, 32], quantum theory must be an emergent phenomenon
also because the spacetime it is defined on is an emergent concept. There exist in the literature
a number of different approaches to account for the emergent nature of spacetime, too numerous
to quote here in detail. Here we will follow the holographic [22, 34] proposal presented in
ref. [35]. Thus gravity and quantum mechanics share the common feature of being effective,
thermodynamical descriptions of their respective underlying theories.

We should point out that quantum mechanics can be recast in thermodynamical terms
[30], although without making use of the properties of emergence and holography used here.
On the contrary, our approach hinges crucially on the notions of emergence and holography.
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Altogether, our approach will provide us with a holographic, entropic picture of emergent
quantum mechanics.

2. The correspondence
2.1. The main result
Our main result can be summarised in the holographic correspondence

(bulk) i “ 5 (boundary). (1)

h kp

This correspondence can be explained as follows. Let a finite 3—dimensional volume V be given,
such that it is bounded by a closed 2-dimensional surface S (a holographic screen, see [35]). Let
a finite number of quantum—mechanical degrees of freedom be defined within V), described by
the action integral I. The screen S is assumed to carry N information bits. These bits encode
the holographic projection, onto S, of the degrees of freedom within V. Since we do not know
the specific mechanism whereby the holographic principle projects the mechanics within V onto
its boundary & = 9V, we assign the screen an entropy S, which measures our ignorance about
the specific nature of the degrees of freedom on the surface. Thus I describes a mechanical
system in the bulk, while S describes its corresponding thermodynamics on the boundary. In
this setup, space merely plays the role of a storage device for information; space has already
emerged within S, while it does not yet exist outside S [35]. It will be observed that each side
of the dimensionless correspondence (1) is measured in units of the corresponding quantum—
the quantum of action (Planck’s constant i) on the mechanical side, the quantum of entropy
(Boltzmann’s constant kp) on the thermodynamical side. Finally, there is a relative factor of 4,
whose origin will be elucidated presently. For the moment we note that the semiclassical limit
h — 0 in the bulk corresponds to letting kg — 0 on the boundary. Last but not least, the two
quantities I and S separately obey a corresponding extremum principle. Eqn. (1) differs from
an ana! logous correspondence, presented in [1], by a factor of 2, to be explained later.

2.2. A quantum of entropy
The starting point in ref. [35] is a classical point particle of mass M approaching a holographic
screen S, from that side of the latter on which spacetime has already emerged. At a distance
from S equal to 1 Compton length, the particle causes the entropy S of the screen to increase
by the amount

AS = 2rkp, (2)

where kp is Boltzmann’s constant. The above can also be understood as meaning that 2wkp is
the quantum by which the entropy of the screen increases, whenever a particle crosses S. The
factor 27 on the right—hand side is conventional. Relevant is only the fact that the entropy
increase of the screen appears quantised in units of kp.

2.8. Two thermodynamical languages

Thermodynamics can be conveniently expressed in either of two equivalent languages,
respectively called the energy representation and the entropy representation [8]. Any given
thermodynamical system can be completely described if one knows its fundamental equation.
The latter contains all the thermodynamical information one can obtain about the system. The
fundamental equation can be expressed in either of two equivalent ways, respectively called the
energy representation and the entropy representation. In the energy representation one has a
fundamental equation E = E(S,...), where the energy E is a function of the entropy S, plus of
whatever additional variables may be required. In the entropy representation one solves for the
entropy in terms of the energy to obtain a fundamental equation S = S(E,...).
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Here we will argue that quantum mechanics as we know it (i.e., on spacetime) corresponds
to the energy representation, while quantum mechanics on a holographic screen (i.e., in the
absence of spacetime) will correspond to the entropy representation. Our goal is to describe the
laws of entropic quantum mechanics, that is, the thermodynamical laws on the boundary S that
correspond to the quantum mechanics within S = 9V.

One must bear in mind, however, that standard thermodynamical systems admit both
representations (energy and entropy) simultaneously, which representation one uses being just
a matter of choice. In our case this choice is dictated, for each fixed observer, by that side of
the screen on which the observer wants to study quantum mechanics. For example there is no
energy variable beyond the screen, as there is no time variable, but an observer can assign the
screen an entropy, measuring the observer’s ignorance of what happens beyond the screen. This
notwithstanding, the analogy with thermodynamical systems we have just sketched can be quite
useful.

2.4. A (classical) holographic dictionary

Assume that we are give a foliation of 3-space by 2-dimensional holographic screens S;:
R3 = Uje78;, where the index j runs over some (continuous) set 7. For reasons to be explained
presently we will restrict our attention to potentials such that the S; are all closed surfaces; we
denote the finite volume they enclose by V;, so 0V; = S;.

One can formulate a holographic dictionary between gravitation, on the one hand, and
thermodynamics, on the other [35]. Let Viz denote the gravitational potential created by a total
mass M = [, d3V par within the volume V. Then the following two statements are equivalent:
i) there exists a gravitational potential Vi satisfying Poisson’s equation V2V = 47Gpyy, such
that a test mass m in the background field created by the mass distribution pjs experiences a
force F = —mVVg;

ii) given a foliation of 3-space by holographic screens, R? = UjesSj, there are two scalar
quantities, called entropy S and temperature 7', such that the force acting on a test mass m is
given by Féx = [¢T6dS. The latter integral is taken over a screen that does not enclose m.
Moreover, the thermodynamical equivalent of the gravitational theory includes the following
dictionary entries [35]:

1 -1
%S(x) = MVG(@A(VG(%)), (3)
orkpT (x) = dd%, (4)

%B /S d*aT = L3 Mc>. (5)

In (3), (4) and (5) we have placed all thermodynamical quantities on the left, while their
mechanical analogues are on the right. As in ref. [35], the area element d?a on S is related
to the infinitesimal number of bits dN on it through d?a = L%dN. We denote the area of
the equipotential surface passing through the point x by A(Vg(z)), while dViz/dn denotes the
derivative of Viz along the normal direction to the same equipotential. The above expressions
tell us how, given a gravitational potential Vi (x) and its normal derivative dV;/dn, the entropy
S and the temperature 1" can be defined as functions of space.

Specifically, eqn. (3) expresses the proportionality between the area A of the screen S and
the entropy S it contains. This porportionality implies that gravitational equipotential surfaces
get translated, by the holographic dictionary, as isoentropic surfaces, above called holographic
screens S.
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Equation (4) expresses the Unruh effect: an accelerated observer experiences the vacuum of
an inertial observer as a thermal bath at a temperature T' that is proportional to the observer’s
acceleration dVg/dn.

Finally, eqn. (5) expresses the first law of thermodynamics and the equipartition theorem.
The right—hand side of (5) equals the total rest energy of the mass enclosed by the volume V,
while the left—-hand side expresses the same energy content as spread over the bits of the screen
S = 0V, each one of them carrying an energy kgT'/2. It is worthwhile noting that equipartition
need not be postulated. Starting from (4) one can in fact prove the following form of the
equipartition theorem [1]:

o [war=220s), A= [ (6)

Above, U can be an arbitrary potential energy, subject only to the requirement that its
equipotential surfaces are closed. We will henceforth mean eqn. (6) when referring to the first
law and the equipartition theorem. In all the above we are treating the area as a continuous
variable, but in fact it is quantised [35]. If N(S) denotes the number of bits of the screen S,
then

A(S) = N(S)L%. (7)

However, in the limit N — oo, when AN/N << 1, this approximation of the area by a continuous
variable is accurate enough. We will see later on that letting N — oo is equivalent to the
semiclassical limit in quantum mechanics.

3. The emergence of quantum mechanics

We intend to write a holographic dictionary between quantum mechanics, on the one hand, and
thermodynamics, on the other. This implies that we will need to generalise eqns. (3), (4) and
(6) so as to adapt them to our quantum-mechanical setup. Thus we will replace the classical
particle of [35] with a quantum particle, subject to some potential energy U of nongravitational
origin, but we will take (2) to hold for a quantum particle as well. We will assume U to be
such that its equipotential surfaces S; are closed, in agreement with our assumptions about the
foliation. Let H = K + U be the classical Hamiltonian function on R3 whose quantisation leads
to the quantum Hamiltonian operator H = K + U that governs our quantum particle.

3.1. A (quantum) holographic dictionary

Inside the screen, spacetime has already emerged. This gives us the energy representation of
quantum mechanics—the one we are used to: a time variable with a conserved Noether charge,
the energy, and wavefunctions depending on the spacetime coordinates. We have the uncertainty
relation "

AQAP25. (8)

Expectation values are computed as functional integrals, with a density function d; given by
d; = exp (i I) ( )
ex . 9
! h

Above, I = [dtL is the action integral satisfying the Hamilton—Jacobi equation.
We can now posit the quantum-mechanical analogues of eqns. (3), (4) and (6). In the energy
representation these analogues read, respectively,

1 . 1 .
8@) = o AUE)IU @) (10)
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2nkpgT =Lp—, 11

mkpT(x) = Lp— (11)
kp 9 A(S) ~

— | d*aT = ——=U(S). 12

2 |t = S200(s) (12)

3.2. Emergence of the holographic correspondence

It is well known, in the theory of thermodynamical fluctuations, that the probability density
function dg required to compute expectation values of thermodynamical quantities is given by
the exponential of the entropy [8]:

S
ds = exp () . (13)
kg
Comparing (13) with (9) we arrive at the holographic correspondence (1)
il S
— & — 14
h (14)

between the energy representation and the entropy representation.

We would like to point out that an analogous correspondence has been given in [1], the
only difference being a factor of 2 in the denominator on the right-hand side. This factor of
2 is easy to account for. In [1], one compares the semiclassical wavefunction in the energy
representation, given by ¢ = exp (il /h), with the square root of the probability density function
ds in the entropy representation, given by \/dg = exp (S/2kp). Instead, here we are equating
the probability densities d; and dg rather than the wavefunctions. See refs. [4, 5] for specific
instances of the correspondence (14).

3.3. Emergence of the wavefunction

The equation U(x!, 22, 23) = Uy, where Uy is a constant, defines an equipotential surface in R3.
As Uy runs over all its possible values, we obtain a foliation of R? by equipotential surfaces.
Following [35], we will identify equipotential surfaces with holographic screens. Hence forces will
arise as entropy gradients.

Assume that 1 is nonvanishing at a certain point in space. Consider an infinitesimal cylinder
around this point, with height Lp and base area equal to the area element d?a. Motivated by
the proportionality between area and entropy, already mentioned, we postulate that there is an
infinitesimal entropy flow dS from the particle to the area element d?a:

dS = C 2rkpLp|y|*d?a. (15)

Here C' is a dimensionless numerical constant, to be determined presently. A closed surface X
receives an entropy flux S(X):

S(%) :C(E)kaBLp/Ed2a|¢|2. (16)

The constant C'(X) will in general depend on the particular surface chosen; the latter may, but
need not, be a holographic screen. The key notion here is that the integral of the scalar field
|90|? over any surface carries an entropy flow associated. When the surface ¥ actually coincides
with a holographic screen S, and when the latter is not a nodal surface of v, the constant C(S)
may be determined by the requirement that the entropy flux from the particle to the screen
equal the quantum of entropy (2). Thus

1

5 :LP/SanW. (17)
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Let us now read eqn. (17) in reverse, under the assumption that one knows the proportionality
constants C(S;) for a given foliation R® = UjcsS;. This amounts to a knowledge of the
integrands, i.e., of the probability density || within the surface integral (17) on each and
every ;. From these tomographic sections of all probability densities there emerges the complete
wavefunction 1 on all of R3, at least up to a (possibly point-dependent) phase e'®.

Thus the integrand of (17) gives the surface density of entropy flow into the holographic screen
S;, and the wavefunction ¢ becomes (proportional to) the square root of this flow. The collection
of all these tomographic sections of ¢ along all possible screens amounts to a knowledge of the
complete wavefunction. Hence a knowledge of the different surface densities of entropy flux
across all possible screens is equivalent to a knowledge of the quantum—mechanical wavefunction
1. This is how the quantum—mechanical wavefunction 1 emerges from the holographic screens.

4. The Unruh equation of state

In this section we will rewrite the dictionary entries (10), (11) and (12), postulated to hold in the
energy representation of quantum mechanics, in the entropy representation. For this purpose
we first need to solve the eigenvalue equation S’(;S = S¢ on the screen, so the latter will be kept
fixed. That is, we will not consider a variable surface S; of the foliation, but rather a specific
surface corresponding to a fixed value of the index j. Observe also a difference in notation: ¢
instead of 1. This is to stress the fact that, by (10), entropy eigenstates ¢ cannot be eigenstates
of the complete Hamiltonian H , but only of the potential energy U. Once we have solved the
eigenvalue equation

Up=Uo, (18)
then the same ¢ diagonalise S-:
5. _ kg

Thermodynamical quantities will now arise as expectation values of operators in the entropic
eigenstates ¢(S).

We first deal with (10). Clearly its reexpression in the entropy representation will be the
thermodynamical fundamental equation S = S(A), since the extensive parameter corresponding
to the holographic screen is the area A. Then we have

kp

() = o ASIU(S)] (20)

Availing ourselves of the freedom to pick the origin of potentials at will, let us set |U(S)| =
he/Lp. Thus
kp
413,
which is the celebrated Bekenstein—Hawking law. It arises as a thermodynamical fundamental
equation in the entropy representation.

Our holographic screen is treated thermodynamically as a stretched membrane, so the
generalised force conjugate to the extensive parameter A is the surface tension o. Then the
equation of state corresponding to (21) is

(S) = - A, (21)

ks (T)
4L

: (22)

o =

vl

Rewrite the above as 27Tl<:B<T> = 87L%0 and recall that o is the normal component of force
per unit length on the screen. Since force is proportional to acceleration, the above equation of
state turns out to be equivalent to the Unruh law.
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Finally we turn to the first law of thermodynamics and the equipartition theorem. Taking
the expectation value, in the entropic eigenstates ¢, of the operator equation (12), produces the
thermodynamical expression for the equipartition theorem:

%B /S a (T) = Aif) [T(S)). (23)

5. The second law of thermodynamics, revisited
The second law of thermodynamics,
AS >0, (24)

has been related to the Heisenberg uncertainty principle in ref. [30]. In ref. [13] it has been
argued that the second law of thermodynamics has a quantum—mechanical reexpression in the
Bell inequalities. In ref. [1] we have established a link between (24) and the Hilbert space of
entropic quantum mechanics. Here we would like to propose yet another quantum—-mechanical
interpretation of the second law, one that combines the uncertainty principle with the notion of
emergence.

From eqn. (2) one derives the obvious inequality

AS > wkp (25)

which looks like some refinement of the second law (24)—the latter would be recovered in the
semiclassical limit kg — 0. Therefore let us, for the sake of the argument, consider eqn. (25)
as a more precise statement of the second law than (24). As such (25) is reminiscent the
uncertainty principle (8) of quantum mechanics. However the left-hand side of (25) contains
just one uncertainty, instead of a product of two uncertainties as usual. This reflects the fact
that the variable on the left, S, is selfconjugate—its dimension equals that of the quantum kp
on the right-hand side!. We can include a dimensionless formal parameter! 7 in the left-hand
side that will make (25) resemble the uncertainty principle in its standard form. This can be
done as follows.

Let N denote the total number of bits on §. Whenever a quantum particle hits the screen
we have AN = 1, and the ratio AN/N will be small if N is large enough. In this limit we can
treat IV as a continuous variable, that we re-denote by 7 in order to interpret it as a continuous,

dimensionless parameter:

AN
T:=N, when — << 1. (26)

This is the limit N — oo referred to in (7). Compatibility with all the above requires this limit
to correspond to kg — 0 or, equivalently, to A — 0. In other words, the large area limit for a
holographic screen corresponds to the semiclassical approximation in quantum mechanics.

We have A1 > 1, the inequality allowing for the possibility of more than just one particle
hitting §. Thus multiplying the two inequalities A7 > 1 and AS > wkp together we arrive at
the following uncertainty principle on the holographic screen:

ASAT > kp. (27)

The fact that kp, though small, is nonvanishing, leads to the impossibility of having strictly
reversible processes; reversibility is possible only in the limiting case of a vanishing value for

L Compare this situation with (¢,p) and (H,t), which are conjugate pairs: the product of the two components of
each pair has the dimension of A. Angular momentum L is selfconjugate, in the sense that it carries the dimension
of 7, but one writes the corresponding uncertainty principle as ALAg > 1/2, where the dimensionless variable ¢
is an angle.
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the quantum kp. We conclude that quantisation appears as dissipative mechanism. The notion
that information loss leads to a quantum behaviour lies at the heart of the notion of emergence
6, 7, 14, 15, 18, 19, 20, 21, 23, 24, 33].

We have derived the uncertainty principle (27) starting from the second law of
thermodynamics (24). Let us now prove that the reverse path is also possible: from the
uncertainty principle to the second law of thermodynamics. We start from (8) in the bulk
rewritten as AI/h > 1, where I = [ pdgq is the action. On the boundary, the correspondence (1)
allows to reexpress the above inequality as in (25). Along the way we have dropped irrelevant
numerical factors.

Altogether, we have an equivalence between the uncertainty principle of quantum mechanics
(either in the bulk (8) or on the boundary (27)), and a refined version of the second law of
thermodynamics, one that includes a small but nonvanishing value of the corresponding quantum
(h or kp) on the right-hand side. This is in agreement with the results of [30]—mnow with the
added bonus that our equivalence has the properties of emergence and holography.

6. Discussion

The entropy representation of quantum mechanics, as presented here, is a holographic projection
of the energy representation of the same theory, as defined on spacetime. Our central claim,
summarised by eqn. (1), expresses this holographic property.

There is, however, one additional property of quantum mechanics that is deeply encoded in
eqn. (1); as such it is not immediately recognised. Namely, quantum mechanics is an emergent
phenomenon also because quantum mechanics is defined on spacetime, and spacetime itself is
an emergent phenomenon. Let us analyse this latter point in more detail.

Any model of emergent gravity must ultimately account for the laws governing the motion
of material bodies. Thus, e.g., the proposal made in [35] allows for a (somewhat heuristic)
derivation of Newton’s law of motion, F' = ma, and of the relativistic generalisations thereof, as
emergent, thermodynamical laws. Moreover, the intriguing presence of Planck’s constant A [12]
in the purely classical setup of ref. [35] makes one suspect that quantum mechanics also has a
role to play in that setup. On the other hand, it is well known that Newton’s law F' = ma can be
recovered in the semiclassical limit of quantum mechanics, as being satisfied by the expectation
values of certain operators (Ehrenfest’s theorem). Last but not least, thermodynamics is the
paradigm of emergent phenomena.

All these different pieces of evidence point toward one and the same conclusion—uwiz., that if
classical mechanics follows from the emergence property of spacetime, then the same should be
true of quantum mechanics. Here and in ref. [1] we have exploited this point of view. We would
like to stress that this conclusion is ultimately independent of the precise mechanism whereby
spacetime emerges. Thus, although the holographic dictionary presented in previous sections
hinges crucially on the emergence mechanism being precisely that of ref. [35], the holographic
correspondence (1) is independent of that mechanism. As such, the holographic correspondence
(1) should hold just as well in any other specific model for the emergence of spacetime (say, loop
quantum gravity or any alternative thereto such as [17, 27]).
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Abstract Quantum mechanics emergida Verlinde from a foliation ofR? by holo-
graphic screens, when regarding the latter as entropywasethat a particle can ex-
change entropy with. This entropy is quantised in units dtBoeann’s constantp.
The holographic screens can be treated thermodynamicakyratched membranes.
On that side of a holographic screen where spacetime hasdglemerged, then-
ergy representatioof thermodynamics gives rise to the usual quantum mechanics
A knowledge of the different surface densities of entropwflacross all screens is
equivalent to a knowledge of the quantum—-mechanical wasagifon onR3. Theen-
tropy representationf thermodynamics, as applied to a screen, can be used toloesc
quantum mechanics in the absence of spacetime, that istuqmanechanics beyond
a holographic screen, where spacetime has not yet emergedapgproach can be
regarded as a formal derivation of Planck’s constafniom Boltzmann’s constarits.
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1 Introduction

Groundbreaking advances in our understanding of gravite ted to profound new
insights into its nature (see [50,151,152] 53| 54, 69] and. réierein). Perhaps the
most relevant insight is the recognition that gravity carmdundamental force, but
rather must be an effective description of some underlyiegreles of freedom. As
such, gravity is amenable to a thermodynamical descriptidithough this fact had
already been suspected for some time_[4, 5] 33| 6/7, 41, 34]0mly more recently
that it has been given due attention. The derivation of Natstiaws of motion and of
Einstein’s gravity, presented in ref._[69] from an entropérspective, has triggered off
an avalanche of research into the subject, ensueing pagiagstbbo numerous to quote
here in detall; see howeveér [47,8) 65| 18,46, 25, 26]. A featdithese developments
is that, while offering insights into the quantum structofespacetime, the treatment
is largely classical, in that no specific microscopic modedgacetime is assumed. In
other words, these developments refer not to the (micrasksfatistical mechanics
of gravity and spacetime, but to its (macroscopic) thernmaalyics instead. In this
sense, notions usually considered toabgriori, such as inertia, force and spacetime,
appear as phenomena arising from some underlying theorgeuminutise are largely
unknown—but fortunately also irrelevant for a thermodyiahdescription. Such
emergenphenomena are no longapriori, but derived. We refer readers to the com-
prehensive overview of emergent physics presented in tebook [11]. Spacetime
itself appears as an emergent phenomenon, with the holoigrppnciple playing a
key role [35/ 63]. Developments in string theory also pamthis direction([6] 57].

It has also been conjectured that quantum mechanics itsedf be an emergent
theory [49, 1] 6P, 36, 37. 19, 0,121,122 42]; see dls6([459230,[12/ 18] 14, 43]
for its close link with gravity theories, and_[29,]30,131, 38} an interpretation in
thermodynamical terms. The guiding principle at work in maithese approaches
is the notion that quantum mechanics provides some coaigeed description of an
underlying deterministic theory. In some of these modes, [§uantum states arise as
equivalence classes of classical, deterministic statedatter being grouped together
into equivalence classes, or quantum states, due to oueigoe of the full microscopic
description. Quantisation thus appears to be some kindssfidition mechanism for
information. In the presence of dissipation, entropy imiatsdly comes to mind_[15,
16,[17].

Thus the two research lines mentioned above, gravity andtgomamechanics,
share the common feature of being effective, thermodyrardescriptions of their re-
spective underlying theories. It is the purpose of this papéevelop an approach to



emergent quantum mechanics from #hdropicpoint of view pioneered in ref. [69],
with a quantum—mechanical particle replacing the clasgpiagticle considered in ref.
[69]. Additionally, this will contribute towards clarifyig the role played by Planck’s
constant: in the entropic derivation of classical gravity (NewtongleEinstein’s) pre-
sented in[[69]. Indeed, our results can be regarded as avp@ntterivation of Planck’s
constanti from Boltzmann’s constantg—at least conceptually if not numerically.
Altogether, our approach will provide us withholographic, entropic picture of emer-
gent quantum mechanics

Finally let us say a word on notation. Awkward though the pre® off, ¢, G, kg
in our equations may seem, our purpose of exhibiting h@merges front s renders
natural units inconvenient. Quantum operators will be dethasf, with f being the
corresponding classical function.

2 Holographic screens as entropy reservoirs

2.1 A quantum of entropy

The starting point in ref. [[69] is a classical point particiemassM approaching

a holographic screeff, from that side of the latter on which spacetime has already
emerged. At a distance frofi equal to 1 Compton length, the particle causes the
entropyS of the screen to increase by the amount

AS = 27k, 1)

wherek g is Boltzmann’s constant. The above can also be understoagasing that
2wkp is thequantunmby which the entropy of the screen increases, whenever izlpart
crossesS. The factor2w on the right—hand side is conventional. Relevant is only the
fact that the entropy increase of the screen appears qeditisinits oft .

We callbright that side of the holographic screen on which spacetime heady
emerged, whereas the other side might well be terdegl One can also think of the
holographic screen as being the horizon of some suitabkediobserve© in space-
time. For example, in the relativistic case, one can thinkhaf observer as being a
Rindler observer. The dark side might well be identified vifita screen itself, as there
is literally no spacetime beyond the bright side—this ags®iis to be understood as
relative to the corresponding observer, since differestolers might perceive differ-
ent horizons. In this way, for each fixed value of the time afle, a collection of
observersD;, with the index;j running over some (continuous) st gives rise to
a foliation of 3—space by 2—dimensional holographic ss€gn R? = U;c 7S;. For
reasons to be explained presently we will mostly restrictdiention to potentials such
that theS; are all closed surfaces; we denote the finite volume theyosaddyV;, so
ov; =S;.



2.2 Two thermodynamical representations

We will take [3) to hold for a quantum particle as well. A quamtparticle hitting
the holographic screErexchanges entropy with the latter., the wavefunctiony
exchanges information with. Just as information is quantised in terms of bits, so is
entropy quantised, as per egil (1). The only requirementisrekchange is that the
holographic screen act as an entropy reservoir. (See [ll$48] for related proposals,
with the mechanical action integral replacing the entropy)

Describing the quantum particle on the bright side of theeamwe have the stan-
dard wavefunctiony, depending on the spacetime coordinates and obeying tla¢ usu
laws of quantum mechanics. On the other hand,ehiopic wavefunctiony_ de-
scribes the same quantum particle, as seen by an obsenter dark side of the holo-
graphic screen. If imagining an observer on the dark sid8, afhere spacetime has
not yet emerged, raises some concern, one can also think af being related, in a
way to be made precise below, to the flow of entropy acrossdhizdnsS, as measured
by an observer on the bright side of the same horizon.

Our goal is to describe the laws ehtropic quantum mechanicthat is, the laws
satisfied by the entropic wavefunctign , and to place them in correspondence with
those satisfied by the standard wavefunctionon spacetime. The relevant thermody-
namical formalism needed here can be found, in the classic textbook[7]. However,
for later use, let us briefly summarise a few basics. Any gillermodynamical system
can be completely described if one knowditsdamental equatiorThe latter contains
all the thermodynamical information one can obtain aboetstystem. The fundamen-
tal equation can be expressed in either of two equivalenswagpectively called the
energy representatioand theentropy representatiarin the energy representation one
has a fundamental equatidnh = E(S,...), where the energy is a function of the
entropysS, plus of whatever additional variables may be required hinentropy rep-
resentation one solves for the entropy in terms of the entergyptain a fundamental
equationS = S(E,...).

As an example, let there be just one extensive parametevpthmeV’. Then the
fundamental equation in the entropy representation wilhbexpression of the form
S = S(E,V), hencedS = (0S/0FE)dE + (05/0V)dV. We know thatv Q) = T'dS,
while the first law of thermodynamics reads, in this ca®, = dE + pdV, with
p the pressure. It follows thaf—! = 9S/0FE andp = T (9S/0V). This latter
equation is the equation of state. For example, in the casa adeal gas we have
S(E,V) = kgln(V/V,) + f(E), with f(E) a certain function of the energy and
Vo a reference volume (that can be regarded as a constanttedion to S and thus
neglected). It follows frondS/0V = kgV ~! thatpV is proportional tdl’, as expected
of anideal gas.

In a sense to be made more precise presently, the bright sithe dolographic
screen corresponds to the energy representation, whittattkeside corresponds to the
entropy representation. Thus the energy representatlbgivé us quantum mechanics
on spacetime as we know it. One must bear in mind, howeverstaadard thermo-

1Due to quantum delocalisation, statements such geantum particle hitting the holographic screen
must be understood as meanaguantum—mechanical wavepacket, a substantial part aftwis nonzero
overlap with the screen.



dynamical systems admit both representations (energy aindpy) simultaneously,
which representation one uses being just a matter of chdiceur case this choice
is dictated, for each fixed observer, by that side of the scogewhich the observer
wants to study quantum mechanics. For example there is mgyerariable on the
dark side, as there is no time variable, but an observer cigrathe screen an entropy,
measuring the observer’s ignorance of what happens bejenstteen. By the same
token, on the bright side we have an energy but there is nomﬁtrln this case these
two representations cannot be simultaneous.

The situation just described changes somewhat as soon asoosigers two or
more observers, each one of them perceiving a differenttwior holographic screen.
Consider, for simplicity, two observe€3, , O with their respective screes, So, and
assume the latter to be such tisatgets beyond;, in the sense tha, encloses more
emerged volume thaf;. That is, the portion of emerged spacetime perceive@py
includes all that perceived b§,, plus some volume that remains on the dark side of
S1. CallVy4 this portion of spacetime that appears daritobut bright toO». Clearly,
quantum mechanics ov o will be described in the energy representation®yand
in the entropy representation l§¥;. In this case the two representations can coexist
simultaneously—notas corresponding to one observerstatiiard thermodynamics,
but each one of them gertaining to a different observer

The differences just mentioned, as well as some more thbasisk along the way,
set us somewhat apart from the standard thermodynamicabfiam. Nevertheless,
the thermodynamical analogy can be quite useful if one libase differencesin mind.

2.3 A holographic dictionary

Let us recall that one can formulatéalographic dictionarybetween gravitation, on
the one hand, and thermodynamics, on the other[50, 51, 5A43LetV; denote
the gravitational potential created by a total mags= fv d3V pyr within the volume

V enclosed by the holographic scregr= V. Then the following two statements are
equivalent/[[69] 38]:

i) there exists a gravitational potentig}; satisfying Poisson’s equatioW?Vg =
47Gpypr, Such that a test mass in the background field created by the mass distri-
butionp,; experiences a forcB = —mVVg;

i) given a foliation of 3—space by holographic screék$,= U;c 7S;, there are two
scalar quantities, called entropyand temperaturg’, such that the force acting on a
test massn is given byFéx = fs T6dS. The latter integral is taken over a screen that
does not enclose:.

Moreover, the thermodynamical equivalent of the grawtal theory includes the fol-
lowing dictionary entried69]:

1 -1

ES(I) = MVG(I)A(VG(x))v (2)
2nkpT(z) = %, )

2We are considering the simplified case of a pure quantum $iee our quantum state to be described
by a density matrix, there would of course be an entropy dstsat



ks d*aT = LEM . (4)
2 Js

In @), (3) and[(#) we have placed all thermodynamical quigstion the left, while
their mechanical analogues are on the right. As in fefl [68],area element?a on
S is related to the infinitesimal number of bil$V on it throughd®a = L%dN. We
denote the area of the equipotential surface passing thrtnegpointz by A(V(z)),
while dVi;/dn denotes the derivative df; along the normal direction to the same
equipotential. The above expressions tell us how, givemeaitgtional potential/s (x)
and its normal derivativéVy; /dn, the entropyS and the temperatufE can be defined
as functions of space

Specifically, eqn.[{2) expresses the proportionality betwe areal of the screen
S and the entropy it contains. This porportionality implies that gravitaiel equipo-
tential surfaces get translated, by the holographic dietip, asisoentropic surfaces
above called holographic screefis

Equation [(B) expresses the Unruh effect: an acceleratezhadrsexperiences the
vacuum of an inertial observer as a thermal bath at a tempef&that is proportional
to the observer's acceleratidie /dn.

Finally, eqn. [[%) expresses the first law of thermodynamickthe equipartition
theorem. The right—hand side &1 (4) equals the total restggref the mass enclosed
by the volume), while the left—hand side expresses the same energy cag#spread
over the bits of the screeft = 9V, each one of them carrying an eneigyT’/2. It is
worthwhile noting that equipartition need not be postudattarting from[(B) one can
in fact prove the following form of the equipartition theare

k—B/ d*aT = @U(S), A(S) = / d%a. (5)
2 Js 4n S
The details leading up t@](5) frorhl(3) will be given in secti®fl. Above,U can be
an arbitrary potential enengyWe will henceforth mean eqr](5) when referring to the
first law and the equipartition theorem. In all the above wetagating the area as a
continuous variable, but in fact it is quantised|[69]NfS) denotes the number of bits
of the screers, then

A(S) = N(S)L3%. (6)

However, in the limitV"- — oo, whenAN/N << 1, this approximation of the area by
a continuous variable is accurate enough. We will see latehat lettingV — oo is
equivalent to the semiclassical limit in quantum mechanics

We intend to write a holographic dictionary between quanmethanics, on the
one hand, and thermodynamics, on the other. This impligsstbavill need to gener-
alise eqns.[{2)[{3) anfll(5) so as to adapt them to our quamechanical setup. Thus
we will replace the classical particle of [69] with a quantparticle, subject to some
potential energy/ of nongravitational origin.

3The gravitational potentidl; appearing above is the gravitational enetgy per unit test masss.



3 The energy representation

Let H = K + U be the classical Hamiltonian function &Y whose quantisation leads
to the quantum Hamiltonian operathr = K + U that governs our quantum particle.
The Hamiltoniand will be assumed to possess normalisable states. This émmdit
on the potential was already reflected in the gravitatioaskoof eqn.[{2), where the
negative sign of the gravitational potential led to a pesitiefinite entropy.

On the bright side of the screen, spacetime has already esheffis gives us the
energy representation of quantum mechanics—the one wesatkto: a time variable
with a conserved Noether charge, the energy, and wavetunsctiepending on the
spacetime coordinates. We have the uncertainty relation

AQ AP > g (7)
In the semiclassical limit we have a wavefunction
1
by = exp <?~/> , ®)

wherel = [ dtL is the action integral satisfying the Hamilton—Jacobi eiqura

LetV denote the finite portion of 3—space bounded by the closextjhamphic screen
S = V. We can now posit the quantum—mechanical analogues of §&8n43) and
@®). In the energy representation these analogues regaatasly,

I 1 .
gS(w) = 4thPA(U(:v))IU(w)I, 9)
onkpT(z) = Lpfi—g, (10)

ks L AS) 4
> SanT = ?U(S). (1)

Some comments are in order. We are considering the nowistatiimit, in which the
rest energy of the particle can be ignored. We also neglegtalitational effects, rel-
ativistic or not; we will limit ourselves to the external potial . Quantum operators
such ad’, initially defined to act on wavefunctions it?(R?), must now be restricted
to act on wavefunctions i.2(V). Denote this restriction by, By definition, its
matrix elementsf, |Uy g, ) are

o Ovlg) = /V BV 10, (12)

the integral extending over the finite volurieinstead of allR3. For simplicity we
have suppressed the subindein (@), (I0) and[(1l1), but it must be understood that all
operators are to be restricted as specified.

The right—hand side of[9) deserves more attenﬂiéfrhdenotes the operator whose
matrix elements are the absolute values of thoge. dfaking the absolute value ensures



that the entropy is positive definite, given that the potdiifineed not have a constant
sign, contrary to the gravitational casel[af (2).

It will also be observed that no carets stand abdvy& (z)), A(S), because they
are c—numbers. They denote the area of the equipotentfatsupassing through the
pointx and the are of the screéh respectively. Also, the integral on the left—hand side
of (I0) is a standard surface integral, even if the integiaritle operatof’, because
the latter depends on the c—number—valued coordinateifunsat.

As a final remark, let us point out that the above equatibhs(f®) and[(Ill), as
well as their classical counterparfis (2}, (3) alid (5), areectly understood as being
expressed in the energy representation of thermodynafiiis.is so despite the fact
that one writes the entropy as an explicit function of theeptill energy—would this
not be the defining property of the entropy representatidm® answer is negative for
two reasons. First, one would need to express the entropyf@sction of the total
energyH, rather than as a function of just the potential engtgy Second, all the
above expressions are functions defined on the emergedmpoftspace, where there
exists a conserved Noether charge, the enéfggnd its conjugate variable, the time
The entropy representation will be introduced later on, e absence of spacetime
will make it necessary to eliminate the space dependenceasftiies such as entropy
and temperature. Such will be the case beyond the holograpraen.

4 The entropy representation

The entropy representation can also be thought of as quan&ahanics in the absence
of spacetime, as we will come to recognise presently.

4.1 Actionvs entropy

It is well known, in the theory of thermodynamical fluctuatso[7], that the proba-
bility density functiond required to compute expectation values of thermodynamical
quantities is given by the exponential of the entropy:

d = exp (;) (13)

B

Its square root, that one may call the amplitude for the godibadensityd, can there-
fore be identified with an entropic wavefunctimﬁd ):

o0 — o (). (1)
B

This identification is made up to a (possibly point-depet)denases'®, plus a nor-
malisation. Comparind (14) withl(8) we arrive at the cormsence
il S

- & T (15)



between the energy representation and the entropy repagisenboth of them taken
in the semiclassical limit This amounts to the statement that quantum-mechanical
fluctuations can be understood thermodynamically, at legke semiclassical limit.

We should note that the correspondeiicé (15) is holographiature, because the
action integrall is defined on space, while the entrofyis defined on the screen
bounding it. Moreover, the above correspondence also @sphat, in the entropic
representation, the semiclassical limit (the one coneitiar [8)) corresponds to letting
kB — 0.

The wavefunctior[(14) describes mtomingwave, from the point of view of the
screen. Aroutgoingwave, from the point of view of the screen, would be descried
exp (—95/2kp).

It is reassuring to observe that the same correspondencbd&®een found in the
context of gravity and black—hole thermodynamics [2, 3].

4.2 Quantum statesvs holographic screens

The equation/ (z!, 2%, 23) = Uy, wherelj is a constant, defines an equipotential
surface inR3. As U runs over all its possible values, we obtain a foliationRof
by equipotential surfaces. Following [69], we will identiéquipotential surfaces with
holographic screens. Hence forces will arise as entropyiemés.

Assume that), is nonvanishing at a certain point in space. Consider anitesin
mal cylinder around this point, with heiglit- and base area equal to the area element
d%a. Motivated by the proportionality between area and entrapngady mentioned,
we postulate that there is an infinitesimal entropy ftb$vfrom the particle to the area
elementd?a:

dS = C2nkpLp|¢y|*d%a. (16)

HereC is a dimensionless numerical constant, to be determineskptly. A closed
surfaceX receives an entropy flug(%):

S(%) :C(E)2ﬂ'kBLp/Ed2a|1/)+|2. (17)

The constanC'(X) will in general depend on the particular surface chosenl|étier

may, but need not, be a holographic screen. The key notianis¢hat the integral of

the scalar fieldvy, |* over any surface carries an entropy flow associated. When the
surfaceX actually coincides with a holographic scre€nand when the latter is not a
nodal surface of, , the constan€'(S) may be determined by the requirement that the
entropy flux from the particle to the screen equal the quartgiiemtropy [1). Thus

ﬁ — Lp /S d2a iy 2 (18)

We should point out the following. Given a wavefunction, the probability density
|4]? onR3 gives rise to a natural definition of entropy, namely,

. / BV [t 2 log |14 2. (19)

9



However, [(19) is the entropy associated with our uncegaimtthe position of the
particle in 3—space. As such it should not be confused wittetitropy[(1l7) associated
with the particle traversing the surfakk It is this latter entropy that we are interested
in.

Let us now read eqn.[{IL8) in reverse, under the assumptidrotteaknows the
proportionality constant§'(S;) for a given foliationR3 = U;c 7S;. This amounts to
a knowledge of the mtegrandse of the probability densityy. |? within the surface
integral [I8) on each and eve$y. From these tomographic sections of all probability
densitiesthere emerges the complete wavefunctianon all of R3, at least up to a
(possibly point-dependent) phasge.

Thus the integrand of{18) gives the surface density of @ytfmw into the holo-
graphic screeis;, and the wavefunctiott, becomes (proportional to) the square root
of this flow. The collection of all these tomographic sectiaf, along all possible
screens amounts to a knowledge of the complete wavefuncti@mcea knowledge
of the different surface densities of entropy flux acrosgpa#isible screens is equiv-
alent to a knowledge of the quantum—mechanical wavefungtia This is how the
guantum—mechanical wavefunctign. emerges from the holographic screens. Close
ideas concerning the wavefunction in relation to foliatiaf space have been put for-
ward in ref. [9].

4.3 The entropic uncertainty principle

Let us define the dimensionless variable
S
- 27‘1’]{}37
that we will call thereduced entropy It is nonnegative:s > 0. For example, the

semiclassical entropic wavefunctidn{14) can be expreisstms ofs asw@(s) =
e™. We can consider arbitrary functiorigs) on which we let the following operators

Qs, Ps act:

(20)

Qsf(s) = sf(s), Psf(s) := 2rkp

For reasons that will become clear presenfly; will also be called thenormal, or
entrop|c position operatomwhile Pg will be called thenormal, or entropic, momen-

One finds thaiPs andQ are Hermitian o2 [0, c0). Unlike the usual case
on L2( ), the Hermitian property of position and momentum on the agiiinvolves
some nontrivial mathematical subtleties that will not bediwed upon here; see [64].
Now the above operators satisfy the Heisenberg algebra

[Qs, Ps] = 2nkp1. (22)
Therefore the followingentropic uncertainty principléolds:
AQs APg > rhp. (23)

The above uncertainty principle has been derived rather ploatulated; this is in the
spirit of refs. [27] 28].

4The missing factor of in the definition ofPs is due to the correspondenge](15).
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4.4 The entropic Schroedinger equation

Since the screensS; are isoentropic surfaces, the reduced entropgn be regarded
as a dimensionless coordinate orthogonal to all§heMultiplication by L p gives a
dimensionful coordinatg:

p:= Lps. (24)

Modulo multiplication by a dimensionless numerical factmmd the possible addition
of a constant, the above is an equivalent reexpression @hation|[69]

AS = 2wk3%A:¢, (25)

wherez is the distance measured normally to the screen—in t[irD), i€2the same
as [1). We can exploit this fact if we assume that the timeeiethdent Schroedinger
equation

h2
- mvglh + U4 = By (26)

is separable in a coordinate system that inclyglas one of its coordinate functions.
So let us supplemenptwith two additional coordinates, y such that the triple, £, x
provides an orthogonal set of curvilinear coordirtaieswhich (28) separates as per
(28) below. Then the Euclidean line element®hwill be given by

ds? = h2dp? + h2de? + h2dy?, 27)

where the metric coefficients,, k¢, h,, are functions of all three coordinatgse, x.
We will call p thenormal coordinateo the foliation, whilet, y will be calledtangential
coordinatesto the foliation. A more physical terminology, based bnl (24g [10),
could beentropic coordinatdor p andisothermal coordinatefor &, .

We recall that/ depends only on the normal coordinateso equipotential surfaces
are defined byJ(p) = Uy, for any constant/y. The tangential dimensior$s x are
purely spatial constructs: they encode the geometry of qagetential surfaces. For
example, in the particular case of a Coulomb potential, s af an isotropic harmonic
oscillator, theS; are a family of concentric spheres of increasing radii. Thean be
identified with the usual radial coordinat@nR?, while ¢, y can be taken as the usual
polar angled, ¢. In the general case &, x need not coincide with any of the standard
coordinate functions of®. However, each scree; can be univocally identified
by the equatiorp = p,. The uncertainty principld(23) holds on the phase space
corresponding tg, and the operatofs defined in[21) is nothing buthe position
operator along the normal, or entropic, coordinate

Thus separating variables as per

5In generalp, £, x are only local coordinates, and need not cover aRdf In particular,¢, x need not
cover a complete scree$y, nor need they be simultaneously defined on different ser8gns;,. However,
to simplify our notation, we omit all the indices that woule hecessary in order to take all these possibilities
into account.
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and substituting intd (26) leads to

L [10 (hehy R 10 (hh 0¥\ 10 (hohed¥
hohehy |ROp\ h, 0p) YOe\ he 06) Yoy \ hy ox

+%(E—U) =0. (29)

The precise way in which {29) separates ingg-dependent piece and ay—dependent
piece cannot be written down in all generality, as it variesoading to the particular
choice made fop, &, x. This is due to our ignorance of the specific way in which the
metric coefficients:,, h¢, h,, depend on all three variables¢, x. One can, however,
outline some general features of the final outcome. Ternwving the Laplaciarv?
will decompose as a sufﬁﬁ + Vg,x’ where subindices indicate the variables being
differentiated in the corresponding operators. Callingdhparation constant there
will be two separate equations. The first equation will imeothe normal Laplacian
Vf), the potential energy/ (p), the energy eigenvalug, the mass\/ and the separation
constant\. All these elements (with the exception‘@f’;) appear as a certain function
F of p:

V;QJR(p) + F(p, U(p)v E, M, /\)R(p) =0. (30)

The unknown functiod is explicitly computable once a specific choice has been made
for the coordinateg, y. The second equation involves only the tangential Laplacia
Vgx and the separation constant

VELY(6X) +AY (6, x) = 0. (31)

It is important to note tha{ (31) can be solved independemitl@ﬁ. The eigen-
functionsY (¢, x) constitute a complete orthonormal system of eigenfunstafrthe
tangential Laplacian within th&angential Hilbert spacd.?(S;). Moreover, since we
have assumed the screens to be closed surfaces, the eigemivalill be quantised.
Once these eigenvalues have been determined, substitotio(B0) allows the latter
to be completely solved.

We are finally in a position to define the entropic wavefunttia in terms of its
partnery.. We take the entropic wavefunction to be thedependent piece in the
factorisation[(ZB),

¥—(p) == R(p). (32)
Clearly theentropic, or normal, Hilbert spaceorresponding to the screet) will be
L?[0, p,). The latter is considered with respect to an integrationsuesthat includes a

certain Jacobian factof(p). In order to compute this Jacobian we proceed as follows.
Apply the factorisation(28) to the normalisation conditfor >y onV;:

Pj
[ avie= [T [ dcvnpan ROPYEOR @)

J

6Needless to say, in the case of a Coulomb fi€ld] (30) beconeestandard radial wave equation, while
(37) becomes that satisfied by the usual spherical harmawitts\ = I(I + 1).
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In general, the produét,h¢h, depends on all three coordinaies, x. The sought—
for JacobianJ(p) equals thep—dependent factor in the integration measure after the
integral over¢, x has been carried out. As; becomes larger and larger, we obtain
the entropic Hilbert spacg?[0, o). The latter would correspond to an observer who
perceives no horizon at all, thus extending his normabsaititegral [38) over all of
R3. We will come back to the issue of the different realisatiohthe entropic Hilbert
space (20, p;) vs. L?[0, 00)) in sectior 5.P.

In the passage form the energy representation to the enteppgsentation we ap-
pear to have lost the information corresponding to the halolgic screens one inte-
grates over. However the screens carry no dynamics, bedaeisgerce at point: is
orthogonal to the screen passing throughThus a knowledge of the entropic wave-
function ¢ _, plus of the foliation itself is equivalent to a knowledge of the wave-
functionv . in the energy representation. That the foliation is a piddaformation
belonging to the entropy representation, was stated irrtassd) of our sectior 213
following [69,[38].

It remains to identify the wave equation satisfied by the agitr wavefunction
w_. Obviously this equation i§(80), which may thus be regardethe entropy—
representation analogue of the time—independent Schigedequatiort/ Yy = Eyy
on space. Recalling(9) and {24), this entropic Schroediegeation reads

V23)_(s) + G(s, A(s), E, M, \)y_(s) = 0. (34)

We have called7(s, A(s), E, M, \) the function that results from expressing the po-
tentialU as a function of the entropy and the areal, and writing everything in terms
of the reduced entropy. As was the case with in @30), the unknown functio is
explicitly computable once a specific choice has been madééccoordinates, .

4.5 The fundamental equation, the equation of state, and edjpar-
tition
In this section we will rewrite the dictionary entri¢s (#0j and[[11), found to hold in
the energy representation, in the entropy representdiimrthis purpose we first need
to solve the eigenvalue equatidip_ = Sé_ on the screen, so the latter will be kept
fixed. That is, we will not consider a variable surfageof the foliation, but rather a
specific surface corresponding to a fixed value of the indébserve also a difference
in notation: ¢ instead of). This is to stress the fact that, By (9), entropy eigenstates
cannot be eigenstates of the complete Hamiltotiamut only of the potential energy
U. OnceU is diagonalised by a set of. defined on the bright sidég., once we have
solved the eigenvalue equa‘ﬁ)n

Upp =Ugy, (35)

"Obviously thep are the well-known eigenfunctions of the position operatothe bright side, but this
property is immaterial for our purposes.
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then the corresponding- on the screen are defined per continuity:(S) = ¢4 (S).
By (@), the same_ then diagonalisé':

N _ _ kB
5¢- = 5¢-, S_4thp

AS)|U(S)). (36)

Thermodynamical quantities will now arise as expectatialues of operators in the
entropic eigenstates_(S).

We first deal with[(B). Clearly its reexpression in the enyrogpresentation will be
the thermodynamical fundamental equati®n= S(A) in the sense of ref. [7], since
the extensive parameter corresponding to the holographées is the ared. Then
we have

kp
4hcL p

Availing ourselves of the freedom to pick the origin of pdials at will, let us set
|U(S)| = he/Lp. Thus

(S) = AS)|U(S)I. (37)

kp
4L%
which is the celebrated Bekenstein—Hawking law. It arisea thermodynamical fun-
damental equation in the entropy representation.
Our holographic screen is treated thermodynamically aseéckied membrane, so
the generalised force conjugate to the extensive parametethe surface tensiom.
Then the equation of state correspondindd (38) is

(S) = A, (38)

_ kp(T)
AL

g

(39)

Rewrite the above a®rkp (1) = 87L%0 and recall that is the normal component
of force per unit length on the screen. Since force is proqoat to acceleration, the
above equation of state turns out to be equivalent to the tlasu.

Finally we turn to the first law of thermodynamics and the eqition theorem.
As already mentioned in sectibn .3, it turns out that theégagtition theorem can be
derived from the Unruh law. Since this fact is valid both ie ttassical cas¢](5) and
in its quantum counterparff (fL1), the derivation being dyatte same whatever the
case, we will provide the details pertaining to the derivatdf (I1) from [10). Inte-
grate the latter over a thin 3—dimensional slice of widthbounded by two equipo-
tentialsS; andS,. Now the Planck lengtiL p is extremely small, so we can safely
setdn = L p, while the two screenS; andS, will not differ appreciably in their sur-
face area. Then the volume integral of the left—hand sidE@¥ Yery approximately
equals2rkpLp [gd2aT. On the right-hand side, let us first integrété/dn along

the normal direction, to ObtaiDpU(Sg) — LPU(Sl). We can take the origin for the
potential function such that it will vanish a$y. The remaining term is the surface in-
tegralLp fs d2a U(S). The integrand can be pulled past the integration sign Isecau
S is an equipotential surface, thus yieIdiﬂ@U(S) fs d2a. This latter integral equals
the surface ared(S) of the screen, an{1L1) follows as claimed.
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Taking the expectation value, in the entropic eigenstatesof the operator equa-
tion (I1), produces the thermodynamical expression foetheépartition theorem:
kg A(S)

-~ San (T) = ?@(s». (40)

4.6 Planckvs Boltzmann, or A vs kg

Planck’s quantum of actioh gets replaced, in the entropic picture, with Boltzmann'’s
constanttp. This explains the presence bfin the entropic derivation of classical
gravity (Newton’s and Einstein’s) given in ref[_[69]: by tlherrespondencé (1L5),
the presence of is an unavoidable consequence of the presendezofand vicev-
ersa We find this dichotomy between the energy and the entropesentations very
suggestive—it appears to be a sort of complementarity iplicin Bohr's sense of
the word. For example, this dichotomy allows one to write argum of energy in the
form E = hw, or else in the alternative fortB = CkgT (C being a dimensionless
number). It also allows one to express a quantum of entrotheiformS = fw /T, or
else asS = 2rwkp. This dichotomy exchanges frequeneyith temperaturd’, thus
timet maps to inverse temperatufe !, which is reminiscent of the Tolman—Ehrenfest
relation [66] and also of thermal time [56].

4.7 The second law of thermodynamics, revisited

As a minor technical point, we have restricted our analysi€losed holographic
screens enclosing a finite 3—dimensional volume. Quantusshanically this cor-
responds to normalisable states in the energy represmmtdtionnormalisable states
correspond to open holographic screens without a boundang having an infinite
surface area and enclosing an infinite volume). Our anabagisbe extended to the
latter by replacing absolute quantities with densities (p@t surface or unit volume
as the case may be). The connection with the second law ahtdymamics comes
about as follows. The second law of thermodynamiks, > 0, lies hidden within
the quantum theory. Of course, one can derive it from skegistechanics, but our
purpose here is the opposite. We have seen that the domdie rfduced entropyis
the half axiss > 0, and that this fact led to the entropic Hilbert spdcé0, oo) (instead
of L%(R)) for the wavefunctiong_ (s). All this is a quantum—mechanical rewriting of
the second law. One could ask, under what conditions willetiiieopic coordinate
be nonnegative? This is certainly the case when the holbgrapreens are all closed,
but what happens in case they are open? The geometry of thenscis dictated by
the potentiall. If the latter has flat directions, then its equipotentiails mo longer be
closed surfaces—instead they will have an infinite surfaea and will enclose an in-
finite volume. As mentioned above, one appropriately regdapiantities like entropy
and energy with the corresponding densities. However,dhesponding screens must
be such that the normal coordinate to their bright sideuns over the half axis > 0.
This latter condition will be satisfied whenever the potalris such that it possesses a
centre of force, or an axis, or a plane, or possibly a moremgérarface of symmetry,
with respect to which one can define a nonnegative normabtiauate. This appears to
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be the case in all physically interesting situations, thagiseg in agreement with the
second law of thermodynamics. Only the free particle lackarsonicaldefinition of
a normal coordinate—but then again the second principléshiol the formAS = 0,
due to the absence of forces.

5 Discussion

5.1 Quantum mechanics as a holographic, emergent phenomeno

Classical thermodynamics can be conveniently expressedtiar of two equivalent
languages, respectively called the energy representatidithe entropy representation
[[7]. Here we have argued that quantum mechanics as we know.jtaqn spacetime)
corresponds to the energy representation, while quantuohamécs beyond a holo-
graphic screeni.g., in the absence of spacetime) corresponds to the entropysep
tation. In this paper we have developed the formalism ofogrtrquantum mechanics
and placed it in correspondence with that of standard guantachanics on spacetime.

In particular, we have formulated the entropic uncertajmiyciple [23) for the
(reduced) entropy variable that the entropic wavefunction_(s) (sometimes also
denotedR(p)) depends on; seE{R4). The latter arises as the result ofiiagtout the
part of the wavefunction that depends on the tangentialdinates to the screen, the
normal coordinate being proportional to the entropy itSélé have also written down
a differential equation satisfied by the entropic wavefiomtthat one may well call
the entropic Schroedinger equation; 4eé (34).

Moreover, we have identified the explicit expression (14@sesponding to the
entropic wavefunction in the semiclassical lirhig — 0. There is a nice map, given
by (I8), between the semiclassical wavefunction in thegnepresentation and the
corresponding semiclassical wavefunction in the entrepyesentation. This map ex-
changes the classical action integral with the entropy efsitreen, while at the same
time introducing a relative factor af It also exchanges Planck’s constantvith
Boltzmann’s constants. In so doing, this map succeeds in explaining why Planck’s
constant: had to appear in the derivation of classical gravity (Nev&and Einstein’s)
giveninref. [69]. Namely, the presencefois an inescapable consequence of the pres-
ence ofkg, and viceversa, sinceis required by the energy representation, wlhile
is required by the entropy representation.

If spacetime is an emergent phenomenon, then everythiigdsuit necessarily
becomes emergerit [24]. This applies to quantum mechanigarticular. However,
in the entropy representation developed here, the emezgenperty of quantum me-
chanics becomes a much sharper feature. Indeed, one uassdlgiates entropy with
lack of information, while energye(g, a sharp energy eigenvalue) is thought of as pro-
viding definite information. Now the correspondericd (15plies that, if the entropy
representation is emergent, then so is the energy repatisentand viceversa. In this
sense, the information content carried by entropy is no rddfese than that carried
by energy, nor is the information encoded by energy morepdhaefined than that
encoded in entropy. In other words, the correspondén¢ectifi)rms what we already
knew from other sources—namely, that quantum mechaniosfisittly an emergent
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phenomenon.

We have also succeeded in writing a holographic dictionatwben quantum me-
chanics, on the one hand, and thermodynamics, on the otheranAlogous holo-
graphic dictionary was presented, in the gravitationabcas ref. [69]. Some key
entries in this gravitational/thermodynamical dictionare summarised in eqngl (2),
@ and [®), preceded by the equivalence between staterj)eatslii) of section
2.3. As a novelty, here we have presented the correspondirig®in our quantum—
mechanical/thermodynamical dictionary. These entrietude the equivalence be-
tween the analogues of statemehtmndii) of sectiodZ.B. In our setup, this is expressed
in the assertion that the energy representation of quantaahamics (statemei)) is
equivalent to the entropy representation of quantum mectéstatemeni)). Further
entries in this dictionary of equivalences are the analsgfeqns. [([2),[(3) and15),
respectively given by our eqnd.] (9),{10) ahdl(11) when wagkh the energy repre-
sentation. Our eqns[](9].{|110) allow one to define an entragg find a temperature
field as (operator—valued) functions &1, whereas[(1l1) is a reexpression of the first
law of thermodynamics and of the equipartition theorem.iffespective vacuum ex-
pectation values give rise to the corresponding equatiotisi entropy representation,
@9), [(39) and[(40), where the space dependence disappElaes. respective inter-
pretations are the proportionality between the area anéntrepy of the screen (the
Bekenstein—Hawking law), the thermodynamical equatiostafe of the screen (the
Unruh law), and the equipartition theorem.

5.2 Quantum mechanics in the absence of spacetime

Entropic quantum mechanics can be thought of as descrikhingtgm mechanicis
the absence of spacetim&his latter statement must be understood as meaning that
the tangential coordinates to the holographic screensefissifunctions thereof, have
been factored out, while the normal coordinate and funsttbereof remain—though
no longer as apatial coordinatebut rather as eneasure of entropyT his viewpoint is
motivated in eqn.[(25), that we have borrowed directly fr@®][ Now in the absence
of time there is no Hamiltonian. In the absence of space teralso no paths to sum
overa la Feynman. One might thus conclude that there can be no quanaahanics
in the absence of spacetime. This is however not true, asrshere and as shown also
by independent analyses. For example, quantum mechanicsutispacetime has
been proposed as a case for noncommutative geometiy [580bVithout resorting
to noncommutative geometry, one can also argue as follows.

We have seen that the Hilbert space of entropic quantunsstate |0, p,) for an
observer who perceives space terminating at the se$eeand L2[0, co) for an ob-
server who perceives no screen at all, or horizon. GivenwloestreensS; and Sy,
respectively located at = p; andp = pi with p; < py, it holds that the two spaces
L?[0, p;) andL2[0, p) are unitarily isomorphic because both are infinite—dimemesi
and separableé [64]. Now lety, — oo. The isomorphism betweeh?[0, p;) and
L?[0, c0), plus the identificatior{24) between entropy and normaldivate, allows
the observer who perceives the scréeno extend his wavefunction(p) beyond his
boundary ap,. His wavefunctions are now understoodias(s), i.e., as functions of
the reduced entropy—indeed the latter is not bounded from above. It is in thiseen
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that this second observer can be said to be dgirantum mechanics in the absence of
spacetime

It is right to observe that the unitary isomorphism betwdenttvo different reali-
sations of the entropic Hilbert spade? [0, o) and L?[0, p,), need not map the semi-
classical regime of the one into the semiclassical reginte@bther, nor the strong—
quantum regime of the one into the corresponding regimeebther. An analogous
statement applies to the spade¥0, p;) and L?[0, px) corresponding to the screens
S;, Sk. The observation just made will become relevant in se€fi@n 5

5.3 Open questions

We can summarise our conclusions so far with the assertianethtropic quantum
mechanics is a holographic phenomenon, as emergent adispaitself. To round up
our discussion we would like to present some thoughts of &rspeculative nature.

As a first thought we would like to state thamtropic quantum mechanics is an
observer—dependent phenomendrhat measurement disturbs any quantum system
is, of course, a basic tenet of quantum mechanics. The satejust made, how-
ever, refers to something different. The concept that quamhechanics is observer—
dependent has also appeared, in different guises, In_[6&%H0under the name of
duality. Under duality one understands ttla¢ notion of classical vs. quantum is rel-
ative to which theory one measures fré¢see section 6 of ref/ [68]). This is also the
interpretation advocated in refs. [39] by one of the preseititors.

An idea that lies close to the above notions is the statenhanthe entropy of a
horizon is an observer—dependent quangige section 3 of ref[_[52]). In view of our
correspondenc&(IL5), this latter assertion turns out togoé@/a&ent to the one above
defining duality.

Thus the statement that quantum mechanics is observerdiepeis an equivalent
reexpression of duality.e., of the relativity of the notion of a quantum. In the entropic
picture developed here, this relativity presents itselhasdifferent realisations of the
entropic Hilbert space, explained in sectlonl5.2. Equiviye this relativity of the
notion of a quantum arises here as the relativity of the @gtro

The previous statements may at first sound surprising. iClaestises such as,g,
ref. |6€], teach that the Lorentz transformation laws fer lieat energy and the temper-
ature are such that their ratio (the entropy) is a scalar.elger, in principle one ex-
pects physical constants suchkgsandh to be observer—-independent. However, let us
note that a totally analogous phenomenon has been reporefgi [50| 51|, 52, 53, 54],
where the entropy of the screen has been argued to be an ebskgendent quan-
tity. That the entropy of a thermodynamical system becomesbserver—dependent
guantity has also been concluded in an information—thmadetontext [55]. Upon
transforming back to the energy representation, the deperdust described can be
recast as the dependence of Planck’s condtamqton the observer. Exactly this latter
conclusion concerningy has been reported in [[70].

Given that the equations of motion for Einstein’s gravity ¢ recast as thermo-
dynamical equations of state, it has been claimed that thenieal quantisation of
gravity makes as little sense @santising sound waves in g41l]. This remark makes
it clear that quantising Einstein’s gravity may be attemgtio quantise the wrong
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classical theory, but it casts no doubt yet on the validitgadntum theory. However,
doubts concerning the microscopic fundamentality of thtetarise once one realises
thatquantum theory, too, is a thermodynamics in disguise
Acknowledgements].M.I. thanks Max—Planck—Institut fir Gravitationspikys
Albert—Einstein—Institut (Golm, Germany), for hospitalextended a number of times
over the years. This work has been supported by Universidét&nica de Valencia
under grant PAID-06-09.

Dich stre nichts, wie es auch weiter klinge,

schon &ngst gewohnt der wunderbarsten Dinge.

—Goethe.
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Abstract We present an explicit correspondence between quantumaniestand the
classical theory of irreversible thermodynamics as dexaiidoy Onsager, Prigogires
al. Our correspondence maps irreversible Gaussian Markaepses into the semi-
classical approximation of quantum mechanics. Quantunchar@cal propagators are
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guantum mechanics is not a fundamental theory but rathemamgent phenomenon,
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1 Introduction

Emergent physics as a research topic has drawn a lot ofiatie@etently[[10, 25]. The
very spacetime we live in, as well as the gravitational faha governs it, both appear
to be emergent phenomenal[24] (39, 49]. Quantum mechanieddeedseen conjectured
to be the emergent theory of some underlying deterministideh in part because of
its long—standing conflict with general relativity. Thesests a large body of literature
on emergent quantum mechanics, some basic references [Beig), [33]; see also
[By11,12] 14 19, 22, 29, 30, 34,143, 44] 45] for more recemkw®he hypothesis of
emergence and the holographic principle [20, 46] have bagedas landmarks in the
endeavour to arrive at a consistent a theory of quantumtgravi

Without touching on the difficulties facing quantum grayaynumber of interpre-
tational questions and foundational issues arise and rewigtin a purely quantum—
mechanical setup (or, eventually, within a quantum fieldthasetup, see [23]). In this
article, following earlier work([1], we will focus othe emergent aspects of quantum
mechanics applying a thermodynamical approaehfact the classical thermodynam-
ics of irreversible processes and fluctuation theory wilhtaut to share many com-
mon features with quantum mechanics—surprisingly, witliriR@an’s path integral
approach to quantum mechanics. Some basic references sualijeet of fluctuations
and irreversible thermodynamics arel[28} [37,[38/ 40, 48jigning questions such as
the emergence of macroscopic irreversibility from micagsc reversibility, the arrow
of time, and other related puzzles are analysed in[[311, 41inoke complete list of
references can be found [n [36].

Specifically, the purpose of this article is twofold:
i) to establish an explicit correspondence between quantuwrhanés on the one hand,
and the classical thermodynamics of irreversible processethe other. We claim
validity for this correspondence at least in the Gaussigir@gpmation (which cor-
responds to the linear response regime in thermodynamidstaathe semiclassical
approximation in quantum mechanics);
i) to use the correspondence just mentioned in order to praridedependent proof
of the statement thajuantum mechanics is an emergent phenomenon, at least in the
semiclassical limit

With hindsight, once one has realised that quantum mecbantbe Gaussian ap-
proximation is a classical thermodynamics in disguisegthergent nature of quantum
theory becomes selfevident—after all, thermodynamicsgpiaradigm of emergent the-
ories.

2 The Chapman—Kolmogorov equation in quantum me-
chanics

To begin with we present a collection pfirely guantum—mechanical expressions, for
which there will bepurely thermodynamical reexpressions using the correspondence
we are about to develop. Although the material of this sed8standard, a good gen-
eral reference i$ [50]. For simplicity we will restrict to adimensional configuration
spaceX coordinatised byt.



The quantum-mechanical propagafd(xs, t2|z1,t1) is defined as the amplitude
for the conditional probability that a particle startingat, ¢1) end at(zs, t2):

K($27t2|£€1,t1) = <£C2|U(t2 - t1)|171>, U(t) = exp (—%tH) . (1)

Above,U (t) is the unitary time—evolution operator, afldis the quantum Hamiltonian
operator. The time—evolution operators satibfy group property

U(t1)U(t2) = Ul(t1 + t2), (2)

an equation known in statistics already since the 1930tk@€hapman—Kolmogorov
equation[13]. Its solutions satisfy the differential equation

au du
ihs = HU(t o= . 3
g = HUQ), "t o ®)

Using [1) we obtain an alternative reexpression of the Claap#{olmogorov equation:

K (z3,t3]z1,t1) = /d£C2K($C37f3|$€2,f2)K($2,t2|$1,t1)- (4)

Since wavefunctiong are unconditionalprobability amplitudes, they are related to
propagatordg< (which areconditionalprobability amplitudes) as follows:

(w2, t2) = /dﬂCl K (xa,to|z1,t1) Y(z1,t1). 5)

Propagators can be computed via path integrals over coafigarspaceX,

I(tQ):Ig

K (zo,to]x1,t1) = /

z(tl):zl

. to

Da(t) exp{% / dtL[x<t>,:e<t>1}, ©)
ty

whereL is the classical Lagrangian function. Two simple examptestiich the path

integral [®) can be evaluated exactly are the free partiatethe harmonic potential.

For a free particle we have

: 2
K(free) t t — m ﬂ (‘T2 B xl) 7
(w2, 2|21, 1) mih (to — 1) (ts — t1) exXp o 7152 “ ) (7)
while for a harmonic potential we have, ignoring the causstic
K(harmonic) t ) = mw 8
(@2 baloss 1) = o ot — 1)) ®

<o g st g [+ oo ette —0) —2vm]

When the path integrd[{6) cannot be computed exactly, arappate evaluation can
still be helpful. Forh — 0 we have the semiclassical approximation to the propagator,
denoted byK :

. to
Ka (z2,ta]x1,t1) = Z71 exp {%/ dt L [xcl(t),jrcl(t)]} , 9)

t1



wherez,(t) stands for the classical trajectory betwéen, t1) and(x, t5), andZ 1
is some normalisation factdr.

3 Fluctuations and irreversible processes

For the benefit of the reader, with an eye on later applicatiare include below a
summary of ref.[[38].

3.1 Thermodynamic forces

Let a thermodynamical system be given. If we are interestamhly a single instant,
the probabilityP of a given state is given by Boltzmann’s principle,

kpIn P = S + const, (20)

whereS is the entropy of that state. If we are interested in two imstavidely separated
in time, the probability of given states at each instant isaédo the product of the
individual probabilities. A long time lapse makes the stagtatistically independent.
Hence the joint probability of the succession is relatedhtostum of the two entropies.
But if the time lapse is not long, the states will be statadticcorrelated. It is precisely
the laws for irreversible behaviour which tell us the caatigns.

Let the thermodynamical state of our system be defined by af gatensive vari-
ablesy!,...,y"™. The entropys = S(y!,...,%") will be a function of all they*. Its
maximum (equilibrium) value will be denoted I8, and they* will be redefined to
vanish for the equilibrium statef, = S(0, ..., 0). The tendency of the system to seek
equilibrium is measured by ththermodynamic forces;, defined as

oS
Yo =—, k=1,...,N. 11
k aykv ) ) ( )

TheY), arerestoring forceshat vanish with they”.

Fluxes are measured by the time derivatives ofithe The essential physical as-
sumption made here is thisteversible processes are linear, i.e., they depend lilyea
on the forces that cause theffherefore we hafke

N

o dyt .
yzzdyT:ZL”Yj, i=1,...,N. (12)

j=1
Onsager’s reciprocity theorem states thas a symmetric matrix [37],

L = [t (13)

1we will henceforth use the collective notatiéfi! to denote all the different normalisation factors that
we will not keep track of.

2We user to denote time in the theory of irreversible thermodynamimsd¢ to denote time in the
quantum theory. As will be seen in{44)andt are related by a Wick rotation.



Further assuming that is nonsingular one can solve for the forces in terms of the
fluxes:

N
Y; =Y Ryy, i=1,...,N. (14)
j=1
Thus the rate of production of entropy,
N N
. oS .. i
§=2 559 =2 Vi, (15)
j=1 j=1

can be expressed in either of two equivalent ways:

N N
S=Y" Ryj'y =Y LYY (16)
i,j=1 i,j=1

One defines thdissipation functior as the following quadratic form in the fluxBs:

1 & -
=g > Ry 17)

i,7=1

This function is a potential for th&y, becaus@® /9y’ = R, Y). The corresponding
quadratic form of the forces,

N
1
=g > LYy, (18)

ij=1

has a similar property, but it should be noticed that it is icfion of thestate(since
theY}, depend only on thg?), whereas the numerically equblis a function of itsate
of change

If we expand the entropy in a Taylor series around equilibrive have

N
1 i
S:SO_i E Sijny—F... (19)

ij=1

The matrixs;; is symmetric and positive definite. Neglect of the highemigin y*
means the assumption that fluctuations are Gaussian: fozrBahn’s principle[{7I0)
states that the logarithm of the probability of a given flation is proportional to its
entropy, or

N
_ S _ 1 i
P(y',...,y") = Z " exp (E) =Z texp kg Z siy'y’ | - (20)

i,j=1

SWe assumeR;; to be positive definite. This ensures that> 0 as expected of a dissipative process.
Indeed, the dissipation functich can be identified with a kinetic enerdy, = Zg\szl gij;'pi‘;bj/Q, w‘here
gij is a certain Riemannian metric on the space spanned by theities 7. Identifying #7 with 37 we
havegij = Rij-



The assumption of Gaussianiky {19) then implies thafithare linear in they’:
N
Yi==> sy, (21)
j=1

Thus the phenomenological lavis{14) become

N
(Riji + sijy?) = 0. (22)

J=1

3.2 Fluctuations

Let us now modify the deterministic equatiohsl](14) to inetidctuations by the addi-
tion of a random forceé;,

N

Z Ry’ =Yi+&, (23)

j=1
which turns[T#) into the set of stochastic equatidn$ (233. réquire that the; have
zero means, which implies that the right-hand side[of (23) isndom force with
meansy;. For simplicity, as in the quantum—mechanical case, leetid/s= 1, so we
have a single variablg obeying the stochastic equation

Ry + sy =¢. (24)

We will be concerned with the path gfin time under the influence of these random
forces. Our aim is to calculate the probability of any pathor & instants of time
1 < T <...< T, we denote theumulative distribution functiohy F,,:

Fn<y1'”yn)—P(y(Tk)§yk,k—l,...,n). (25)
T ... Tn

The functionF,, tells the probability that the thermodynamical path) lie below the
barriersy,, ..., y, at the corresponding instants, ..., 7,. A stationaryprocess is
defined as one whose cumulative distribution functignis invariant under arbitrary
time shiftsdr:

Fn<y1y”>_Fn< Jroeee i > Vér € R. (26)

T ... Tn T+ 0T ... Th + 0T

Physically this describes aaged system, one that has been left alone long enough
that any initial conditions have worn off, or been forgott@ihus we consider entropy
creation as a loss of information: a dissipative systemdtsgs past.

AlongsideF,,, the probability density functiorf,, is defined such that the product

T1...Tn

gives the probability that a thermodynamical path passutdngates of widthly.



We will also be interested in conditional probabilities.eldonditional probability
functionfor the (n + 1)th event given the previous

Fl (yn-l-l yl yn) :P(y(Tn+1) :yn+1 ‘y(Tk) :yka k: 1,._,,”), (28)

TnJrl T1 ... Tnp

is defined implicitly as follows:

Foi1 <y1"'y"+1> (29)

71+« Tn+1

Y1 Yn T T T T
:/ dgl.../ dgnF1<y”“ yly") an<y1"'y”).

— 00 — 00 Tpn+1!17T1 ... Tn T «..Tn
Correspondingly, theonditional probability density functiofy is defined such that

f (y’“ y’“) Ay dy_s (30)
Tk | Tk—1

equals the probability that a thermodynamical path passitiir a gate of widtkly, at
time 7, giventhat it passed through a gate of width,_; at timer;_;.

3.3 Markov processes

A Markov process is defined as one whose conditional proitiabiare independent of
all but the immediately preceding instant[13]:

£ (ynJrl 1/1%) —F (yn+1
Tpn+1 171 ... Tn Tn+1

Intuitively: a Markov system has a short memory. For a Markmcess[(Z29) and (81)

imply
. (ylyn) 5 (yn yn—l) o (yz‘yl) h (yl) (32)
T1...Tn Tn ! Tn—1 21T m

Now f; (T) is known from Boltzmann'’s principlé {10). Hence, by statidity, all

1

that is needed in order to obtain the distribution functiondn arbitrary number of
gates is to evaluate the conditional probability densityction

Y2 Y1
f1<7'—|—67‘7)7 (33)

which depends only ofir, being independent af. Thus then—gate problem reduces
to the 2—gate problem.

y”). (31)

Tn




3.4 Gaussian processes

A Gaussian stochastic process is one whose probabilityitgénaction is a Gaussian
distribution. Let us set, in(24),

Then the conditional probability function for a Gaussiaagass is given by [38]
1 k — e 10my,)?
f1 ‘yl - */ _B exp _i_(yQ - —2 6y1) - (39)
T+5T V21 /1 — e=2707 2kp 1 —e2707

Now eqgn. [(3b), together with (B2), constitutes the solutmithe problem of finding
the probability of any path in a Gaussian Markov process. & @mark that[(35)
correctly reduces to the one—gate distribution func{id (ar 6+ — oo.

Next let us divide the intervdlr, 7 + 7) into n equal subintervals of length/n:

]
T =T, T2:T1+—T, cery  Tn4l =T+ 0T, (36)
n
Then we have

i (yn+1 ) /dyn- /dygf (yn+1 )"'fl (y2‘yl). (37)
Tn+1 Tn+1 T2 1T1
This is again the Chapman—Kolmogorov equation. The integjvave extends over

all then — 1 intermediate gates. Using_{(37) one can reexpieds (35) ifotloeving
alternative form([38]:

Ynt1|Y1\ _ R s - Rlilr 2
fl(Tn+1 ﬁ)—Z 1e><p{ 41@3/71 dr R[y(7) +7y(7)] } (38

min

subject toy(m1) = y1, Y(Tht1) = Ynt1. The subscripmin refers to the fact that
argument of the exponential is to be evaluated along thedi@y that minimises the
integral.

Y2 | Y1

The one—gate distribution is obtained from the conditiatistribution f; (72 o

by takingr; = —oo andy; = 0 (because the aged system certainly was at equilibrium
long ago). Thus we set = 1 in ([38) and define théhermodynamical Lagrangian
function£ as

L1,y = o [ + ) (39)

The dimension ofL is entropy per unit time, instead of energy. However, our map
between mechanics and thermodynamics will justify the d@nation “Lagrangian”.
The Euler—Lagrange equation for a minimum value of the iratidg (38) is

j—~*y=0. (40)

The solution to the above that satisfies the boundary camditi(r = —oc) = 0 and
y(T = Tg) = Y2 is
y(7) =y 77T, (41)



Evaluating the integral in(38) along this extremal tragegtieads to

0 S
A2 = A () =27 exp |———(12)?] . (42)
To | —00 To 2kp
This result is in agreement with what one expects from Badtzn's principle[(ID) in
the Gaussian approximatidn {19).

Finally substituting[(4R) intd(37), we obtain the thermadynical analogue of the
guantum—mechanical relatidd (5):

(D) fos(mm)s() e
T2 T21T1 T1

This concludes our summary of ref. [38].

4 The map between quantum mechanics and irreversible
thermodynamics

The Wick rotation
T=1it (44)

between the thermodynamical evolution parameteand the quantum—mechanical
time variablet is the first entry in our dictionary between classical irmsiae ther-
modynamics and quantum mechanics.

4.1 Path integrals in irreversible thermodynamics

The concept of a path integral can be traced back to the Chagfadmogorov equa-
tion. Indeed lettingr — oo in (@8) and usind(37), the right-hand side[ofl(38) becomes
a path integrabver the thermodynamical configuration space

()= " byt exp i [ ar Rl 20} )

(T1)=y1 T1

Thus it turns out thaf(38) actually equals the semiclakaigproximation (as pef]9))
to the path integral{45). This latter expression for théritistion functionf; in terms
of a path integral is implicit in ref[ [38]—but actually naveritten down explicitly in
that paper; see however|18].

Dropping in [39) the term proportional ty (a total derivative), we redefine the
thermodynamical Lagrangian functighto be

L)) = 5 [0 + 2270 (46)

We observe thaj?(7) andy?(7) in £ carry the same relative sign. Similarly dropping
in (43) the term proportional tgy, we can rewrite the path integral usifigl(46) as

A= [ b oo { o [Careimaei}. @n

(T1)=y1 T1



The path integral{(47) is the thermodynamical analogue efgdith integral[{6) that
defines the quantum—mechanical propagator. Thus settiad in (38), dropping the
total derivativeyy, and replacing the integrand with the thermodynamical aagran

(@B) leads to the Gaussian approximatioriid (47):

P20 =zt oo [ artlia@aaml}. @

T21T1 i

Here £ [9a(7), ya(7)] stands for the evaluation df(46) along the classical ttajgc
ya1(7) that satisfies the equations of motiénl(40). In this viay (4&gen to correspond
to the semiclassical approximation for the quantum—mechbpropagator, given in
(@). On the thermodynamical side, the qguantum—mecharecaidassical approxima-
tion translates as the assumption of Gaussianity for thehasiic forceg and for the
entropy .S, as well as the assumption of linearity between forces anadligwhich
leads up to the quadratic formis{17) ahdl(18)).

4.2 Propagators from thermodynamical distributions

The next entry in our dictionary relates quantum-mechéawniaaefunctions and prop-
agators to thermodynamical distribution functions. Wittie Gaussian approximation
we use throughout, this entry will refer to the free partetel the harmonic oscillator.
We first we need to identify certain mechanical variableslhitir thermodynamical

partners. Specifically, we will make the following repla
mw S

wey, o o

2 . 49
W H2k3’ Ty (49)

To begin with, one expects the squared modulus of the waegtm||? to be
related to the 1—gate distribution functigin (2) while the propagatoK” must cor-

respond to a 2—gate distribution functig?p(%jj |2 ) Indeed the 1-gate distribution

function [42) gives the squared modulus of the ground stgte) = exp (—mwa?/2h)
of the harmonic oscillator once the replacemelnis (44), #4@ppplied:

bil (i) = 7" exp (_%gﬁ) _ |wéharmonic)(x)|2. (50)

With the appropriate choices for the constantsindw, (580) can also represent a free
wavepacket. Next we turn to propagatéisElementary algebra brings the conditional
probability function for a Gaussian process](35) into therfo

o 2
n(21%) - B g I il St B Y
T O 2I€B T sinh (’YT) 2]{33 2 sinh (’77’) ’

We will also be interested in the limit — 0 of the above:
yz‘yl s 1 s (y2—wm)?
~— —_—— | 52
h (7’ 0 )7*}0 2kp \/TAT P { 2kp 24T (52)

4A dimensionful conversion factor must be understood asiitlyl contained in the replacement<s v,
whenever needed.

10



Using [44) and[{49), the free quantum—mechanical propa@tdollows from [52):

k T
K (25 t]21,0) = ?B fi ( it2

0

The case when is nonvanishing requires some more work. Agaid (44) &nH &16yv
one to relate the conditional probabilify {(51) to the haringmopagatof(8) as follows:

iwt AV [2 N
f (xf xl) — exp (—“" - —) S pe(harmonic) (1) ¢y 0),  (54)
1

o )HO . (53)

0 2 hw h

whereV (x) = k2?/2 is the harmonic potential anfdV = V' (x2) — V(x1). As had
to be the casel {b4) correctly reducedid (53) when 0. The square roots present in
(53) and[(B4) ensure that these two equations are dimerisiconarect.

4.3 Integrability vs.square—integrability

Under our correspondence, the squared modulus of the wastéda|+/|? gets mapped
into theunconditionaprobability densityf; (-Zi ) , while the propagatak” gets mapped

into theconditionalprobability densityf; (-Zj | ) One should bear in mind, however,

that the quantum—mechanical obje¢tsK are probabilityamplitudeswhile the ther-
modynamical objectg; are true probabilities. Therefore quantum mechanics is not
just the Wick rotation of classical, irreversible thermaodynics—it is also thequare
root thereof, so to speak, because of the Born rule. In order toeaddhis question
in mode detail we need to recall some background mathematesref. [[4]7] for a
physics—oriented approach, and also [5] for a recent disou®f some of the issues
analysed later in this section.

Let M be a measure space, and denotd.By\/ ) the Banach spaEe

1/p
0 = {f: =il <oob o= ([ 1) 0<p<s

(55)

It turns out thatL? (M) is a Hilbert space only whep = 2. Moreover,L? (M) and
L%(M) are linear duals of each other whenevép+1/¢ = 1. Two particular cases of
this duality will interest us. The first onejis= 2, ¢ = 2, the otheroneis = 1, ¢ = oco.

Whenp = 2 we have thaf.?(M) is selfdual, the duality being given by the scalar
product: (-|-) : L?(M) x L?*(M) — C. The corresponding algebra of bounded
operators isC(L?(M)), a noncommutativé'*—algebra with respect to operator mul-
tiplication. Complex conjugation if(L?(M)) consists in taking the adjoint operator,
while the noncommutativity is that of matrix multiplicatio

The operator algebr&(L?(M)) is also a Banach algebra for apy> 0, and not
just forp = 2. However, only whemp = 2 is aL(LP(M)) aC*—algebra, because only
whenp = 2 doesL(LP(M)) possess a complex conjugation.

5The spacel.? (M) is complex or real according to whether its elemefitare taken to be complex—
valued or real-valued functions dv. For quantum—mechanical applications we will considerctiaplex
case, while thermodynamical applications require the caaé. For generality, this summary assumes all
spaces complex.
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Set nowp = 1. The dual ofL! (M) is L>°(M). Elements of the latter are measur-
able, essentially bounded functiofisvith a finite norm|| f||:

LX¥M) ={f: M = C, [|fllo <o}, |[flloc = sup.end{[f(2)[}.  (56)

The duality betweed! (M) andL>° (M) is
(1) D=0 x L) — €, (Al = [ 1 (57)
M

forany f € L>°(M) and anyp € L'(M). Now L>(M) also qualifies as &*—
algebra, the multiplication law being pointwise multigtmon of functions (hence com-
mutative), and the complex conjugation being that of thefiems f. An important dif-
ference with respect to the previous case is fi{dt?(M)) is noncommutative, whereas
L°° (M) is commutative.

We will henceforth writeX for the spacel when dealing with the mechanical
configuration space, aiid when referring to the thermodynamical configuration space.

Textbook quantum mechanics regards quantum states asaysitvithin L2(X),
while physical observabl& are represented by selfadjoint operatrs L£(L*(X ))E
On the other hand, the natural framework for the theory ef/rsible thermodynam-
ics is thereal Banach spacd.!(Y) and its dual, theeal Banach algebrd,>°(Y).
Thermodynamical states are probability distributigns L!(Y"), that is,real func-
tions, normalised as pg"g/ p = 1. Thermodynamical observables aeal functions
f e L>(Y). Thus |, fpin (E17) equals the average value of the physical quarftity
the state described by

Clearly the thermodynamical setup is not quite as sophistétas its mechanical
counterpart. As opposed to tkemplexHilbert spacelL?(X), thereal Banach space
L'(Y) does not know about the existence of the imaginary unih the absence of
a complex conjugation to implement time reversal, the tloglynamical setup nec-
essarily describesreversible processes. Moreover, there exists no scalar product on
LY(Y). Correspondingly there is no notion of a selfadjoint oparat £(L!(Y))—in
fact, thermodynamical observables are elements of a végreint spaceLOO(Y)ﬂ

The previous differences notwithstanding, we can establimap between quantum—
mechanical states/observables and their thermodynaodoaterparts, as we do next.
We treat observables first, and discuss states later.

It is reasonable to identify real thermodynamical averdgés) with quantum me-
chanical expectation valuég|O|y) of selfadjoint operator®, something like

/m=umwwwm=/¢ww (58)
Y X

where the correspondence denotedbyhas yet to be given a precise meaning. For
this we can assume diagonalisiGby a (complete, orthonormal) set of eigenstates
¥; € L*(X), so we can replace the right-hand side[of (58) with the cpameding

6We ignore the mathematical subtleties due to the fact¢hit generally an unbounded operator, hence
generally not an element af(L? (X)), because this fact is immaterial to the discussion.
7In particular, thereal spaceL. > (Y) is a Banach algebra but not —algebra.
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eigenvalue);. We want to define a functiondl for the left—-hand side of{%8). A
sensible definition actually involves a collection of camgtfunctionalsf;, each one of
them equal to the corresponding eigenvalie

Since the eigenvalueg are constants and the densitgan be normalised to unity, the
imprecise corresponden¢e]58) can be replaced with thésprdictionary entry

/ Jip = (Flp) = M = (4]OJ4) = / V0. (60)
Y X

This generalises in the obvious way to the case of a set of adimgobservable®;,.
Noncommuting observables, not being simultaneously dialigable, lead to the im-
possibility of simultaneously defining the correspondingrmodynamical functionals
f on the left-hand side of (60). We will examine the thermodyital analogue of
gquantum commutators in a forthcoming publication.

So much for the observables; now we turn to the states. Shawenbdynamical
probabilities are elements @f' (Y') while quantum—mechanical amplitudes belong to
L?(X), we would like to define some map 6f(X) into L!(Y), or viceversa. Given
Y € L?(X), one’s first instinct is to set := [|? because thep € L'(X); this is
of course the Born rule. The attentive reader will have ratithat we actually need
p € L(Y): itis generally meaningless to equatéo |+/|>—or to any other function
of ¢, for that matter. We will proceed ahead under the simpldyassumption that
X=Y.

The usual Born mapis defined as

bi L2(X) — LX), b(¥) == [¥]* (61)

This map is obviously not 1-to—1, so it fails to be an injectifs such it possesses no
inverse. We will however use the formal notation' to denote the map

bt LY(X) — LA(X), b7 Y(p) := /per®, (62)
wherey is taken as the solution to the continuity equation
p+V-(pVp)=0 (63)

that is well known from the Madelung transformation. Morenuf b=1(p) satisfies
the Schroedinger equation, themmust of course equal the action integfat [ dt L,
and thus satisfy thquantumHamilton—Jacobi equation [16]. Although the mip'
also fails to be an injection, we use the notatiort becauseéb—(p) = p. Aside
from this difficulty about the lack of injectivityy andb—" provide us with the required
maps from quantum—mechanical states into thermodynamistbution functions,
and viceversa.

The Chapman-Kolmogorov equatiéni37), written belowfor 2,

i (y?"yl):/dygfl (yB‘y2)fl (yz y1)7 (64)
T31T1 T3 1 T2 T2 1T
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is the thermodynamical analogue of the quantum—mechaggetion[(#). This leads
us to the following point. Our correspondence mﬁpé -Zj ‘ -Zi ) , which is a conditional

probability, into K (z2, t2|x1, t1), which is anamplitudefor a conditional probability.
In other words, under our correspondence, the Born rule doeapply to the map
between conditional probabilities, although it does applthe map between uncondi-
tional probabilities. There is nothing wrong with this. etl,f; and K satisfy the re-
spective Chapman—Kolmogorov equatidns (64) ahd (4). Riéggthe latter as matrix
equations (which is what they are), they read formgllyx f; = f1 andK x K = K.
That is, squaring; and K as matrices (which is how they should be squared, sfince
and K are operators), they are idempotent. It therefore makesesento impose the
Born rule on the map betweédii and f.

4.4 Entropy vs.action

To complete our dictionary between quantum mechanics aadeirsible thermody-
namics we postulate the following correspondence betweemd¢tion integral and
the entropys:

(mechanics) %LI > kiS (thermodynamics) (65)
B

up to a numerical, dimensionless factor. Now the Wick rota{#4) replaces! with
the Euclidean actioffiz, so we could just as well write

(mechanics) %LIE & kiS (thermodynamics) (66)
B

again up to a numerical, dimensionless factor. We obseratebibth/ andS indepen-

dently satisfy an extremum principle. We also note that dspective fluctuation the-
orieﬁvin the Gaussian approximation are obtained upon takingxpereential. Thus
exponentiating (d5) we arrive at the wavefunction

i
v=view(41) (67)
and at the Boltzmann distribution functidn {10):
1 1
pp=2%4 "exp|—S5|. (68)
kp

We should point out that the correspondericé (€5), (66) sasteen found to hold in
independent contexts, long ago by de Broglie [9] and morentyge.g.in [1,[6].

Applying the Born rule we set the Boltzmann probability dgngs equal to the
quantum-mechanical probability densiity|?:

pp = [¢]* = p. (69)

8These fluctutations are of course measured with respeat iwoiflesponding mean valueslo&ndS as
given by their extremals.
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(See ref.[[4] for distributions other than tequaredmodulus). Hence
p=2Ztexp (iS) . (70)
kp

Substitution of[[7D) intd{87) yields an elegant expres$arthe wavefunction

v =2""Y?exp (%S) exp (%I) , (71)

combining thermodynamics and quantum mechanics into desfognula.

Implicitly assumed in[{71) is the identification of mechalicariablesr and ther-
modynamical variableg, as already done ifi_(#9). One can now definedbmplex—
valued actiorlZ(:c)ﬁ

1 i
in order to write
U(w) = 27 exp (I(x)) (73)

as the semiclassical wavefunctignl(71), where

Z = /d:z: |exp (Z(x)) |?. (74)

We realise that the correspondericé (65)] (66) leads nittmahe existence of a com-
plexified action such aE{I72), which expresafisndamental symmetry between entropy
and mechanical actian

Finally we would like to point out that complexified actiomfttionals have also
been considered recently in ref. [32].

5 Discussion

We can summarise this article in the following statements:
i) we have succeeded in formulating a correspondence betwsrstasd quantum me-
chanics, on the one hand, and the classical thermodynamics\wersible processes,
on the other;
i) this correspondence holds at least in the Gaussian appatigim(the latter being
defined in quantum mechanics as the semiclassical limitirath@rmodynamics as the
regime of linearity between forces and fluxes);
iii) this possibility of encoding of quantum—mechanical infatian in thermodynam-
ical terms provides an independent proof of the statemexttahantum mechanics is
an an emergent phenomenon.

Specifically, our correspondence between semiclassiaahtgm mechanics and
Gaussian irreversible thermodynamics includes the fatigyoints of sectiohl4:

SWhile the entropys is a true function of, the action integral is actually efunctionalof z(¢). However,
in (Z2) we need! within the exponential defining’. To this end,] is to be evaluated alorte classical
trajectory starting at a certain given point and ending airéable endpoini. This amounts to regarding
as a true function af and no longer as a functional.
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i) we have shown that the path—integral representation fantgua-mechanical prop-
agators is already present in the thermodynamical degmmipf classical dissipative
phenomena (sectién 4.1);

if) we have mapped thermodynamical distribution functions quantum—mechanical
propagators (sectidn 4.2);

iii) we have constructed an explicit correspondence betweeanumamechanical states
and thermodynamical states, and also an analogous conaespce between quantum—
mechanical observables and thermodynamical observatdesdii4.B);

iv) we have grounded our correspondence in the existence oflarfiuental symmetry
between mechanical action and entropy (sedfiah 4.4).

In order to make this paper selfcontained we have also iedpith sectioi 13, a crash
course in classical irreversible thermodynamics, thelatbnsidered in the linear ap-
proximation. Presumably, the theory of irreversible thedymamics beyond the linear
regime should allow one to extend the present corresporedsyond the semiclassical
approximation of quantum mechanics.

Having mappedjquantummechanics intcclassicalirreversible thermodynamics
raises another old questioviz., the issue of how sharply, how univocally defined is
the divide betweequantumnesandclassicality This issue has also been addressed,
from the viewpoint of emergent theories, in ref._|[15]; we efebur own contribu-
tion to the subject until a forthcoming publication. Howewe would like to briefly
touch upon the emergence propertyspicetime-not from a gravitational perspec-
tive, but from a purely quantum—mechanical viewpoint. lasgtime is an emergent
phenomenon, as widely conjectured, then everything thiaesase of spacetime con-
cepts must necessarily be emergent, too. Quantum mechamosxception, unless
one succeeds in constructing a quantum—mechanical famadhat is entirely free
of spacetime notions. Progress towards this latter goabbar achieved along lines
based on noncommutative geometry (seé [17] and refereineesi). A more modest
approach is to try and directly map quantum mechanics irgorbdynamics, as done
here and elsewhere. It turns out that spacetime arises asengent conceplsoin
our quantum—mechanical approach, if only because our gmorelence has required
replacing space variableswith thermodynamical variableg. Thus, indirectly, we
have also furnished (admittedly cirmcumstantial) evideotthe emergence property
of spacetime.

It was Einstein’s dream to see quantum mechanics formuéstesh ensemble the-
ory in which uncertainties wouldot have a fundamental ontological status. Instead,
Einstein would have uncertainties and fluctuations arise esnsequence dfie sta-
tistical natureof the description of an underlyindeterministicsystem (see [27, 35]
and refs. therein). Thermodynamical fluctuation theorgtappears to be the archety-
pal example that Einstein would presumably have liked farmum mechanics to be
modelled upon.

Actually it has been known since the early days of quantumhaeics that the
(free) Schroedinger equation can be interpreted as thdatdmeat equation in imag-
inary time, so the thermodynamical connection has alwajstezk An unavoidable
consequence of imaginary time is that real (decaying) esptals replace imaginary
(oscillatory) exponentials. This is the hallmark of disgipn. Thus quantum mechan-
ics can be thought of as a dissipative phenomenon that becoomservative only in
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stationary states [7] 8, R1]—that littleén the Schroedinger equation makes a big dif-
ferencel[[26].

After completion of this work we became aware of réf.|[42],amdatopics partially
overlapping with those treated here are discussed.

Acknowledgements].M.I. would like to thank the organisers of the Heinz voniSter
Congress on Emergent Quantum Mechanics (Vienna, Austoa, 2011) for stimulat-
ing a congenial atmosphere of scientific exchange, and &imtteresting discussions
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Willst Du erkennen? Lerne zu handeln!—Heinz von Foerster
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Abstract: A Toda—chain symmetry is shown to underlie the van der Waals gas and its close cousin,
the ideal gas. Links to contact geometry are explored.
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1. Introduction

The contact geometry of the classical van der Waals gas [1] is described geometrically using
a five-dimensional contact manifold M [2] that can be endowed with the local coordinates U (internal
energy), S (entropy), V (volume), T (temperature) and p (pressure). This description corresponds to
a choice of the fundamental equation, in the energy representation, in which U depends on the two
extensive variables S and V. One defines the corresponding momenta T = 0U/dS and —p = ol /dV.
Then, the standard contact form on M reads [3,4]

& = dU + TdS — pdV. 1)

One can introduce Poisson brackets on the four-dimensional Poisson manifold P (a submanifold of M)
spanned by the coordinates S, V and their conjugate variables T, —p, the nonvanishing brackets being

{5, T} =1, {V,-p} =1 2)
Given now an equation of state
fp.T,...) =0, ®)
one can make the replacements T = 0l /9S, —p = oU/dV in order to obtain
ou Jou
P o 0

In Ref. [5], we have called Equation (4) a partial differential equation of state (PDE of state for short).
It plays a role analogous to that played by the Hamilton-Jacobi equation in classical mechanics [2,6,7].
With respect to the latter, however, there is one fundamental difference. While in mechanics the
Hamilton-Jacobi equation is just one equation (regardless of the number of degrees of freedom),
in thermodynamics, we have one PDE of state per degree of freedom because the defining equation of
each momentum qualifies as an equation of state.
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2. The PDEs of State of the van der Waals Gas

Let us consider one mole of particles of van der Waals gas (i.e., Avogadro’s number N of particles).
The fundamental equation in the energy representation U = U(S, V') reads [1]

Vo \*? 25 a
u(s,v) = Uy (V—Ob> exp <3Nk3) oz )

with Uy, Vj certain fiducial values; setting 4 = 0 and b = 0, one recovers the ideal gas. The variables T
and —p, conjugate to S and V, are

ou Vo \*? 25 2
T_B'S_UO<V—b> P <3ng> 3Nkg ©)
and
au 2 25 vz/3 a
= —— = — _ . 7
P="5v = 3ther (3Nk3> (Vb3 V2 @
Equations (6) and (7) lead to the van der Waals equation of state
a
(p+w) (V —b) = NkgT @®)
and the equipartition theorem:
U(T, V) = NkgT — 2 )
TR Ty
The first PDE of state follows from Equation (8),
ou a ou
while, from Equation (9), we obtain the second PDE of state:
3 ou a
U—Engg—i—V =0. (11)

when a = 0 and b = 0, systems (10) and (11) correctly reduce to the corresponding system of PDEs for
the ideal gas, obtained in Ref. [5]. One readily verifies that integration of the systems (10) and (11) lead
back to the fundamental Equation (5) we started off with.

3. Relation to the Toda Chain

Although well studied in the literature [8-10], for the benefit of the reader, we very briefly
summarise the essentials of Toda lattices needed for our purposes here. The Toda chain is a model
for a nonharmonic lattice describing the motion of a chain of particles subject to nearest-neighbour
interactions. The statement that interactions are restricted to nearest neighbours translates into
an equation of motion for the n—th particle

i (t) = VV (1 (t) — 20 () = VV(xn(t) = x4-1(t)), (12)
where x,(t) is its displacement from equilibrium, and V is a certain potential function. Toda assumes
the latter to be given by the exponential of the relative displacements:

V=exp(—(xp —x,-1))- (13)

Although the resulting model turns out to exhibit many interesting properties, integrability being one
of them, the succinct summary just given is all we will need for our purposes.
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Returning now to our problem, a succession of changes of variables in configuration space C (the
submanifold of M spanned by the extensive coordinates S, V) will relate the fundamental Equation (5)
for the van der Waals gas to the potential energy of the Toda chain. We define the new variables ', V’

S=S, V' .=V_b, (14)
and s, v
s’ Vv’
S = m, U= In (%) , (15)

in terms of which the fundamental Equation (5) reads

2s—=v)]  a
3 Voe? + b’

U(s,v) = Upexp [ (16)

The transformations (14) and (15) are both diffeomorphisms: they can be inverted, regardless of the
values of the van der Waals parameters a, b. However, the final change of variables

2y a
= — u —_ = —_— ].7
V=Y °“p<3) Voe¥ + b (17)
becomes singular when 4 = 0. For the moment, we proceed under the assumption that a # 0,
so Equation (17) is invertible. Then, the fundamental Equation (16) becomes

usy) =t ep (5 ) —exp ()] = W - wo), (18)

where we have defined the new function

W(z) := Uy exp (7})2) . (19)

The function W(z) coincides with the potential function of the Toda chain; we have already encountered
it in Ref. [5] in the context of the ideal gas. Since the latter has 4 = 0, which causes the change of
variables (17) to be singular, one must proceed differently in this case. Instead of Equation (17),
a nonsingular change of variables to consider for the ideal gas is

/

X i=s5—0v, Yy =s+o. (20)

As already seen in Ref. [5], this yields a fundamental equation depending on x’, but not on y':

uideal(x,) = W(x/)' (21)

On the other hand, from Ref. [8], we know that, in the limit of small wave amplitudes, the time average
of the momentum variable in a thermal ensemble of Toda chains is directly proportional to the product
of Boltzmann's constant kp times the temperature T (see Equation (3.20) of Ref. [8], the right-hand side
of which is independent of the lattice site 7). We conclude that, in the limit of small amplitudes, a thermal
ensemble of waves in the Toda chain behaves exactly as an ideal gas.
Returning now to the van der Waals gas in Equation (18), the new canonical momenta read
po= e =W, =G =3V, @
While the momentum p; is the same as for the ideal gas, the negative sign in p, can be traced back to
the reduction in energy, with respect to the ideal case, due to the van der Waals parameter a. The PDEs
of state read, in the new variables x, v,



Entropy 2018, 20, 554 40f5

aa—lj—z?jﬂexp (233() =0, aalyl—l—zgloexp <2§/) =0. (23)
Compared to Equations (10) and (11), we see that, in the new variables x, y, the PDEs of state decouple
into a system of two identical equations (up to a sign), one for each independent variable. Moreover,
the equation corresponding to the variable x equals that PDE of the ideal gas, which expresses the
equipartition theorem. Finally the contact form (1) reads, in terms of x,y and the corresponding
momenta py, py,

a = dU + pxdx + pydy. (24)

In the limit when the gas is ideal, the momentum p, vanishes identically [5], and the physics is
described in terms of the three-dimensional contact submanifold A spanned by x, px and U.

4. Discussion

The physics of the classical van der Waals gas is usually described by a five-dimensional contact
manifold M endowed with the contact form given in Equation (1). In this paper, we have identified
one particular diffeomorphism that neatly disentangles the (rather abstruse) fundamental Equation (5)
to the much more manageable form given by Equations (18) and (19). This latter form is not just easier
to work with; it is also more inspiring. Namely, the fundamental equation of the van der Waals gas
now equals the difference of two terms (one term per independent variable x, i), each one of which is
a copy of the Toda potential function [8-10].

From the point of view of contact geometry, the only difference between the van der Waals gas
and the ideal gas lies in the fact that the contact manifold describing the van der Waals gas remains
five-dimensional, instead of reducing to the three-dimensional contact submanifold NV we found in
the ideal case [5]. However, as we have proved in Equation (18), the fundamental equation can be
expressed in terms of the Toda potential function in both cases.

Why the precisely Toda potential should arise in this thermodynamical context, instead of some
other potential function, is a question that arises naturally. We believe the answer is the following.
The distinguishing feature of the Toda potential is the exponential function. In thermodynamics,
the exponential function arises naturally through Boltzmann’s principle: the number of microstates
that are compatible with a given macrostate specified by the value S of the entropy is proportional
to exp(S/kg). That the latter factor is present in the fundamental Equation (5) should come as no
surprise, since the internal energy should be an extensive variable of the system.

Another intriguing feature of the above correspondence between the fundamental equation
of a gas (either ideal or van der Waals) and the Toda potential function is the following.
The small-amplitude limit considered in Ref. [8] is the limit of vanishing kinetic energy; this fact
is reflected in the vanishing (to first order of approximation) of the time average of the generalised
velocities $,, in Ref. [8]. This limit has been called the topological limit in Ref. [11]; roughly speaking,
it amounts to cancelling the kinetic term while keeping only the potential term in the Hamiltonian.
This fact allows us to sharpen our previous correspondence, which we can now state more precisely
as follows: the classical thermodynamics of the (ideal or van der Waals) gas has a dual theory which, to first
order of approximation, coincides with the topological limit of a thermal ensemble of waves in the Toda chain.
Surprising here is the fact that, for the ideal gas, all energy is purely kinetic, and the potential energies
introduced by the van der Waals parameters 4, b are almost negligible compared to the kinetic energy.
Thus, the theory of gases, where energies are completely or mostly kinetic, is mapped by this correspondence
into a dual theory in which kinetic energies are negligible. Vanishing or at least negligible kinetic energies
are strongly reminiscent of topological field theory [12]; we hope to report on this issue in the future,
as well as on its relation to Riemannian fluctuation theory [13,14].
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Abstract

A new and straightforward proof of the unisolvability of the problem of multivari-
ate polynomial interpolation based on Coatmélec configurations of nodes, a class of
properly posed set of nodes defined by hyperplanes, is presented. The proof gener-
alizes a previous one for the bivariate case and is based on a recursive reduction of
the problem to simpler ones following the so-called Radon-Bézout process.

Key words: multivariate interpolation, properly posed set of nodes, geometric
characterization, Coatmélec lattices

1 Introduction

The problem of polynomial interpolation of one-dimensional data has a widely
known solution. However, despite its apparent simplicity, multivariate poly-
nomial interpolation remains a topic of current research [1-3]. The existence
and uniqueness of the interpolation polynomial strongly depends on the ge-
ometrical distribution of the interpolation points. The distribution of points

* Corresponding author. Tel: (+34) 963-877-007 (Ext. 76648)
Email address: jperezq@mat.upv.es (Jezabel Pérez).

Preprint submitted to Elsevier 13 January 2011


http://ees.elsevier.com/amc/viewRCResults.aspx?pdf=1&docID=21293&rev=1&fileID=235209&msid={154ADEFA-AB7D-4F83-9EDB-CE4E287FACA8}

for which the interpolation problem is unisolvable is referred to as properly
posed set of nodes (PPSN).

The mathematical characterization of the most general PPSN is not currently
known. The configurations of nodes based on algebraic varieties, such as those
of Bos [4] and Liang et al. [5,6], are very general but non-constructive. In a
computational setting, configurations based on hyperplanes, such as those of
Coatmelec [7] and Chung and Yao [8], are preferred.

Surprisingly, the configuration of nodes introduced by Coatmeélec 7] in the
plane has received several names: DH-set [2], straight line type node configu-
ration [5], PPSN with node configuration A [9], straight line type node config-
uration A [10], PPSN by the recursive construction theorem using lines [11],
and PPSN by line-superposition process [12].

In this paper, a new proof of the unisolvability of the interpolation problem
for Coatmeélec configuration of nodes in arbitrary dimensions is presented. The
proof is based on a Bézout-Radon process [13,14]. Chui and Lai [9] present a
proof for the bivariate case only, state the result in arbitrary dimension, but
did not prove it because of complications in their notation. Multidimensional
interpolation is the basis to develop different numerical methods. The results of
this paper permit to design, for example, generalized finite difference methods
in irregular meshes based on Coatmelec configuration of nodes in two [15] or
more dimensions.

The contents of this paper are as follows. The definitions and notation re-
quired to set our main theorem are presented in the next section. The proof
of this theorem is detailed in Section 3. Finally, in the last section, the main
conclusions are summarized.

2 Presentation of the problem

Let II,,(R*) be the vector space of multivariate polynomials of degree not

greater than m with k variables. Let w = (z1,...,2%)" € R¥, where T denotes
transpose, No = NU {0}, j = (j1,...,jx)" € [ == N§, [j] = 51 + -~ + j,
w! = a ay - ap, and Ty, := {j € T : |j| < m}. The set of multivariate

monomials {w/}er,, is a basis of II,,,(R¥), i.e., every polynomial p,,(w) may
be written uniquely as > cr,, a; w’l, with a; € R. Hence, the vector space

IT,,(R*) has dimension N = Cf,,.. where C¥ is the binomial coefficient (Z)

Let I'* .= {j € I, : |j] = s}, s = 0,1,...,m. Note that I',, = U I,
the cardinal #I* = CfZl, ., and #I,, = S CyZl,, = N. The set of s-
th degree monomials may be represented as a column vector of length #I1'®



given by w® = (2%, 257wl g we, - a, ., opo ot xg)T, for all i =

(i1,...,0s)" € Nj, and 1 < iy < iy < --- < i, < k. Note that w(® = (1) €
R, w) = w € R*, and each component of the vector w®) corresponds to
a unique monomial w’ with j € I'*. Using this notation, every polynomial
pm(w) € I, (R¥) may be written as Y7 > icps a; w?.

1

Here on, a node refers to a point in R¥ and a configuration of nodes (CN) is a
set of pairwise distinct nodes X,,, = {w;}Y, where w; = (T(1,0), T(2,0), - - - ,x(;m-))T
e RF.

The Lagrange interpolation problem may be stated as follows: Given a CN

X,» and an arbitrary set of real numbers {f; € R}Y,, find a polynomial
P (w) € I1,,(R¥) such that

pm(wi) = Y ang = fi, 1=1,2,...,N. (1)

J€Nm

This problem is properly posed with respect to X, if it has a unique solu-
tion (unisolvability) for every set { f;}Y,. Compared with the one-dimensional
case where the solvability is always assured, the solvability of multivariate in-
terpolation depends strongly on the geometrical distribution of the nodes. A
CN X,, is said to be a properly posed set of nodes (PPSN) if the Lagrange
interpolation problem is properly posed with respect to X,,.

Equation (1) is a system of N linear equations with a multivariate Vander-
monde matrix V,,, i.e., (V)i = wf, where j € I',,, w; € X,,,, and 1 < i < N.
Note that this matrix looks a little bit bizarre since rows and columns are in-
dexed by different structural entities. A graded lexicographical order in the set
of multiindices I';;, may be introduced to enhance the notation (see Ref. [16])
but this is not required in this paper.

The following theorem summarizes some previously known results.

Theorem 1 Let X,, = {w;}Y, be a CN in k dimensions and V,, the cor-
responding multivariate Vandermonde matrix, then the following expressions
are equivalent:

(i) X, is a PPSN in R*.
(ii) Vi, is a nonsingular matriz, i.e., det(V,,) # 0.
(iii) rank(V;,) = N.

Let X, = Xgngw = {wi}; C R*¥ be a CN with N = C% ., nodes in k
dimensions. Let us define by induction on k the following CNs, first introduced
by Coatmeélec [7,9].

Definition 2 A CN X,, = X C RE s Coatmelec in k dimensions if

Ximg) = Upeo Xph—1) with #X g p—1) = Cﬁ;,i_l and there exists m + 1 hyper-



planes Yo, 71, - - -, Ym such that X p—1) C Ym and Xpr—1) C Yp \ UZ”:I,H Yq»
for 0 < p <m —1, with each X, —1) being Coatmeélec in (k — 1) dimensions
by identifying each hyperplane ~y, with RF~1.

Note that, in one dimension, every CN X,,, = X(,,, 1) C R is Coatmelec because
all its nodes are pairwise distinct, i.e., w; # wj, if 7 # j. Note also that, in
Definition 2, only one node belongs to the hyperplane ~,,.

The main result of this paper is a proof of the following theorem.

Theorem 3 FEvery Coatmelec CN X, in k dimensions is a properly posed set
of nodes in R”.

3 Proof of the main theorem

Our proof makes use of the following lemmas.

Lemma 4 Let us take the CN X,, where the nodes {w;}., are represented
as column vectors in R*, and the CN X,, whose nodes are w; = wo + H w;,
1=1,..., N, where wy is an arbitrary vector and H s a non-singular matriz

of dimension k. Lgt V., and Vm be the Vandermonde matrices gssociated to
the CNs X,, and X,,, respectively. If rank(V,,) = N, then rank(V,,) = N.

Proof of Lemma 4. For every set of real numbers {f; € R}, there exists
one and only one interpolating polynomial such that p,,(w;) = f;, given by
P (2) = P (H™* (x —wy)) where p,, () is the unique interpolating polynomial
for X,, given by Theorem 1. Therefore, rank(V,,) = N.

Lemma 5 Let {#; : i =1,...,k} be an orthonormal basis of R¥, and ny an
arbitrary vector. There always exists an orthogonal matriz H, representing a
rotation in R¥, which transform the vector &, onto H 21 = fy = ny/||n4|.

Proof of Lemma 5. If ny = 21, then H = I, the identity matrix. Otherwise,
let us apply the procedure of Gram-Schmidt orthonormalization to vectors
{21, 1}, yielding

G = 21 @ =1 —(n-¢)q G2 = L ®
’ ’ V42 g2 ||C_I2||’

where the dot is the ordinary Euclidean dot product. An arbitrary vector ¢
can be written as ¢ = ¢, +¢qy, where ¢ = (¢-¢1) 1 +(q-¢1) G = Q Q" ¢, where
Q@ = [G1; Go] is the rectangular matrix whose columns are the vectors §;; note
that QT Q is the identity matrix of dimension 2. Taking the vector ¢, = ¢ — q
as the rotation axis for the rotation matrix H results in Hq = q, + Hq =




(I-QQ") g+ QRQT"q, where R is the standard two-dimensional rotation
matrix

cosf —sinf o ' —
R = , cosf =21 -ny, sinf =+/1— (2 -nq)%
sinf  cosf

Hence, H =1-Q Q" +QRQ" is a rotation matrix (H H" = H" H = I and
det(H) = 1) such that H z; = n;.

Proof of Theorem 3. Let us use the induction principle over m and k. Let us
first consider m = 0 and any k € N. Clearly X, = w; and rank(Vj) =1 = N.
We consider next k£ = 1 and m # 0. The corresponding CN is Coatmelec in
one dimension and the coefficient matrix is a (one-dimensional) Vandermonde
matrix with maximal rank C} ., = m + 1 = N, since the nodes are pairwise
distinct.

By the induction hypothesis, let us assume that the theorem holds for either
m — 1 or k — 1, and let us prove that it holds for m and k. Here on, let us
take n = m + k. Since X, is a Coatmeélec CN in k dimensions, the following
conditions are fulfilled

X(m,k—l) = {wl, W, ... ,’UJC:;} C Ym,

X(m—l,k—l) = {wck}—l—l’ s ’wCZ%—l—Ckl} C ’}/m—l\’yma

n— n—2
X(m—26-1) = Wek-1yok—1qys .- vwc§}+c§;+q’j;}

C ’7m—2\7m—1 U Y,

Xok-1y ={wn}CTr\MU--Uyn,

where

X = Xmp—1) U Xm—1p—1) U - U X r—1)-



The multivariate Vandermonde matrix associated to the Lagrange interpola-
tion problem in the CN X, may be written as

1 1 1
Vin = wgz) w§2) wg,z

Let us apply the affine transformation w = wy + H w to all the nodes of the
CN, where H is the orthogonal matrix given in Lemma 5, that transforms the
2, coordinate axis in R¥ into the normal vector to the hyperplane 7,,, and wy
is the distance between the intersection point of the (new) rotated zj, axis and
the hyperplane v,,.

The application of the affine transformation nullifies the k-th coordinates of
T
the vectors {wl,wg, .. ’wCﬁi}’ hence w; = (I(Li),l'(zi), cee :E(k_Li),O) )

Let V},, where (Vm)ij — 1/, be the coefficient matrix of the transformed linear

A

system of equations. From Lemma 4, rank(V,) = rank(V},).

The rows and columns of the matrix V,, may be sorted by renaming the nodes
w; to w;, in order to group all its zero elements into its left-bottom part.
This process preserves the rank. The resulting matrix V,, has the following
structure

A B
0A'D



where A is the C*~] x C*~! matrix given by

1 1
uygl) u}él)
A=| o af ...
B is the C*~1 x C* | matrix
1 1

P CO R ()

B=|a® a®

n—

(m) 7 (m)

_ w L .« ..
ckoi41 VekTi42

ckoi+1 okt

- w - .« .
ckmli Vok iy




D is the C* | x C*_, diagonal matrix

i(k,ij:}H) 0 e 0
0 Zperiggy - 0
D= ,
0 0 - Zgen

A’ is the CF_; x C*_| matrix given by

1 1 1
= (1) ~(1) ~(1)
Wek-1yy Wek-149 Wer
/
A = ,
~(m) ~(m) ~(m)
Wekm14q Wek-149 777 Yok

and finally 0, cf. Eq. (2), represents the null matrix of dimensions C* | x ck-1
We recall that C* = CF=} + CF_.

The square matrix A is a multivariate Vandermonde matrix in (k—1) variables
and the C%~1 nodes {1} are a Coatmélec CN in (k— 1) dimensions. Therefore,
by the induction hypothesis, rank(A) = C*~1.

The diagonal matrix D is nonsingular, i.e., 23, # 0, for i = CFl41,...,CFk
because if there existed at least an ¢ with 25, = 0, then there would be at least
C*~1 4 1 different nodes lying in the hyperplane 7,,, but this is not possible
because X, is a Coatmeélec CN. Hence, rank(A’ D) = rank(A’). Moreover, the
matrix A’ is also a multivariate Vandermonde matrix corresponding to the
C* | nodes that do not belong to the hyperplane 7,,. Since the Coatmélec
property of a CN does not change under either rotation or translation of all
the nodes, the CN {w&;}, i = C*=1 +1,---,C*, is also a Coatmélec CN. The

n?’

induction hypothesis yields that the rank of matrix A’ is C%_,.

Finally, the rank of the C* x C* matrix V}, is rank(A) + rank(A4’) = C¥~1 +
Ck | = CF, and the theorem is proved.



4 Conclusions

The unisolvency of the problem of multivariate polynomial interpolation in a
Coatmelec CN, a kind of properly posed set of nodes defined by hyperplanes,
has been shown through a new and straightforward proof. This proof uses el-
ementary techniques from linear algebra. This fact permits the understanding
of the topic by nonexperts and opens the possibility of it being incorporated
in numerical analysis textbooks.

The geometrical condition characterizing Coatmelec CNs is one of the most
general conditions currently available for the characterization of properly posed
set of nodes defined by hperplanes, which is easier and more efficient to be
checked by an automatic computational software than the widely known ge-
ometrical characterization of Chung and Yao [8]. Therefore, Coatmélec CNs
are useful in mesh generation for the numerical solution of partial differential
equations in irregular domains, such as generalized finite difference methods.
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Abstract: We present a numerical analysis and experimental measurements of the temperature stabilization of high-power LED chips
that we have obtained by employing an aluminium passive heat sink, designed to be used in a compact light bulb configuration. We
demonstrate that our system keeps the temperature of the LED chip well-below 60°C yielding long-term operation of the device. Our
simulations have been performed for a device of low fabrication costs and which enables an easy installation in public streetlights.
The experimental measurements performed in different configurations show a nice agreement with the numerical calculations.

1. Introduction

The use of high-power light emitting diodes (HP-LED)
for public illumination is an emerging subject, triggered
by recent developments of different technologies
including semiconductor materials [1], fluorescence
techniques [2], driver electronics [3], or thermal control
[4], among others [5].

One of the key aspects concerning the performance and
durability of HP-LED lighting systems is the adequate
control of the temperature of the LED chip [6]. As it has
been pointed by recent studies [7], LEDs have a high
energy efficiency and long lifespan, however, a large
amount of heat is dissipated during operation due to
Joule effect; thus, cooling HP-LEDs is an important
challenge in package designs, where a correct evacuation
of the heat will substantially enlarge the lifetime of the
device.

Besides the previous constraint, other practical aspects
like a compact design, low cost, mass production or even
aesthetic considerations can play an important role in
market-oriented products. Thus, in this paper we present
a numerical analysis of the thermal stabilization of a
50W LED chip attached to a passive heat sink, yielding a
compact light bulb design that can be used for
commercial purposes in the street lighting market. The
system we propose keeps the temperature of the LED
chip well-below 60°C under all circumstances, yielding
long-term operation of the bulb.

After the numerical calculations performed, a practical
device has been implemented in a compact and easy-to-
install design in order to compare the results of the
computational simulations with experimental measure-
ments taken under realistic conditions, finding a nice
agreement.

2. Numerical Model

Our first aim is to calculate the steady-state temperature
distribution over the surface of a heat sink with

© 2013 The Japan Society of Applied Physics

translational symmetry along, say the z-axis. This
configuration is ideal for mass production via metal
extrusion process. In our model, we have assumed that
the heat sink is made of black anodized Al surrounded
by a laminar air flow with constant properties except the
density of air (p), given by the ideal gas law. Thus, in the
air side the first formula is the continuity equation:

being v the velocity of air. In addition we have the
energy equation [8]:

p(;—v=—VP+MV217—pga (2)
t

where ¢ is the time, P the pressure, u the dynamic
viscosity and g the acceleration of gravity. One more
formula needed is the moment equation:

oT oP
C,—=V-(kVT)+—> (3)
pCp o ( ) Py

being Cp the specific heat, T the absolute temperature
and k& the thermal conductivity. On the heat sink we have
the condition v?7 =0. For a black anodized surface with
high emissivity (>0.8), we can neglect at the interface
the effect of the incoming radiation heat flux (W/m’) and
thus, the outgoing flux () is given by the Stefan-

Boltzmann law:
G=eoT*, €]

where ¢ is the is the emissivity of the wall is the Stefan-
Boltzmann constant and 7 is the absolute temperature of
the heat sink. We want to solve the previous problem for
a heat sink made of black-anodized aluminum (A16061)
with the geometry shown in Fig. 1. To numerically
integrate the previous set of equations, we have used
COMSOL Multiphysics®, which is a finite element
analysis solver commercial package for various physics
and engineering applications. As it can be appreciated in

Authorized licensed use limited to: UNIVERSIDAD POLITECNICA DE VALENCIA. Downloaded on February 16,2024 at 18:37:02 UTC from IEEE Xplore. Restrictions apply.
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Fig. 1, the steady-state temperature distribution ranges
from 53°C to 42°C.

Temperature (°C)

42

Fig. 1. Numerical simulation of the steady-state
temperature distribution over the heat sink. The size is
10cm height and 6cm diameter. The LED (red square)
power is SOW.

3. Experimental results and discussion

In order to check the validity of our numerical model, a
series of experiments were made. As shown in Fig. [2]
an Al6061 black anodized heat sink 10cm length was
attached to a SOW LED chip in a light-bulb
configuration. The emissivity of the heat sink with the
surface treatment was 0.8. The geometric parameters of
the experimental model are the same as in the numerical
simulations described before.

Fig. 2. Lateral (left) and front (right) view of the real
system composed of a black anodized aluminum
structure in a compact LED bulb configuration.

A temperature sensor with three different probe heads
(DAQ-9172, N19211), a power supply, a wattmeter, and
a laptop were used in order to collect data. To minimize
the thermal contact resistance between the LED chip and
the heat sink a graphite film of high thermal conductivity
(240Wm 'Ky was used. As it can be seen in Fig. 3 the
steady state temperature of the LED chip shows a nice
agreement with the numerical calculations.

4. Conclusions

We have presented a numerical study of the steady-state
temperature distribution of a practical high-power light
emitting diode (HP-LED) bulb. Our results have been
compared with experimental data obtained in a physical
device fabricated for market purposes. From our analysis

© 2013 The Japan Society of Applied Physics

we can derive that low-cost passive heat sinks fabricated
for 50W HP-LED chips can keep the temperature of the
device below 60°C, thus making it possible to reach life-
times of 55.000h.
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Fig. 3. Experimental measurement of the temperature
distribution of the LED chip (top curve) and the
environment (bottom curve) .
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Abstract. In this paper we present a numerical analysis and experimental measurements of
the temperature stabilization of high-power LED chips that we have obtained by employing an
aluminum passive heat sink, designed to be used in a compact light bulb configuration. We
demonstrate that our system keeps the temperature of the LED chip well-below 70°C yielding
long-term operation of the device. Our simulations have been performed for a low-cost device
ready to install in public streetlights. The experimental measurements performed in different
configurations show a nice agreement with the numerical calculations.

1. Introduction

The use of high-power light emitting diodes (HP-LED) for public illumination is an emerging
subject, triggered by recent developments of different technologies including semiconductor
materials[1, 2, 3|, fluorescence techniques[4], driver electronics[5] or thermal control[6] among
others[7, 8].

One of the key aspects concerning the performance and durability of HP-LED lighting systems
is the adequate control of the temperature of the LED chip[9]. As it has been pointed by recent
studies[10], LEDs have a high energy efficiency and long lifespan, however, a large amount of
heat is dissipated during operation due to Joule effect; thus, cooling HP-LEDs is an important
challenge in package designs, where a correct evacuation of the heat will substantially enlarge
the lifetime of the device[11].

Besides the previous constraint, other practical aspects like a compact configuration, low cost,
mass production or even esthetic considerations can play an important role in market-oriented
products. Thus, in this paper we present a numerical analysis of the thermal stabilization of
30W —50W LED chips attached to passive heat sinks, yielding a compact light bulb design that
can be used for commercial purposes in the street lighting market. The system we propose keeps
the temperature of the LED chip well-below 70°C under realistic conditions, yielding long-term
operation of the bulb, with the corresponding savings in energy consumption and maintenance.

After the numerical calculations performed, in order to compare the results of the
computational simulations with experimental measurements taken in standard systems, a set
of prototypes has been constructed in a compact and ready-to-install configuration. As we will

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
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Figure 1. Detail of the computational grid used for the numerical simulations. The size of the
real devices was 5¢cm and 10cm height and 9cm diameter. Details of the calculations are given
in the text.

demonstrate, there is a nice agreement between the numerical simulations and the corresponding
data obtained.

2. Numerical model

Our first aim is to calculate the steady-state temperature distribution over the surface of a heat
sink with translational symmetry along one axis. This configuration is ideal for mass production
at a very low cost via metal extrusion process. In our theoretical model, we have assumed that
the heat sink is made of black anodized aluminum (Al 16061), which is surrounded by a laminar
air flow of density (p) given by the ideal gas law. Thus, in the air side, the first expression that
we formulate is the continuity equation:

V- (p?) =0, (1)
being ¥ the velocity of air. In addition we have the energy equation[12]:
ov L
pa; = —VP+uV*T - pg, (2)

where t is the time, P the pressure and p the dynamic viscosity of air. We assume that the
acceleration of gravity ¢, is parallel to the z-axis. Another formula to be added to the model is
the moment equation:

oT oP

PCPE =V (kVT) + ot (3)

being Cp the specific heat, T the absolute temperature and k the thermal conductivity. On the
heat sink we have the condition V27T = 0. At the interface, for a black anodized surface with
high emissivity (> 0.8), we can neglect the effect of the incoming radiation heat flux (W/m?)
and thus the outgoing flux (¢) is given by the Stefan-Boltzmann law:

j=eoT, (4)
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Temperature (°C)

Figure 2. Numerical simulation of steady-state temperature distribution over the surface of
a passive heat sink in vertical configuration corresponding to the geometry of Fig. 1. The
color scale ranges from 50°C' (blue) to 61°C' (red). The arrow indicates the direction of the
gravitational force, which in this case is parallel to the axis of symmetry of the heat sink. The
system modeled is black anodized Al and the size used for the calculations was 10cm height and
9c¢m diameter. The LED power in this simulation is 50WW. Other details of the simulation are
given in the text.

where € is the emissivity of the aluminum wall, o is the Stefan-Boltzmann constant and 7' is the
absolute temperature of the heat sink.

We want to solve the previous problem for a heat sink made of black-anodized aluminum
(A16061) with the geometry shown in Fig. 1. To numerically integrate the previous set
of equations, we have used COMSOL Multiphysics®, which is is a finite element analysis
solver commercial package for various physics and engineering applications, especially coupled
phenomena. In addition to conventional physics-based user interfaces, this software also allows
for entering coupled systems of partial differential equations (PDEs). In particular, we have
used the Heat Transfer Module which provides user interfaces for heat transfer by conduction,
convection and radiation.

We have modeled the LED chip as a 1mm—thick aluminum square plate which provides a
constant heat flux at the base of the heat sink. For the chips under consideration the amount of
waste heat can be estimated as 70% of the LED power[13]. The dependence on the grid density
was investigated by changing the number of points. The final selection is shown in Fig. 1. The
simulation corresponds to a heat sink 10cm height with a diameter of 9cm. The diameter of the
solid internal core is 4cm.

The results of the numerical calculations are shown in Fig. 2 for a vertical configuration (i.e.:
the symmetry axis of sink parallel to the direction of the acceleration of gravity §) and simulating
the effect of a 50W LED chip placed at the bottom of the heat sink. As it can be appreciated
in the picture, the maximum of the temperature distribution is obviously located at the LED
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Figure 3. Front (left) and lateral (right) view of the real system composed of a black anodized
aluminum structure in a compact LED bulb configuration. The height of the sink is 5¢m and
its diameter is 9¢m the corresponding simulations and experiments for horizontal and vertical
orientations with a 25W LED chip are shown in Fig.5 and Fig. 6, respectively.

chip and the values of T' gradually diminish with the distance from the chip, showing a radially
symmetric distribution around the axis of the cylinder. For an ambient temperature of 21°C, the
maximum of the resulting steady-state distribution calculated is 60.8°C', well below the critical
damage temperature provided by the LED manufacturer, providing thus a maximal lifetime of
the device. As we will show below, this result is un good agreement with the experimental
measurements performed in a real system. Of course, for higher ambient temperatures our
predictions are still valid and in this case the gap with respect to the damage threshold is
reduced accordingly[11] .

3. Experimental Setup

In order to check the validity of our numerical model, a series of experiments were made.
Aluminum (Al6061) black anodized heat sinks with the same geometry as in Fig 1 and two
different lengths (5.0cm and 10.0cm were attached to a 25W and 50W LED chips respectively. In
Fig. 3 we show a photo of one of the prototypes that we constructed to perform the experimental
measurements.

In all the cases, to minimize the thermal contact resistance between the LED chip and the heat
sink a graphite film of high thermal conductivity (240Wm~'K~!) was used. Finally, the light
bulbs were mounted in several orientations in order to reproduce different operation conditions.
The emissivity of the heat sink with the black-anodized surface treatment is 0.8. The geometric
parameters of the experimental model are the same as in the numerical simulation described
above and below. A temperature sensor with three different probe heads (DAQ-9172, N19211),
a power supply, a wattmeter, and a laptop were used in order to collect data.

The overall pattern for the air flow could be described as follows: the cooling air enters from
the outer region of the heat sink and is heated while passing through the fins. The heated air
rises upward in the inner regions of the heat sink due to the fact that the density of the air in
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Figure 4. Experimental measurement of the temperature distribution in the vertical
configuration (the axis of symmetry of the sink is parallel to the gravity force) corresponding
to the numerical simulation of Fig.2. Curves a), b) and c) correspond respectively to the LED
chip, the center of the top side of the heat sink and the ambient. Details of the experiment are
given in the text. The arrow points to the instant when the power is switched on.

this zones became less than that of the surrounding air. In addition, a thermal boundary layer
develops discontinuously, after some delay. Thus, a relatively high local heat transfer coefficient
is expected in the inner regions of the heat sink.

The pin-fin heat sink will show uniform cooling performance in the case of natural convection
considered. Repeated leading-edge effects will appear in the outer regions of the heat sink
because the fins are arranged to keep the flow at a certain distance in the radial direction.

4. Results and discussion

In Fig. 4, we plot the experimental measurement of temperature values measured for a 50 — W
LED chip in vertical configuration (the axis of symmetry of the sink is parallel to the gravity
force) corresponding to the numerical simulation of Fig.2 with the chip placed at the bottom
of the heat-sink. Curves a), b) and c) correspond respectively to the temperatures measured at
the LED chip, the center of the top side of the heat sink and the ambient.

As it can be appreciated in the curves, once the power is switched on (indicated by an
arrow) the temperature increases until saturation after less than one hour. The maximum
values measured in curves a) and b) are respectively 63°C' and 49°C which are in very good
agreement with the numerical simulation of Fig. 2.
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To determine the optimum configuration and the precision of the numerical model, we have
simulated and measured different orientations and lengths of the heat sink. The results of
the numerical calculations can be seen in fig. 5 for a 256W HPLED and 5c¢cm height heat
sink. The results show the simulation of the steady-state temperature for vertical (a) and
horizontal (b) configuration, meaning these names that the acceleration of gravity (g) is parallel
or perpendicular to the symmetry axis of the heat sink, respectively.

The comparison of the numerical simulations of Fig. 5 with experimental values is shown
in Fig. 6. In this figure we plot the temperature measured at the chip (a) and at the center
of the opposite side of the heat sink (b). Line ¢) shows the ambient temperature during the
experiment.

Temperature (°C)
Temperature (°C)

Figure 5. Numerical simulation of steady-state temperature distribution over the passive heat
sink in horizontal (left) and vertical (right) configuration. The arrows indicate the direction of
the gravitational force in each case. The color scale ranges are plotted in the left side of each
simulation. The system modeled is black anodized Al as in Fig. 2. In this case the size used for
the calculations was bem height and 9c¢m of diameter. The LED power is 25W. Other details
of the simulation are given in the text.

As it can be appreciated in the left non-shaded zone of Fig. 6, after less than one hour of
operation of the LED, the system reaches a thermal steady state with a maximum temperaure in
the chip of 63°C, in excellent agreement with the simulations of Fig. 5-a. Once the temperature
is stabilized, we rotate the system 90° which corresponds to a perpendicular orientation of the
axis of symmetry of the heat sink with respect to the force of gravity (see Fig. 5-a). This
situation is indicated by a dark-grey shading in the graph. It is obvious that this configuration
is not the optimal one, yielding an increase of about 8°C' in the chip temperature.

Then, we rotate the sink another 90° and thus, the axis of symmetry of the sink is aligned
with the gravity force as in 5-b, however the chip is placed now at the top of the chip instead of
the bottom. As it can be appreciated the temperature slightly decreases showing the important
contribution of air convention along the pin-fins.

Finally, we restore the initial position and the temperature asymptotically recovers the steady-
state value of the first zone of the graph. All the measurements made are in very good agreement
with the numerical simulations shown in Fig. 5 for two different orientations.
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Figure 6. Experimental measurement of the temperature distribution measured at: a) the
LED chip, b) the center of the back side of the heat sink, and c) the ambient. The non-shaded
parts of the graph correspond to measurements made for parallel orientation of the symmetry
axis of the heat sink with respect to the force of gravity and with the LED chip placed placed at
the bottom of the heat sink corresponding to Fig. 5-a. The dark-gray zone displays the values
obtained for perpendicular orientation (Fig. 5-b) and the light-gray region corresponds to the
same orientation Fig. 5-a but with the LED chip place at the top of the sink. The rest of the
parameters of the experiment are given in the text.

5. Conclusions
We have presented a numerical study of the steady-state temperature distribution of a realistic
high-power light emitting diode (HP-LED) bulb. Our results have been compared with
experimental data measured in a prototype fabricated under market considerations. A nice
agreement has been found between the computer simulations and the measurements performed.
Therefore, from our analysis we can derive that aluminum low-cost passive heat sinks can
be used to keep the temperature of 30W — 50W HP-LED chips below 70°C, thus making it
possible to reach life-times of 55.000h with the corresponding savings in energy consumption
and maintenance.
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ABSTRACT

This paper presents a method of subtracting the effect of atmospheric conditions from thermal
response test (TRT) estimates by using data on the ambient air temperature. The method assesses
effective ground thermal conductivity within 10% of the mean value from the test, depending on
the time interval chosen for the analysis, whereas the estimated value can vary by a third if
energy losses outside the borehole are neglected. Evaluating the same test data using the finite
line-source (FLS) model gives lower values for the ground thermal conductivity than for the
infinite line-source (ILS) model, whether or not heat dissipation to ambient air is assumed.
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Nomenclature

C(Cy volumetric heat capacity of ground (fluid) (Jm>K™")

D length along the piping between the temperature probe location and the
borehole inlet or outlet (see Fig. 1) (m)

Ei exponential integral

g(t)= 2(;[/1 (T-Tp) thermal response function

G fluid volume flow rate (m’s™!)

H depth of the borehole heat exchanger (BHE) (m)

r radial coordinate (m)

p =< Qair > /Ot
¥b
Ra
Ry

Qair

s s
Qt = Gcf (Tln - Tout)

Tin

Tout
T'in
T out

part of the total heat rate transmitted to the ambient air

radius of the BHE (m)

thermal resistance between fluid and ambient air (KmW!)

borehole thermal resistance (KmW™")

heat flow per unit length (Wm™)

heat dissipation rate to the ambient air (W)

total produced heat rate (W)

coordinate along the pipe in the range from 0 to D (m)

start (end) point of the time interval (s)
short time scale for the BHE (s)

Eskilson (1987) steady-state time scale (s)
large time scale for the BHE (s)
temperature of ground (K or °C)

ambient air temperature (K or °C)
temperature of heat carrier fluid (K or °C)
undisturbed ground temperature (K or °C)
inlet temperature of BHE (K or °C)

outlet temperature of BHE (K or °C)
measured inlet temperature of BHE (K or °C)

measured outlet temperature of BHE (K or °C)
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z vertical axial coordinate (m)

Greek letters

a=1/C ground thermal diffusivity (m?%/s)

y Euler’s constant

A ground thermal conductivity (W(Km)™!)
n[= D/(R.C/G)] dimensionless parameter

Superscripts

..... arithmetic mean

H
<..> (= Io ..... dz/H) integral mean

<..> time average

STl up (down) directions for heat carrier fluid circulation
Subscripts

a ambient air

1. Introduction

Nowadays, ground-source heat pumps (GHPs) are a solid alternative as choice of system for
heating and cooling in buildings (Omer, 2008; Sanner et al., 2005; Urchueguia et al., 2008). By
comparison with standard technologies, they offer competitive levels of comfort, reduced noise
levels, savings of greenhouse gas emissions, and reasonable environmental safety. Furthermore,
their electrical consumption and maintenance requirements are lower than those required by
conventional systems and, consequently, the annual cost is lower (Lund, 2000). Ground-source
systems are recognized by the Environmental Protection Agency as being among the most
efficient and comfortable heating and cooling systems available today.

A thermal response test (TRT) is a method of determining the effective on-site ground thermal
conductivity in order to design ground coupled heat pump systems. These in-situ tests are based
on the ILS theory of heat transfer by thermal conduction (Ingersoll et al., 1954; Reup et al.,
2009). Due to its two-dimensional nature, the ILS theory cannot describe axial temperature
variations around geothermal borehole heat exchanger.

Fig. 1 represents a typical TRT test to measure the temperature response of the borehole heat
exchanger (BHE) to a constant heat injection or extraction. A U-tube loop, through which a heat
carrier fluid circulates, is inserted inside the borehole to approximately the same depth as the
BHE planned for the site. To provide a constant heat flux to the ground, the fluid flow rate in the
borehole loop and the temperature difference between inlet and outlet are kept constant during
the testing. The outputs of the TRT are the inlet (7ix) and outlet (7,ur) temperatures of the heat
carrier fluid as a function of time (see Fig.1). The difference between the temperatures 7i» and
Tour, measured at the end points of the U-tube, is used to determine the rate at which heat is
transferred by thermal conduction into the ground.
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The BHE, which consists of two tubes separated by filling material, can be modeled as a heat
source in the form of a line or cylinder. The effective thermal resistance of the borehole
(Mogensen, 1983) defines the temperature drop between the BHE surface and an average
temperature of the fluid. The temperature of heat carrier fluid circulating through the loop varies
with depth, as do the ground thermal properties. A weighted average of Ti» and Tour measured at
the end points of the U-tube is assumed to be the mean temperature of the heat carrier fluid over
the loop length (Marcotte and Pasquier, 2008). Typically, their arithmetic average is compared
with a reference temperature of the borehole surface from the ILS model, around which the TRT
is designed. From these experimental data and with an appropriate model for average
temperature around the BHE, the effective thermal conductivity of the surroundings is inferred.

Different analytical and numerical methods have been developed for determining ground thermal
properties from the TRT output data. The cylinder heat source (Ingersoll et al., 1954) and line
heat source (Carslaw and Jaeger, 1959) model for BHE with parameter-estimating techniques are
commonly applied in Europe (Claesson and Eskilson, 1988; Gehlin and Hellstrom, 2003; Sanner
et al., 2005; Witte et al., 2002) and North America (Austin, 1998; Beier and Smith, 2002; Beier,
2008; Shonder and Beck, 2000). Kelvin’s ILS model is among the most widely used models for
evaluation of response test data at sufficiently large times because of the fact that the TRT was
actually devised on the basis of ILS theory (Ingersoll et al., 1954; Mogensen, 1983).

The FLS model overcomes some limitations of the ILS model: its solution has been expressed as
an integral (Eskilson, 1987), given zero temperature at the boundary of the semi-infinite
medium. The temperature response functions, so-called “g-functions” introduced by Eskilson
(1987), are based on the solution of this model for the BHE temperature field at a constant heat
load. The g-functions are computed for moderate times (Javed et al., 2009) and provide an
asymptotic approach to the steady-state limit, which is not reached within the ILS model. The
FLS solution for the ground temperature in the vicinity of the midpoint of the BHE depth was
shown to be approximately the same as the classical result of the traditional ILS during the TRT
(Bandos et. al, 2009).

However, the best solution for applications is given by the mean integral temperature (Lamarche
and Beauchamp, 2007; Zeng et. al, 2002). This is because the average or effective thermal
properties of the ground are used in the design. An exact solution for the temperature averaged
over the borehole depth has been approximated, providing analytical formulae for a wide time
range (Bandos, et al., 2009) that account for the edge effects due to the vertical heat transfer
along the borehole. These simple asymptotic expressions for the mean borehole temperature
allow flexibility in parametric analysis of the test data. It is important to take account of the finite
depth of the BHE because there is an incentive to install the minimum possible length and so
decrease the cost of the ground source systems.

Evaluating TRT data based on the ILS model assumes that there is no heat transfer between the
heat carrier fluid and the ambient air, and that there are no significant effects of boundary
conditions for the vertical temperature profile in the ground surrounding the BHE. In practice,
the inlet and outlet temperatures 7*» and 7"u are measured at some distance D from the ground
surface; Fig.1 shows location of the temperature probes. The data analysis is based on solution of
a purely conductive problem in the ground, which depends on 7i» and Tou temperatures inferred
from 7%» and T%u (see Fig.1). The above-surface part of the TRT system is thermally insulated.
However, it is difficult to insulate the external pipes completely; the exchange of heat between
the ambient air and fluid is often inevitable. Depending on air temperature, the heat carrier fluid
can gain or lose some heat to the ambient. Furthermore, even a small flow of heat through the
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insulation may influence the ground conductivity estimate, causing instability (i.e., the
dependence of the estimate on the time interval used for evaluation). That complicates the
analysis of the TRT.

Experiments have demonstrated that the evaluation of thermal conductivity is affected by
ambient air temperature changes. The influence of diurnal temperature changes on the measured
fluid temperature has been reported several times (Austin, 1998; Esen and Inalli, 2009; Florides
and Kalogirou, 2008; Fujii et al., 2009; Signorelli et al., 2007). In particular, the cooling effect of
the ambient conditions has been observed (Gehlin and Nordell, 2003). The observation of
atmospheric effects in numerous experiments prompts a quest for a method that would allow the
influence of air temperature variation to be subtracted from the dependence of the ground
conductivity estimate on the time interval chosen for analysis. Being complementary to the
efforts to increase the accuracy of the test (Sanner et al., 2005; Witte et al., 2002) such a
technique would allow the already existing data, whose acquisition is fairly costly, to be used
more efficiently.

This paper addresses the heat transfer in the above-ground and subsurface parts of the TRT
system shown in Fig. 1. It presents (i) a new method for subtracting the atmospheric effect on the
test parameters by using data of ambient air temperature in the estimation; (ii) analysis of test
data on the basis of the formula for average borehole temperature, accounting for the edge
effects from the FLS model; and (iii) comparison of these thermal conductivity estimates to
those from the ILS model, accounting for heat losses to the ambient.

The rest of the paper is organized as follows: Section 2 reviews the results from the classical
infinite and finite line-source models. Section 3 introduces the heat balances for the heat carrier
fluid and proposes a method to account for climatic influence and efficiently subtract it from the
data. Section 4 compares the proposed model with experimental dependence of the temperature
of the circulating fluid on time and summarizes results for the test estimates with and without
heat losses to the atmosphere. Finally, Section 5 concludes and discusses directions for further
investigation.

2. Line-source theory

Within the ILS framework commonly applied for the evaluation of thermal response test data,
the ground is assumed to be a homogeneous infinite medium characterized by its thermal
conductivity A. In the vicinity of the borehole, for sufficiently large time values, the ILS model

gives (Ingersoll et al., 1954):
2
q T
T(r,t)=T,————FEi(—
N AT

0 4ot r 4ot
~—{] —v+O(—)}+1; —>>1 1
4M{n Tt (4at)}+ 0> for > ey

where FEi(u) denotes the exponential integral (Carslaw and Jaeger, 1959) ¢: as the heat flux
density per length unit, y as Euler’s constant, a as ground thermal diffusivity, and 7o as the
undisturbed ground temperature. It is usually assumed that the heat is released at a constant rate
from the BHE, in the “radial” direction orthogonal to it, and is transferred by the mechanism of
thermal conduction. The ILS solution is applicable to the temperature around a midpoint of
BHE, modeled as an FLS of the same constant heat flow, and only for moderate times (¢ < )
(because a physically reasonable steady-state solution is beyond its scope). It has been shown
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analytically that the classical result of the traditional ILS is reproduced by the FLS solution for
the ground temperature about the midpoint depth (up to the exponentially small correction terms

e_tZ/ ' ) at times that are comparable with the duration of the TRTs (Bandos et. al, 2009). That is
precisely the reason why the simplifying assumption about an infinitely long heat source in an
infinite medium provides a good approximation and is commonly used for the TRT analysis
(Mogensen, 1983) and for the design standards of the International Ground Source Heat Pump
Association (Bose et al., 1985). This is also why the ILS is used as a benchmark model for
comparison with new proposals.

Approximate expressions for average borehole temperature (instead of temperatures at the
midpoint of the borehole) were derived to apply over a wide range of time values (Bandos et. al,
2009). In the frame of the FLS in the semi-infinite region, the approximation of the average
ground temperature for the times corresponding to the TRT (i.e., for & >> ¢t >> r?/4a) is given
by:

oy : @ dat 3 [t 3 3 [t
< Py o t — 1y —»= F —_— Y — —y [ — —_—————y | —
It ) — T E D) { " /Tt u H J/mH? Vi
H (2)
< Tlr,z.t) =T, >= % /E:Tlfr‘. 2, t) —Ty)dz

This expression for the average temperature of the BHE differs from the classical one (Eq. 1) by
the finite-size corrections, which vanish in the limiting case of H — . Notice that for both
models ILS (1) and FLS (2), the heat flux density g- is implied to be the same and constant along
the borehole, assuming a purely conductive heat transport. The effects of the finite source size
are described by the last three terms in the right-hand side of Eq. 2. Their contribution to the
transient temperature at various radial distances from the borehole center is significant for
shallow boreholes as calculated numerically (Philippe et al., 2009). Indeed, Eq. 2 shows that, for
H=25m and for #/#- = 0.16 and #/#- = 0.0016, corresponding approximately to 4 months and 1
day respectively, the relative difference between the results from the ILS and FLS model reaches
30% and 6.5% at r = Im.

Early time, ¢ < 5¢-, values are in the order of one day (Eskilson, 1987), whereas typical thermal
test durations range from 40 to over 200 hours (Signorelli et al., 2007). The latter fall within ¢ <
t < t;, termed medium times to distinguish them from very long time values ¢ > ¢ corresponding
to the approach to the steady-state (Claesson and Eskilson, 1988). In this case, the integral
average temperature change at the radial distance r from the borehole center is given by (Bandos
et al., 2009):

2 2
4: {4sinh'1£—2sinh‘12—H+3L—4\/l+r—2 +\/4+r—2
H H H

A A r r
3/2 2 2
- 1212/;#/2 1= (1;; THD N s max(H2, 1) 3)

where sinh™'a = In(a+ I+ az) :



Eq. 3 describes the time-asymptotic approach to the steady-state temperature of the designed
geothermal system, whereas Eq. 2 is applicable to the data of the test within the medium time
interval. The following section shows how to account for the atmospheric effect that influences
the time dependence of the temperature of heat carrier fluid.

3. Analysis of TRT data

3.1 The response test

The test described here was carried out in Castellon (Spain) in January 2007, to obtain design
values for the planned geothermal pump. In the data acquisition system, the apparatus used to
monitor the thermal response was connected to the BHE by thermally insulated 4-m-long tubes.
The field test was performed on a borehole with radius 7» of 0.15m, and H = 25m (See Fig. 1).
Bentonite grout filled the space between the U -loop tube and the inner BHE wall, and water was
used as the heat carrier fluid. By measuring the plug flow temperature before the test, the
undisturbed temperature was determined to be 18.4+ 0.2°C.

The test apparatus worked in heat injection mode: the water entering the BHE was warmer than
that exiting. The test parameters were monitored every three minutes by a data logger. Fig 2
presents plots of the 1,418 data readings of ambient air temperature and average water
temperature, defined by the arithmetic mean of the inlet and outlet temperatures, as a function of
time during the 71-hour experiment.

To provide a constant heat rate (about 1.04 kW, as shown by the gray line of Fig. 3), the
difference between the temperatures of the circulating fluid at the input and output of the ground
loop was held constant (at about 3°C), as was the volume flow rate of water, G= 0.3 m*/h. High-
frequency oscillations of the total heat rate were due to the control system for the temperature of
water entering borehole. The flow rate was measured by a Coriolis meter with an accuracy
limited to 1%, while the temperature sensors were four-wire PT100 with an accuracy of +0.1°C.

Although pipes connecting the test device with the borehole were well thermally insulated, an
undesirable correlation between the air temperature and the mean temperature of the fluid was
also observed in our test, as in other cases. Just visible in Fig. 2 are small jumps in average water
temperature at 15, 30, and 54 hours that are related to significant variations of the temperature of
the ambient air around its average value of 14°C. This implies some heat transfer through the
above-ground pipes between the borehole and data acquisition instrument (Sanner et al., 2005).

The relationship between the time dependence of the carrier fluid temperature and the ambient
air temperature has been observed during TRTs carried out by different groups (Esen and Inalli,
2009; Florides and Kalogirou, 2008; Fujii et al., 2009; Gehlin and Nordell, 2003; Sanner et al.,
2005; Shonder and Beck, 2000; Signorelli et al., 2007; Spitler, 2000). This may indicate that it is
often difficult to completely remove the atmospheric effect by means of insulation. The fact that,
in practice, the ambient air and the fluid temperatures are correlated strongly affects the stability
of the ground conductivity estimate, making it dependent on the chosen time interval (Austin,
1998; Gehlin and Hellstrom, 2003; Shonder and Beck, 2000; Signorelli et al., 2007; Witte et al.,
2002). On the other hand, the observation of such correlations in numerous experiments suggests
that it is necessary to consider heat transfer processes in the geothermal system as a whole in
order to handle test data that is influenced by the ambient air temperature variation.



3.2 Climatic effect on the heat transferred to the ground: interpretation model

Heat exchange between the ambient air and the fluid in the above-ground pipe work changes the
heat transferred to the borehole. Then, the total heat rate O: can be written as a sum of the heat
dissipation rate to the ambient air (Quir) and the actual heat rate transferred to the ground (g-H):

Qt = Qair + QZH (4)

Besides diurnal variations of the air temperature, the interior temperatures of the test rig affect
the efficiency of the system operation (Sanner et al., 2005). In many practical circumstances, the
inlet and the outlet temperatures are measured using temperature probes on the above-ground
connection pipes, as implied in Fig. 1. The thermal influence on the borehole temperature of the
heat carrier fluid in the above-ground piping has been recorded (Gehlin and Nordell, 2003).

The fluid temperature changes with the s coordinate along the pipes outside the borehole due to
the undesirable heat exchange with the ambient air. In the quasi steady-state case, the heat
transport by the fluid in the tube, accompanied by the transverse heat flux to the air, is governed
by the convection equations (Claesson and Eskilson, 1988; Hellstrém, 1991):

GC —[”‘fl('q'”— T,(t) — T}(s,t))/R Ths=0)=T

Oy = (L) - T )/Res Tjs=0)=T;, ©)
, dT}(s,1) o - ,

—G(C fT - (]_:!(f) - Tf("‘f));ﬁu Tf{" = “} = Imf (6)

The measured temperatures 7% and 7*x related to the borehole input and output are required to
estimate the total amount of the heat rate:

Qt = CfG(T*in - T*out) (7)

Heat dissipation to the ambient air causes temperature variation along the connection pipe. As a
result, the actual heat rate transferred to the ground is not Q;, but ¢-H (see Eq. 4). In fact, the heat
convection by fluid balances the radial heat flux to the ground and determines the heat rate g-H
through the temperatures near the surface level as:

QZHz CfG(Tm - Tout) (8)

The BHE input and output temperatures, Tin = T (s = D) and Tour = T'r (s = D), need to be
found. Here, D is the length of piping along the zone of thermal contact of fluid with the ambient
air (i.e., between the point of measurement and the point of input (output) to the BHE, as Fig. 1
shows). The effective length D may also include the uppermost part of the borehole.

The solution of the system of Eq. 5 and 6 with the boundary conditions at the points of
measurement can be written as:

Tén — T'* e + I:(l T (."_U)

iri

)



I_mf =1, " + IJ(J- _ F”)

out

= D/(Ra(wf(":) (10)
The above solutions depend on thermal characteristics of the flow system through the model
parameter 1. Its physical meaning can be inferred from physical parameters entering Eq. 10:
flow rate, heat capacity of fluid, piping dimensions; its value can be calculated based on an
assumed thermal resistance R.. Notice that this model parameter # takes non-zero values in
actual conditions of penetrating ambient influence, while its zero value is reached for the limiting
case of perfect thermal insulation of the connecting pipes Ra. = © or G — oo. Therefore, =0
corresponds to the ideal test conditions without heat dissipation to the ambient and is used for
comparison with the proposed model hereafter. A non-zero value of the dimensionless parameter
n from Eq. 10 accounts for the climatic influence. It can be calculated using physically
observable properties, as in Eq. 10, or estimated from the test data as described below.

The outputs of the exterior problem, Eq. 9, influence both the heat rate to the ground and mean
fluid temperature. Indeed, substituting Eq. 9 into Eq. 8, one finds:

a.(n,)H = C4G(2T,(¢)sinhy — €T}, + ¢ 7'T},) (an

and then

Ti(n,t) = (Tow(t) + T;n(t))/2 = T,(t)(1 — coshn) + (e"T,,, +e "1}, )/2

out in//

(12)

The inputs for the conduction problem, related to 7i» and 7ou at the top of the borehole are now
expressed using measured fluid temperatures 7% and T*ur.

Notice that if the connecting pipes were ideally insulated (i.e., # = 0, neither Tou, Tin, or g would
depend on the ambient air temperature. In the test, the temperature probes are to be immersed
directly into the flow (Witte et al., 2002), where, presumably, the outside heat influence should
not penetrate. However, under real conditions, there exist heat losses to the ambient outside the
borehole, and so the parameter # takes small but non-zero values.

The question then arises of how to select parameter # in order to filter out the effect of air
temperature variation. The energy rate balance, Eq. 7 and 11 set the correspondence between 7
and the fraction p of the total heat rate transmitted to the ambient air

< Quir >=p < Or > (13)

as:

(p— 14 coshn)(T;.(t) = T,,.(t), = (T, (t)+T,,(t) —27T,(t)),sinhn

(14)

Note that the thermal resistance R, = D/ (n Cr G) between the fluid and the air is independent of
the flow direction due to the fact that above equation is invariant under # — —# if this is supplied
by T"in(t) <> T*ou(t). If the heat loss to the ambient air is a small part of the total produced heat
rate (p << 1), the leading terms in the series expansion in 7 in Eq. 14 give:

(T (8) — T2(t)), (15)
(To, (1) + To(t) — 2T,(1)),
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Then, the values of # turn out to be small as long as p << 1; these parameters are proportional,
and the case of # = 0 corresponds to p = 0. (Eq. 15 does not mean that the flow parameter should
be considered as a function of the measured temperatures.) One can use Eq. 15 to select 7.

The idea behind the proposed method of handling TRT data is to use the freedom in choosing #
to suppress the influence of the air temperature oscillations. The algorithm to determine the
model parameter # can be summarized as follows:

1. Choose an initial guess for p (for instance, use an acceptable energy loss to the ambient,
and calculate # from Eq. 15

2. Apply the three-parameter scheme, described in section 4.1 below, varying estimates of
A, Ry, and To

3. Compare the value T thus obtained with the experimental value T,
4. If 1, -1, *?"is less than some tolerance threshold, then stop iteration: the value of 7 is

sufficiently accurate; otherwise, choose another value for p

As a sample application of the above proposed algorithm for determining # using T;XP , consider
the TRT data. For the initial guess of p, the optimal choice happens to be p = 0.055, or 5.5% of
heat dissipated to the ambient during the heat injection. With this value for p, Eq. 15 gives n =
0.006. Then, as a result of steps 2 and 3, the estimate of 7y (what is the value) appears to be close
enough to the value T,* determined from the experiment before the test.

Fig. 3 plots the variable heat rates g-H and Quir calculated using Eq.11 and 17 with p = 0.055, »
= 0.006; it 1s seen that the heat rate O remains roughly the same by keeping the temperature
difference 7"in — T"ou constant during the TRT. There are minor variations of the resulting heat
input during this TRT (in accordance to hardly discernable fluctuations of fluid temperature
caused by the daily air temperature fluctuations; see Fig. 2.)

In the next stage, the total heat flow from the fluid to ground through the borehole wall is
considered. When fitting the temperature at the lateral surface of the borehole 7, = T(¥ = r», t) to

the experimental data 'ITf for the mean heat carrier temperature, the thermal resistance R»

between the borehole wall and the fluid must be taken into account (Mogensen, 1983):

Rbclf(-;‘ I? - I;*u

¢) = Ry(Qr — Quin(t))/H =Ty(n,t) — Ty(t) (16)

Notice that the temperature drop, T(#, t) —7T»(), is influenced by the ambient air temperature 7
() through the heat rate Quir (2) that is given by:

Qair(t) = CyG(sinhn(T}, + T, — 21u(t)) + (1 — coshy)(T,;, — T..)) 17)

or, for small values of (<< 1):

Quir (t) 2 20nC;G(Ty(n,t) — Ta(t))

“Cawr

(18)
-10-



Besides determination of the ground thermal conductivity, an evaluation of the borehole thermal
resistance, R», is another objective of the test. This test estimate is very sensitive to the value of
undisturbed temperature 7o (Marcotte and Pasquier, 2008).

The proposed formulae for subtraction of climatic influence from the TRT data, using a
multivariate parameter estimation analysis, is described in the next section and the results are
compared with the test estimates from new models.

4. Results and discussion

4.1 Parameter estimation algorithm

The data obtained from the TRT are evaluated and compared by making use of the ILS and FLS
models, along with the above described method of accounting for the heat rate transmitted to
ambient air, characterized by #. To find suitable model parameters, Eq. 1 and 2 (in the time
interval of their validity) have been matched, using a regression technique, to the experimental
data for the mean temperature of the water as a function of time.

Parameter estimation minimizes some measure of discrepancy between the measured fluid

temperature Tfe P and its prediction from Eq. 16, which can be rewritten as:

— (f)
Ty(t) = -:;Q:{_t;.;‘.:q' \' + q.(t)Rp + Tty (19)

Here, < ... > denotes time averaging, and the g-function is defined by the models in Eq. 1 and 2.

To find optimal test estimates, the measure of loss, which is proportional to the error T_f— ; b ,
is minimized by adjusting test parameters. The model parameter 7 was fixed by applying two or
three parameter schemes based on the multivariate regression method. In the three-parameter
estimation procedure, 70 was allowed to vary, along with the variables of the two-parameter
scheme: ground thermal conductivity and borehole thermal resistance.

Note that the approximation for the average temperature in Eq. 2 differs from the linear
logarithmic time dependence for the ILS (Eq. 1) by the extra terms that are proportional to 1/H.
Both approximate functions remain linear in the test parameters 1/4, R», and 79. However, the
general regression technique is valid regardless of the functional form of the time dependence of
the model (Hastie et al., 2001). The optimization procedure was performed using the best
estimates of the three or two variables (i.e., variable or fixed 7o) for both the model proposed
here, Qair(n # 0) # 0, and the traditional version, Qair(n = 0) = 0 (i.e., with and without energy
loss in the connections).

4.2 Test parameter estimates with four models

Fig. 4 compares the results of FLS and ILS models with the results of the benchmark ILS model,
g-(n = 0), using o= 1.21 x 10"°m?/s throughout the numerical calculations. Four different models
were developed from the data measured (in situ) by applying two- and three-parameter
estimation methods. These are FLS and ILS for n = 0 and FLS and ILS for n # 0 models: i.e.,
two models incorporating measured temperatures of the ambient air, qz(m# 0), and two models
without it, gz(n = 0).
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The classical ILS and FLS approaches are applied to the data set obtained from the test after the
first few hours. Transient early-time data (t << rv*/a) are influenced by the borehole itself (i.e.,
by its radius, length, etc.), thermal properties of the grout, tubes, and convective resistance
between inside their walls and the fluid. Therefore, these early-time data are ignored in the
analysis of the thermal properties of ground.

Fig. 4 shows the thermal conductivity as a function of length of the time interval [to, t1] chosen
for the estimation, where to is the time the measurement starts and t; is the overall time of the
measurement. Then, the length of the estimation interval (ti—to) corresponds to time on the x-axis
of Fig. 4 and 6.

Fig. 4 plots the thermal conductivity estimates obtained by using the data in the intervals: from
the [46—71] hours to the [1-71] hours (thus, to varies from 1 hour to 46 hours). The length of
estimation interval is changed by 1 hour in a step-wise manner from 25 to 70 hours; the former
interval corresponds to the late times of the test. These sequential plots can indicate whether the
estimate converges to a particular value over the time intervals chosen for the analysis and
provides a check for groundwater flow (Sanner et al., 2005).

Firstly, Fig. 4 compares the thermal conductivities on different length-of-time intervals estimated
from both the ILS and FLS models for n = 0 (i.e., assuming zero energy losses to the ambient
air) for the same test. When assuming no heat losses in the above-ground piping and the
uppermost part of the vertical BHE, the instability of the effective thermal conductivity may
mask a convergent value of the TRT estimate. Indeed, Fig. 4 reveals the cyclic nature of the
temperature response for n = 0 because of the influence of the outside perturbation; very small
and hardly noticeable changes in the mean fluid temperature curve in Fig. 2 are significantly
amplified for A, which is inversely proportional to its time derivative.

As Fig.4 demonstrates, conventional data analysis (i.e., assuming no heat exchange between the
ambient air and the fluid) gives significant differences between thermal conductivity estimates
within the selected time intervals (when varying to from 1 hour to 46 hours, while ti is fixed). In
contrast to this TRT estimate, which is hardly interpretable, one can find convergence if the heat
exchange through the connection pipes is taken into account by setting a non-zero value for the
parameter 1 (see Eq. 10). And if the model accurately represents the heat transfer processes in
the whole system, the thermal conductivity curves are expected to flatten out below and above
the ground surface for large estimation intervals .

Secondly, Fig. 4 compares the A values estimated from both the ILS and FLS models, for n =
0.006, on different time intervals from the same test data. In this case, the injected heat rate
varies with time, but without clear decreasing or increasing trends that can distort the estimate of
ground conductivity (Beier and Smith, 2003). A superposition technique or a method proposed
by Beier and Smith (2003) can provide a solution for the case of non-constant heat flow.
However, if q- weakly changes with time, Aqz/qz << 1, acceptable results can also be obtained
through averaging the heat load over the TRT time. This is just the case, because the maximum
variation of g (caused by the ambient temperature variations) is less than 5.5% of average heat flow.
Therefore, to fit the model to the water temperature data, when the variations of qz(n;t) are
caused by Ta (t) fluctuations, the average component of the heat rate density, < gz(n;t) >, 1s used.
As can be seen from Eq. 19, the mean heat rate is the key factor in the g-function, whereas the
time variation of qz(n;t) accounts for the atmospheric effect which it turns out to be proportional
to the time dependence of the air temperature attenuated by the small multiplier 1 in Eq. 18 and
is therefore small. In this case, | # 0, Fig. 4 also demonstrates that the ground conductivity curve
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approaches a horizontal line with increasing length of time series. In addition, these sequential
plots in Fig. 4 allow assessment of the time interval that is necessary to obtain an accurate
parameter estimate. Fig. 4 shows that fluctuations in ground thermal conductivity estimates from
the both ILS and FLS models with n = 0 almost disappear when using three-parameter regression
for the value of n| # 0 determined previously. Indeed, as Fig. 4 demonstrates, the effective ground
thermal conductivity estimate from the ILS (FLS) is constant to within 10%.

Fig. 5 shows that the FLS temperature curve (1 # 0) (solid line) calculated in such a way (with
the converged values of the test estimates found by using the three-parameter scheme) lies
perfectly on a line of the measured temperature of fluid (ignoring high frequency fluctuations).
This excellent agreement between the two curves is reached by taking into account the rate of
heat losses Qair(t). The temperature curve (solid line) with the underlying atmospheric trend
corresponds to A = 2.57 W/(m°C) and Ry = 0.174 m°C/W, To = 18.32°C, estimated from the
three-parameter scheme for the proposed model with 1 = 0.006 in the time interval range from 6
to 71 hours. The straight dashed line in Fig. 5 corresponds to a thermal conductivity of 2.66
W/(m°C) and borehole resistance of 0.163 m°C/W found from two parameters fitting at the same
effective undisturbed ground temperature of To =~ 18.32°C without heat dissipation to the
ambient (i.e., at n = 0). Fig. 5 demonstrates the ability of the proposed model to predict the
temperature of the heat carrier fluid as function of time.

After ground thermal conductivity, thermal resistance of the borehole is the most important test
estimate for the design of a vertical BHE. The borehole resistance values are also estimated from
the field data and are plotted versus the time evaluation interval in Fig. 6. In fact, Fig. 6 shows
that the borehole, filled with thermally enhanced grout, yielded values within the range from
0.151 to 0.185 m°C/W. The estimate of the undisturbed ground temperature (from the three-
parameter estimation scheme) varies from 19.4 to 17.9°C for the same time intervals. This range
includes the To value used for determination of the model parameter p in Eq. 13 and 14.
Therefore, the developed method successfully filters out the main part of the cyclic distortions of
test estimates caused by the diurnal temperature cycle and smoothens their dependencies on the
length of time interval chosen for the assessment.

When neglecting energy losses to the ambient air (p = 0), the values of A calculated from both
ILS and FLS models are higher than ones evaluated with the proposed method of suppressing the
climatic influence from the TRT data; this is because of the cooling effect. For n # 0 (p # 0), as
well as for n =0 (p = 0), the comparison between the numerical results of FLS and ILS models
applied to the same experimental data shows that, as predicted by Bandos et al. (2009), the
effective thermal conductivity value of the ground is overestimated by the ILS model (Fig. 4).

5. Conclusions

The ground thermal conductivity has been estimated from the TRT data by modeling a BHE as a
finite and infinite line-source of constant heat flow. A method of subtracting the influence of
outside perturbations has been developed and applied in the estimation process. The removal of
the climatic effect successfully damps the oscillations of the ground conductivity estimates from
the test data with increasing length of the time series. Application to the borehole test
demonstrates that the atmospheric effect can distort the estimate of ground conductivity by a
factor of one-third, while the proposed method estimates ground conductivity to within a 10%
interval of the mean value. It has been shown that this proposed method of using the ambient
temperature data in the analysis allows suppression of the influence of diurnal atmospheric
conditions on the estimates of thermal conductivity and borehole resistance.
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Parameter estimation from the test data yields a lower value for ground thermal conductivity
when some energy dissipates from the above-ground pipes in the heat injection mode. This holds
true for calculations in the framework of of both infinite and finite line-source models.. The
results confirm that the finite depth corrections for the mean borehole temperature result in
decreasing the ground thermal conductivity estimate from test data and improve accuracy of the
evaluation. The proposed method is model-independent and is valid for data analysis with the
line-source or cylindrical model for BHE.
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Figure captions
Figure 1. Schematic of field test to measure ground properties.

Figure 2. Daily variations of the air temperature (black line) and the average fluid temperature
(gray line) versus the time of the thermal response test at constant heat injection rate.

Figure 3. Time variation of the measured total heat rate, Q: (gray line) and variable heat rate,
q-H, transferred to ground (black line). Qair calculated with the fitting parameter n=
0.006 corresponding to 5.5% heat losses (p = 0.055) to ambient air (dashed black line).

Figure 4. Comparison between dependence of thermal conductivity on the time interval length
from the ILS (gray line) and FLS (black line) models for the same test data. Estimates
of thermal conductivity are from the ILS and FLS models when the end of the
evaluation interval is fixed while its starting point increases: (i) without outside heat
losses to the ambient air (p =0, =0) and (ii) with 5.5% heat losses (p = 0.055, n =
0.006) to the ambient air.

Figure 5. Measured (gray line) and calculated mean fluid temperature versus the natural log of
time (hrs) from two FLS models with (solid black line) and without (p = 0, dashed
black line) external heat dissipation for the converged test parameters values.

Figure 6. Comparison between dependence of borehole thermal resistance on the time interval
length from the ILS (black line) and FLS (gray line) models for the same test data
assuming 5.5% heat losses (p = 0.055, 1 = 0.006) to the ambient. Estimates of BHE
thermal resistance are from the ILS and FLS models when the end of the evaluation
interval is fixed while its starting point increases
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Use of Thermal Conductivity from
Thermal Response Test for
Estimating Steady State
Temperatures in Rock and Stratified
Soil near Line Source of Heat

ABSTRACT

This paper addresses anisotropic dependence of effective thermal conductivity measured by a field
thermal response test (TRT). That is a key parameter in the design of Ground-Coupled Heat Pumps
(GCHP) to heat and cool buildings.

First, the paper provides a brief overview of the current technique of estimating thermal conductivity
from a data obtained in TRT based on predictions for temperature from line source of heat in an isotropic
ground. Then, the solutions for isotropic medium are used to develop this temperature transient method
for stratified medium, where the angle between the ground surface and the sedimentary strata is arbitrary.
In addition, the paper provides a new analytical exact solution for temperatures around finite line source
(FLS) of heat in an anisotropic semi-infinite medium. Approximate expressions for the temperature
evolution during the test duration and for the steady state temperature are presented.

The limitations of the FLS method in stratified medium and recommendations for layout of multiple

vertical or horizontal ground coupled heat exchangers or waste canisters in repository rock are discussed.



INTRODUCTION

Thermal conductivity of the ground is a key property when sizing of the ground coupled heat
pump (GCHP) air-conditioning systems. For large commercial installations it is measured on a field
borehole in a thermal response test (TRT) the scheme of which is shown in Figure 1. Figure 1 represents a
typical TRT test to measure the temperature response of the borehole heat exchanger (BHE) to a constant
heat injection or extraction. A U-tube loop, through which a heat carrier fluid circulates, is inserted inside
the borehole to approximately the same depth as the BHE planned for the site. The outputs of the TRT are
the inlet (Tin) and outlet (Tout) temperatures of the heat carrier fluid as a function of time (see Figure 1). The
average change of fluid temperature is directly related to the rock/soil thermal conductivity around the well.
To determine the rate at which heat is transferred into the ground its model is necessary that may account
for underground water flows, temperature dependency of thermal conduction, variable thickness of the

strata, d; see Figure 1. The temperatures Ti» and Tou, measured at the end points of the U-tube, are used

to determine a mean value of thermal conductivity, averaged over the length of shallow BHE. The effective
thermal conductivity represents a number of the model parameters, when fitting the TRT data.

From the experimental data, and with an appropriate model describing the heat transfer between the
fluid and the ground, the effective thermal conductivity of the surroundings is inferred. Thermal conduction
of ground from a TRT data can be estimated with different models. The measured thermal conductivity of
the ground depends on parameters of the model for the ground chosen for analysis through the effective
thermal conductivity.

The Kelvin's solution for temperature of the ground surrounding the borehole heat exchanger (BHE)
modeled as an infinite line source (ILS), is the basis for the TRT in estimating the thermal properties of the
ground. This approach is used further in the GCHP design standards of the International Ground Source
Heat Pump Association (Bose et al. 1985). The cylinder heat source and line heat source (Carslaw and
Jaeger 1959) model for BHE with parameter-estimating techniques are commonly applied for the design
and analysis of vertical ground coupled systems (Bernier 2001).

The Kelvin's concept assumes a homogeneous isotropic media surrounds the heat line source of a

constant heat rate. However, vertical BHE systems are often installed in ground of multiple dipping layers



(of rock or soil) with different thermal conductivities. For stratified media effective thermal conductivity in
the ILS theory represents average thermal conductivity.

An algorithm proposed in (Sutton et al. 2001) for the performance of vertical BHE is based on
analytical solution of an infinite cylindrical heat source model for horizontally stratified geologic
formations. These models for the BHE describe radial heat flow that implies only transverse conductivity

to its axis.

N

Figure 1. In-situ TRT schematic and formation layers.

In general, the ground is an anisotropic medium whose thermal conductivity depends on the direction.
Typically, the sedimentary soil or rock formations have the conductivity in one direction greater than in
another: the heat flow passes more easily along the planes of deposition than across them and, thus,
direction of heat flow does not coincide with the direction of the imposed temperature gradient. The heat
flow and temperature gradient are vector quantities related by the thermal conductivity tensor in
anisotropic media instead of scalar thermal conductivity in isotropic one.

It is necessary to determine thermal conductivity tensor of the ground with application to the estimation
of temperature field. On a large scale it depends upon the average thermal conductivities parallel and
perpendicular to bedding and its spatial orientation to the surface.

A geophysical logging of wells is one of the methods presently used for identification of type of the

ground, and establishment of thermal conductivity distribution in depth (Pribnow and Sass, 1995; Davis



et al., 2007). In-plane thermal conductivity 4, and thermal conductivity A, normal to the bedding can be

determined from parallel and series models, applicable for bedded sediments.

Data on thermal conductivities and anisotropy values, assembled from different areas around the
world are available from literature (Deming, 1994). These data are classified by rock name and origin.
Thermal properties of samples extracted from identified layers are available from review articles (Pribnow
and Sass, 1995).

There are areas where only data on borehole cuttings are available.  The typical approach to the

estimation of thermal conductivities is to carry out measurements in the laboratory on samples. The thermal

A

L

conductivity tensor and the anisotropy (defined as a® = ) can be obtained on oriented core, when

measuring by line source probe on the same sample face at multiply angles to bedding (Pribnow and
Sass, 1995; Popov et al., 1999).

Laboratory results are normally combined with in situ thermal conductivity measurements.
Assessments of the thermal conductivities by laboratory methods are difficult to extrapolate to in-situ
conditions for deep boreholes (Pribnow and Sass, 1995).

The line source method, used for thermal conductivity determination in both field and laboratory,
provides ground thermal conductivity in the direction perpendicular to the line.

In addition, the mean dip angle between bedding and surface is required for practical applications to
define the average thermal conductivity tensor.  Small variations of dip in wells can be viewed in borehole
imaging logs (Borehole Televiewer, Formation Micro Scanner) (Pribnow and Sass, 1995). In practice, the
value of dip angle can be estimated simply by examining the in situ cross section.

When no data are available on the dip angle between the bedding formations and the earth’s surface,
assessment of the temperature in the BHE surroundings may be useful in the limiting cases of horizontal

and vertical stratification. Such estimation defines upper and lower limits for average temperature field

for the intermediate angle values from 0 to% .



For geologic applications, to measure thermal conductivity in vertical direction, normal to the earth’s
surface, the model was developed for arbitrary angle between the ILS and the principal direction of
heat flow in an infinite anisotropic medium (Grubbe et al. 1983).

However, infinite-source models have some limitations. For long time periods the finite size
effects need to be taken into account; otherwise the ILS models predict unlimited increase of the
temperature when time tends to infinity. The very introduction of the surface boundary has the effect of
setting a steady-state (Bandos et al., 2009); this is beyond the scope of the infinite line-source models either
for isotropic or anisotropic media. Three dimensional finite line source (FLS) model of the BHE in a semi-
infinite medium (Carslaw and Jaeger, 1959) does account for vertical heat transfer with both the soil
surface and deep earth.

Design tools use the so called “g-function” introduced by Eskilson (1987), which represents the

thermal response factor of the borehole to a constant heat pulse at the borehole periphery, i.e. r=r, . Itis

estimated at the BHE mid-point in simulations of GCHP systems because ILS method implies the
temperature at the point far away from the BHE ends. After Zeng et al. (2002), Lamarche and Beauchamp
(2007) extended the g-function concept of Eskilson to analytical integral average g-function.  Further, the
mean g-function has been approximated for a wide time range, providing its explicit steady state limit at
any point and the finite size corrections during the test for H >>r >r,, i.e. in the borehole vicinity (Bandos

et al. 2009). The edge effects are due to the vertical heat flow along the borehole from the deep earth and

its surface. The thermal response of a borehole is proportional to the ratio of % of two significant

eff
factors in almost all analytical g-functions for the short and long term time analysis of the BHE response
(Javed et al., 2009).

These FLS models have been limited in application to the infinite ground of either isotropic or
anisotropic thermal properties, whereas to the best of author knowledge, solution for the temperature in
the semi-infinite anisotropic medium has never been known. To assess properly the steady state
temperature of the underground installation one needs to account for principal directions of the heat flow
in the ground. It may be relevant to guarantee stability of operating the ground coupled installation as

well as the time of investment return. The financial reward of installing a geothermal system comes after



the long term. The anisotropy effect on temperature in borehole surroundings also becomes significant for
very long time values.

In this context, line-source methods to estimate thermal conductivity include conducting laboratory
experiments on rock and soil samples and/or performing field tests (Davis et al. 2007; Popov et al. 1999).
It should be noted, however, that the ILS based method was developed for rocks layered non perpendicular
to the ILS (Grubbe et al. 1983). In geologic applications it is widely used for calculation of terrestrial heat
flow density, while in geothermal applications it is necessary to determine the borehole temperature for the
design purposes. However, for both applications of this method do not account for the fact that the earth’s
surface can make arbitrary angle with the sedimentary bedding. The ILS method in an infinite anisotropic
medium was proposed to determine the vertical component of thermal conductivity along the ILS
embedded in rocks layered non perpendicular to it (Grubbe et al. 1983). However, this method cannot
describe exactly the temperature field in an anisotropic half-space without accounting for a boundary
condition on the ground surface.

Further refinement of the FLS approach is desirable for anisotropic semi-infinite medium; anisotropic
corrections to the g-function reveal how rocks are layered to the surface.  Moreover, bedding angle
dependence on temperature response is of significant importance for long-term underground energy
systems. It may be important, when estimating maximum temperatures tolerated in nuclear waste
repositories or aquifer thermal energy storages (Hormark and Claesson 2005; Sundberg and Helstrém
2009).

The effect of anisotropy of heat flow in a multi-layer geological formation on the temperature around
the vertical line heat source at an arbitrary dip angle of the strata to the earth surface is the subject of this
paper. It has practical implications for the estimate of test data, the steady-state temperature field and for
the selection of orientation of vertical bore field.

This paper presents (I) exact solution for the FLS thermal response function of a borehole that takes
into account the geometrical disposition of the earth surface and the sedimentary bedding; (1) approximate
expressions for the mean temperature of the vertical BHE for the times corresponding to the TRT duration

as well as to the long times in the limiting cases of horizontal and vertical stratification to the earth's



surface. Results on the time-series expansion for the temperature around the finite line-source in an

anisotropic semi-infinite medium - including the existence of a steady-state limit — are also discussed.

PROBLEM STATEMENT

For the line-source analysis of TRT data, the ground is assumed to be a homogeneous isotropic
medium characterized by scalar thermal conductivity 4 . For the stratified geologic regime, this assumption
is extended to the thermal conductivity tensor that characterizes anisotropic medium. The heat flow and

temperature gradient are vector quantities related by the thermal conductivity tensor A,  (Carslaw and

Jaeger, 1959). The heat flow in the i-th direction Q, at a given point of the anisotropic medium is given by
Q=- i:]_AikaT [ o%,

It is assumed that the heat flow in the stratified ground proceeds as if the media were homogeneous, i.e. the
thermal conductivity tensor is homogeneous, but anisotropic.

This paper considers heat flow along the vertical z- axis, which is perpendicular to the surface of the
semi-infinite region, as shown in Figure 1. The heat is realised at a constant rate along the z-axis of the
Borehole Heat Exchanger (BHE), modelled as the Finite Line- Source (FLS), and is transferred by thermal
conduction along the preferential directions in the semi-infinite region. In the anisotropic model the
equation of heat diffusion, generally, is not invariant under spatial rotation about the z-axis of the vertical

BHE. The subsurface temperature, T, is governed by the heat conduction equation:

Tt ) iiA 2;((2 .0 + 0,0(x)o(y) (6(z) — 6(z—H)), for t>0,z>0 (h)

where X =(X,X,,X;)=(X,y,z) isthe coordinate vector, and g, is the heat flux density per length unit

of the BHE of radius r,, where &(x) is the Dirac delta function characterized by the property

j&(x) f (x) = 0 for all functions f, &(z) is the unit step function, which is zero for z <0 and unity for z >0

. The initial condition and boundary condition on the surface are given by:

T(X, t=0)=T, T(xy,z=0, )=T, (2



Typically, the line-source of heat is introduced as boundary condition on the cylindrical surface

e~ [_ALOT 1 0x—A,0T |y — AT 1 01]
27, :

and not as a heat generation term of Equation (1) in this equivalent formulation of problem (Carlaw and
Jaeger, 1959).

We address the simplest case of anisotropy in which the thermal conductivity is the same for all
directions of a plane X'Y and differs in the Z' direction noted in Figure 2. Two components of the thermal
conductivity for heat flow through the ground in a direction perpendicular and parallel to the bedding plane

are denoted by A, and k”, respectively. The in-plane thermal conductivity Z,is larger than orthogonal

component of thermal conductivity tensor A, (Davis et al. 2007; Popov et al. 1999), but this study is valid

for any anisotropy ratio.

Figure 2. Direction of X', Y, Z' principal axes of the thermal conductivity tensor. The XY plane
represents the ground surface at the dip angle ® from the X'Y plane.

In order to formulate the problem around the BHE inserted into the ground so that its surface is at
angle ® to the bedding plane one needs to find the conductivity tensor in the chosen axes. The thermal
conductivity tensor is diagonal inthe X', Y, Z' coordinates shown in Figure 2. These three directions are

called the principal axes of the thermal conductivity tensor:

D Al ©)



withthe 4, =4,, 4, =4, and 4, =4, components.
To find the conductivity tensor A; in the chosen axes X, Y and Z (so that the BHE axis is at angle ©

to the Z' axis) one performs a rotation of tensor in Equation 3:

Ay = Zi Ri O ij (4)

m=1 k=1

by the orthogonal matrix R, describing the rotation between two sets of axes shown in Figure 2. This is

given by (Hastie et. al 2001):

cos® 0 sin®
R= 0 1 0 (5)
-sin® 0 cos®

Making use of the transformation defined above one gets

Msin2®+k”cosz® 0 (= +2y)sin20/2
(=Ay +2)sin20/2 0 klcosz®+k||sin2®

The coefficient A,; is the thermal conductivity coefficient for the heat flow in the X direction due to a

gradient in the direction X. It also gives rise to a heat flow in the vertical direction due to the presence of
the off-diagonal coefficient A,;.
Q, =—A,,0T 1 0x—A,,0T /02

The anisotropy factor causes the distortion of the temperature gradient at the surface of multilayered
ground and around the BHE bottom, because the heat flow is not normal to the isotherms.

Throughout the paper the following normalization was used

& =AMy, 1,j=123 (7
The temperature field is thus defined by the solution of Equations 1, 2 with the above A matrix in

Equation 6. Iftheangle ®=0 (or ®=x/2), the axes coincide with appropriate symmetry directions of
a multilayered ground, this matrix A becomes diagonal one, where ®=0 (or ®=x/2) correspond

to horizontal (or vertical) stratification of the ground.



In the following the grounds of these types will be considered as well as the ground strata at any dip

angle to the surface.

ANISOTROPIC DIFFUSION IN SEMI-INFINITE MEDIUM. LINE HEAT SOURCE THEORY

This section is focused on the generalization of the analytical solutions of the thermal conduction
problem for isotropic medium to the solutions for anisotropic semi- infinite medium representing multi-
layered ground.

We introduce the common methods for TRT estimations and highlight their limitations due to the

isotropy assumption.

Solution for Finite Line Heat Source in Isotropic Medium

The exact solution for temperature response from the isotropic ground, where the thermal tensor is

diagonal, A, = Ad, , can be written (Bandos et. al 2009):

T{Zerf(—)— erf (052 erf (0= u)}e’“zudu (8a)

r/ 4at

and its integration over the length of the BHE gives:

q, . 17
<T(r,t)-T, >= — h,t), T>=—|T(2) dz
(n)-To>= =4 < H! (2)
(8b)

2

1 7 22 1 et

== derf (hu) — 2erf (2hu) — (3+ e — g h??y_= > du

2,,[M{ (hu) —2erf (2hu) —( ) e

Both the exact solution and its average represented in such a form recover straightforwardly the ILS
result in the limit H —» o
4ot r? H?2

o -7}, for b—<<t<<— 9
47z (4at) 7r{ I’2 7} a a ®

There are some approaches of deriving analytical expressions for Equation 8a (Eskilson, 1987) to
overcome time consuming numerical calculation of the above integrals and to get insight on physical

interpretation of the heat transfer processes. It can be seen that there are two characteristic scales of time,



namely,t, =H?/a, t, =12 /a . Early time values (i.e. t <5t, ) are of the order of one day, whereas typical
thermal test durations range from 40 to over 200 hours (Sutton et al., 2001). Thus, the duration of TRTs
conform to what are called intermediate times (t, <t <t, ) to distinguish them from very long times (t >t,)
that would approach those corresponding to steady-state conditions. Time of steady-state attainment is
infinite and finite for the ILS and FLS, respectively. Furthermore, the approximation of the average ground

temperature for the times corresponding to the TRT (i.e., for 5t <t <t, ) is given by:

q 4at 4t
<T(r,t)-T, >=— — L forr, <r<<H 10
rH-T, 4701( {\/m H HZ }J ° 10

This expression for the average temperature of the BHE differs from the classical one by the finite-size

corrections, which vanish in the limiting case of H — oo. The comparison between the numerical results of
FLS and ILS models applied to the same experimental data showed that, as predicted by Bandos et al.
(2009), the thermal conductivity value of the ground is overestimated by the ILS model (Bandos et al.,
2011). In addition, error in estimating the thermal conductivity between two models can be found
analytically.

Evaluating TRT is based on the linear logarithmic time dependence for the temperature from the ILS

theory. From Equations 9 and 10 one can find

AFLS rb
P =1 \/—\/7(1——) for ﬁ«l’ 5t, <t<<t,
()]
FLs_q_Z olnt ,1”-5_& olnt
4z 0<T(r,t)> 47 T (r, 1)

Here A and A™®  are the effective thermal conductivities estimated with the ILS and the
approximation of the mean FLS models, respectively. Therefore, the estimate from the TRT with the mean

FLS model gives a lower value for the log-derived thermal conductivity than the one predicted by the ILS

. . . t .
model; the relative error is proportional to the square root of the small parameter . << 1 for test durations.

z
The explicit steady state borehole temperature was derived amid the approximate expressions for the

mean ground temperature over a wide range of time values (Bandos et al. 2009).



q, . H

lim <T(r,)-T,>= 16, (4, lim g(h, 1) = g (0
2
h++/1+h?
gs(h)=|n(—)-i(3+4\/1+ h — 1+ 4h2) 11)
2h++/1+4h* 2h

To proceed further, the anisotropy effect on the TRT estimate and the long time temperature profile are
considered for harizontally and vertically alternating formations and in general case for layers non-parallel

to the ground surface.

Solution for Finite Line Heat Source in Anisotropic Medium

This section, firstly, addresses to the simple case when a main direction of the thermal conductivity
coincides with the vertical direction, perpendicular to the surface, while in-plane bedding plane is
horizontal, i.e. parallel to the surface. Secondly, we introduce mean temperature method for the
horizontal strata, ® =0, i.e. parallel to the surface, present the closed form temperature solution around
FLS for strata at any dip angle to it and conclude with the limiting case of vertical stratification,

O=x/2.

Mean temperature approximations at horizontal stratification

It is assumed that the thermal conductivity of horizontally stratified ground takes on different values
in the horizontal (in-plane) direction, 4, = 4, = 4, and in the vertical z direction, 4, = 4, , which are the
diagonal components of the thermal conductivity tensor with zero off-diagonal elements,
Ay =40, k=1,2,3. The problem of heat diffusion in horizontally stratifed geologic regime (® =0)

is subject to the conditions specified in Equation 2. Its solution is invariant under spatial rotation about the

axis of the vertical BHE as it is in the case of the isotropic medium. Furthermore, after a transformation
Z1>1 M“ /A, , Equation 1 takes the same form as the equation for the isotropic homogeneous ground
with the thermal conductivity 4 as for the primary line source model. This transformation reduces the

heat conduction problem in the horizontally stratified anisotropic ground to the one in the isotropic semi-

infinite medium of the thermal conductivity /1“ and diffusivity Q) =ﬂ” /C . Thus the solutions for the



anisotropic ground can be obtained from Equations 8a, 8b for the isotropic soil by substituting
Z1>12 /ﬂ“ /A, supplemented by the H > H /ﬂﬂ I 2, rescaling; hence, the resulting depth is stretched

for the horizontal stratification for 4 >4, .

Approximate expressions for ground temperature, averaged over the BHE depth, were derived to use
(instead of temperature at the mid-point) over a wide range of time values (Bandos et al. 2009). Then, after

applying the above described transformations, the average ground temperature response for the time in the
interval corresponding to the TRT (i.e. for r? [ 4oy <<t << H2a2/4a‘I ) can be written as:

q 3r 1
<T(rt)-T, >= —| In(4F0) —y ————1 J4Fo, —/m +——=1|| for r<<aH 12
(r,t)-T, 4”/11 ( ||) Y \/;aH { { 4F0” } (12)

i,
where a’ = A /A, is the in-plane conductivity scaled by the normal conductivity, Fo, :—2” is the
r

Fourier number that refers to a radial distance r from the borehole center, not to the borehole radius r, ,
which defines characteristic time t, . The TRT measures a multiplier for logarithm of time that is a function

of model parameters.  Effective thermal conductivity is such a function that is inversely proportional to
logarithmic derivative from the temperature in the intermediate-time interval. ~ From the above equation

effective thermal conductivity A measured by the line source method equals to the thermal conductivity
in direction parallel to bedding (to the ground surface for horizontal stratification) 2“ . Note that the log-

derived thermal conductivity is equal to the only parameter of the isotropic model of the ground: A, =4 .
The effects of the finite source size (described by the last three terms in the right hand side of
Equation 12 for intermediate time values) depend on the anisotropy a, vanish in the limiting case
H —oc and are smaller than those in the isotropic model (a=1)for 4 >4, .
Application of the same scale transformations to the approximation derived for the long times

(Bandos et al. 2009), when approaching the steady-state conditions, the integral average temperature

response at the radial distance r from the borehole center is given by:

2 3/2 2 2 2 2 2 2
<T(r)-T, >= % g @y IO ) g ler IHRTIL - HE o max@HL ) g
274, r 24 20t Q Q



This equation provides time-asymptotic approach to the steady-state of the designed geothermal

system, whereas Equation 12 is applicable to analysis of the TRT data in the intermediate-time interval. It

is noteworthy to mention  that the effective thermal conductivity g =4, defines thermal response of the

BHE embedded in horizontally stratified ground in the the intermediate and the long-time intervals.

Furthermore, both above approximations for the mean BHE response depend on anisotropy through the

. aH I 2 > H?
ratloa—.There are two characteristic times r and H™a = HC
r au 27 1

for anisotropic diffusion in the radial

and axial directions, respectively; these directions coincide with the A principal axes for horizontal

stratification.
. . . . . ,aH
Exact solution for the mean steady-state temperature in the dimensionless form of §,(—) reveals
r

anisotropy effect at any radial distance from borehole center. Using the expansion we arrive at the
following result for anisotropy correction to the steady state temperature from isotropic and anisotropic

models, which can be used in the vicinity of borehole, i.e. rL H

Ha,

<T(r)\a:1 -T (r)\a¢1> = 2:—/;Veﬁ|:gﬂs (%) - gs ( r

}:i{—ZIna+3—r(l—a1)+O(L)} or A0
H H r

274,

The symbol O(x) denotes terms proportional to x and higher powers of x. This comparison is done for

Aei =A= 4.
Throughout the paper the following parameters were used in the numerical calculations: a=1.4

for the anisotropy case (Davis et. al 2007) and « =1.16 x108 me/s, 1 =43 WI/(mK). How anisotropy of
the ground thermal conductivity influences the time dependence of the temperature distribution around the
vertical BHE penetrating strata is shown in Figure 3. Exact temperature profiles along the borehole
calculated for the horizontal stratification are presented in Figure 3a at various time values from 1.5

months to 12 years.  Figure 3a  shows that maximum temperature along the BHE for 4,/4; >1

(anisotropic case) becomes noticeably higher than that for a =1 (isotropic case) as the time increases. That

is due to decreased heat transfer from the bottom of the borehole.

(HS)
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Figure 3. Comparison between thermal response g-functions at r=r, =0.1m around the borehole

penetrating horizontal strata (® = 0) from two models: isotropic model (4, =4, =4) and anisotropic
model (4, =a2,1l,®=0;/1=2“) of the ground. (a) Profiles of the g-function wversus the natural

logarithm of time t/t, and the dimensionless coordinate z/H along the borehole; (b) Mid-point (z=H/2)
(gray line) and mean g-functions from the isotropic model and mean g-function from the anisotropic
model versus the natural logarithm of time. Exact solutions calculated for constant heat injection are

shown in the range: 51’ /¢, <t <H%a’/q,

a=oy. The time is scaled by t, =H"/(9«) (Eskilson,
1987).
Figure 3b shows that the g-function estimated at the BHE mid-point (Eskilson, 1987) and averaged

response function are rather close to each other for the isotropic medium (l:ﬂ”) and to the mean

temperature response function for the anisotropic medium in the intermediate-time interval. ~ There is the
increase of the mean temperature  evaluated from Equation 13 for the horizontal stratification of

sufficiently low A, value: a=1.4 compared to the mean temperature , but this temperature remains

lower than  mid-point temperature at z=H /2 for the isotropic case.



Notice that the higher the scaled thermal conductivity A4 /A, in the horizontal direction, the later is the

onset of the asymptotic behavior when attaining steady state. Therefore, evaluation of thermal conductivity
from the TRTs provides primarily effective thermal conductivity in the horizontal direction, while thermal

conductivity in the vertical direction noticeably manifests itself for the long time values.

Temperature solution for FLS in a half-space of axial anisotropy at arbitrary dip angle

The problem for ground layered non-parallel to the surface can be solved by using exact
correspondences between the isotropic and anisotropic solutions. It is easy to check that the transformation

of coordinates

X— &3 y Z 2
X! 1 z ’ ) y A = - 14
{ y } ? { \/ A, ,_Azz ’_A33 } &~ &3 (14)

reduces Equation 2 to the heat conduction equation in an isotropic medium. Formulation in the new

coordinates ¥ =(Y,,Y,,Y,) is given by:

oT(y,1) & T (Yt ' H

c U 5 TTWY | g sy, +y, tan 9)5(y,) (He(ys) - He(y, ~—1), (15)
at k=1 ayk A33

for t>0,y,>0

where
2
£, A
tan 9 = /i cos%= |—
&1 &1

with exactly the same initial and boundary conditions :

T(y,t=0)=T, T(y11y21y3:01t):T0 (16)

Equations 15, 16 formulate the problem for an inclined line-source of heat strength g, =q, ﬁ in the

semi-infinite medium of the unit thermal conductivity, where 3 denotes tilting angle of the line source

with the y, axis (Cui et al., 2006) in the mapped space (not shown in Figure 2).



Since its solution is known (Cui et al., 2006), the solution in the physical space X can be obtained

directly by back transformation from the y coordinate space as:

H/cos$
T-T,= _ % J' {erfc—— —erfc }dz ay, = % a7

A JAN, % «f «/

where

SEDINCE X) Ay (X=X)jAg, 17 =17 +422'c0s § 18)

+

and X' ={0,0,z'cosJ} is the vector along the line-source of the length H/cos 9 .

Note also that the tilting angle ¢ in the transformed space can be expressed through the dip angle © as

follows

1.sin 2@] (19)

1
J=arctan [(Z - a) ﬁ

For the TRT analysis the above solution T (X,t) obtained for the finite-line source in anisotropic medium

was approximated and compared with that from the isotropic FLS model in a wide time range starting from
the intermediate times.

We proceed to derive expression that allows the calculation of an effective thermal conductivity as a
function of bedding direction.

Effective thermal conductivity, measured by the vertical line-source method: the layers are non parallel
to the ground surface. To compare the results of evaluating the thermal conductivity for isotropic medium
with that developed here for anisotropic medium, the ground temperature in the vicinity of the mid-point of
the finite depth BHE was calculated.

Series of T(X,t) intime about a mid-point depth (up to the exponentially small correction terms)

can be written as:

=2
T-T.=— qz E(— r ) qz fln 4a33t

I ~
N darggt 4;r\/An,y| P

-7} (20)

q =2
T-T,r—=—(Int+Inde,, /7" —
0 472/19ﬁ( 33 7/)

where



A (21)
811 822
and
A =My = A+ (4 = A,)c0s’0) (22)
This expansion is valid for time values in the interval
<<, a,gt<<L/cos$, L=min(z,H-2z) (23)
1

—Xef/k”: a=1.4
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}”eff/ )“||

0.8;

0 20 40 60 80
Angle 6 between strata and surface
Figure 4. Effective scaled thermal conductivity versus the angle ® between the ground surface and
sedimentary planes, see Figure 2, for a=1.4.

Equation 22 represents that effective thermal conductivity as a function of  the thermal
conductivity components and the structure of ground (dip angle). Effective thermal conductivity A
depends on the angle ® between the FLS and the axis of symmetry, as it is shown in Figure 4. This result
for the A, at the intermediate time values is consistent with the ILS prediction for the perpendicular
thermal conductivity measured in ground bedding non-parallel to the surface (Grubbe et. al 1983). In
geologic applications, the interpretation of Equation 22 enables determination of the thermal conductivity

in a certain direction from the tensor components, when measuring anisotropy of rock samples in the

laboratory at various angles (Pribnow and Sass, 1995).



Let us stress that the estimate of thermal conductivity is defined by the logarithmic derivative of
the TRT data and should be identified with the effective conductivity from a model. So, using

anisotropic model one should write

— _9 In(tZ/tl)
Mt = [Aqqhy = 220 1) 24
eff 1 ” 4TE T (tz) —T (tl) ( )

while for isotropic model the right hand side is equal justto A .

Figure 4 illustrates that the ground thermal conductivity from the TRT varies significantly from the

maximum value A = 4, for the horizontal stratification to the minimum value A, = «M/ﬁ as angle ©

tends fromOto /2.

The following shows how the anisotropy influences the steady-state temperature distribution
around the line-heat source and long-term performance of underground installation due to vertical heat
transfer effects with the surface and the deep earth.

Steady-state temperature field around LS penetrating layers at any angle to the ground

surface. Retaining the first leading term in the expansion of the integral in Equation 17 we arrive at the

following result for FLS, which can be used for the long-time values (i.e. for ,/a33t >>H /cos9):

q =2 2 2
T-T,=—"—{In[z—n, +/f cos” 3+ (z- +
0 47%{ [z-n. \/ (z-n,)"]

(25)

H+n, —z+F?cos’3+(H +7, —z)?

In n. \/ (H+n —2) [z+7 +\/F_200523+ (z+n.)*1}
H+n +z+\/chosZ.9+(H +n_+1)°
Here
Z+7 =1200829+ > (1-2c0s29), -1, =1- " (1-2c0529) (26)
€3 &3
-1
l’_2 = Ii2 +4sin? SZ(L— Z)1 &3 = 2/1” - 2 (27)
PR 4, cot” ®+ 4, tan” ©

This result, describing the steady state temperature field of one borehole, embedded in
multilayered semi-infinite medium at arbitrary angle of the bedding relative to the surface, agree with the

result derived from the isotropic FLS model (Zeng et al. 2002). In the limiting case, when 4, tends to 4,



the proposed Equation 25 recovers the well known result for the steady state limit (SSL)  of the

temperature in the isotropic model.

9 in addition to the BHE

eff

One can see that the steady state temperature is proportional to the

response function on anisotropy, dip angle and borehole depth. The effect of anisotropy manifests itself in
the steady state conditions, whereas thermal conductivity values obtained by fitting the same TRT data to
anisotropic solution, Equation (20), and isotropic solution, Equation (9), are identical.  The steady state
BHE response is strongly influenced by anisotropy.

Figure 3 shows that the steady state temperature profile along the borehole depth at the horizontal

stratification exceeds that for the isotropic ground, as one might expect for 4, <4, .

The following section addresses the specific case of vertically stratified geologic regime, i.e. for

®=7x/2 andthusg, =0.

Mean temperature approximations at vertical stratification

The effect of anisotropy on vertical temperature dependencies increases with increasing of the dip
angle for typical situation: 4, < 4, . Indeed, let there be strata parallel to the plane YZ depicted in Figure 2.
The thermal conductivity of such vertically stratified ground takes smaller values in the X direction,
A4 =4, than inthe in-plane direction, 4, = 4, = 4, (Polubaronova-Kochina 1962). These define the
principal components of the thermal tensor. The exact temperature solution is presented by Equation 17 at

$=0; it is notinvariant under spatial rotation about the axis of the vertical BHE as at the horizontal

stratification of the previous section. Notice that the effective thermal conductivity attains minimum value:

§ = Mﬂ,l . Furthermore, substituting x — x {x” /A, and r—>T= \/xzaz + y2 into Equation 8b one

can also get the solution for the temperature field integrated along the same borehole depth H . Indeed,
under  the conditions in Equation 23, the mean thermal response at$=0 is represented by the

approximation in the transient regime .

4at 4t 0 ~
<T-T,>= — x?a? + forr, <f<<H 28
" ,_{ {/ oy ] H”/ H y b (28)



Here t, = H? loy, o=21C and 7 is defined by Equation 21 at &, =1/a%, &, =1. Notice that

isotherms of the mean thermal response function around the borehole, where ¥ is constant . Furthermore,

dueto a>1(F>r) the effective ratio of the BHE depth to 7 is shortened for the vertical stratification
with respect to H /r for the isotropic medium and the edge corrections become more pronounced. The

steady state limit from Equation 8b or 21 for t>> max(HZ, Fz)/a” can be wriiten in the following

form.
/t 3/2 =2 2 2 2 =2
T % (H)_(tn ) 1_3tnM ’ t”:ﬂ Cpss ML) o)
2r, / 2a\n 20t q a
S P H? H’C . s e .
There are two characteristic times — and — = for anisotropic diffusion in the radial and

o 9 4

axial directions, respectively.

Exact solution for the mean steady-state temperature in the dimensionless form of g5 (—) is valid at
r

we

-11|I

. . . . H
any distance from borehole center. Using the expansion of the §,(—) for large values of the
r
arrive at the following result for anisotropy correction to the steady state temperature from isotropic and
anisotropic models

<T(X’y)\a:1_T(X’y)\a¢1>_ 3 |:gs( ) gs( )j| 21 |:2|I’]£ 3(r—r)

+0(ﬁ)} for % > (VS)

This correction is derived for A

it =A= '//IMH and valid in the vicinity of borehole. Equations HS and VS
provide anisotropy corrections for the mean borehole temperature in explicit form in the limiting cases of
horizontal and vertical stratifications, respectively

Figure 5 presents the time-dependence of the exact mid-point g-function and average g-functions for

isotropic ground and average g-functions for the vertical stratification at «;, = . Futhermore, as shown in

Figure 5, point x=0.1m; y=0 has lower value of mean thermal response function than point x=0;

y=0.1min the uniform in — plane direction y. Notice that, although the physical distance is the same as



derived from the line heat source, the ratio ¥/ H is different at these two points causing splitting mean §

function curve calculated for an isotropic ground in two branches shown in Figure 5.

r, = 0.1 m; H=50m; z=25m

7
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Figure 5. Comparison between the borehole response functions from two models of medium with

vertical strata. Mid-point (z=H/2) (gray line) and mean g-functions from the isotropic model (4, =4, =4

) and mean g -functions in the X and Y directions from the anisotropic model ( 4, =a’A,, O=7xl2)

versus the natural logarithm of time. Exact solutions calculated for constant heat injection are shown in the
range: 5’ /¢ <t<a’H’/a, a=q).

This behavior attributed to the fact that the thermal conductivity parallel to the layers is higher than
that perpendicular to the bedding plane, suggests that row of boreholes should be aligned along the
direction X to enhance conditions of the heat exchange with a multilayered ground as comparison shows
also in Figure 6.

Many sedimentary and metamorphic laminated rocks are strongly anisotropic (Davis et al., 2007):
the thermal conductivity in parallel to bedding planes of these rocks is 2-3 times higher than that
perpendicular to bedding (Deming, 1994; Popov et al., 1995). This proposal on layout of the borehole raw
is not referred to the anisotropy values less than unity also reported (Davis et al., 2007).

Although anisotropy value: a=1.4 in the given examples is common, our solution is valid for any

thermal conductivity anisotropy.
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Figure 6. Comparison between isotherms curves of steady-state § -functions from two 3 borehole

configurations (with an inter-borehole distance of 3 m and H=50 m) at the ®=n=/2: (a) along the

direction X; (b) along the direction Y, shown in Figure 2.

CONCLUDING REMARKS, SUMMARY AND DISCUSSION

Results have been presented of a study of the thermal response from multilayered ground
modeled as an anisotropic medium to constant heat pulse from the finite line source. This study discusses
anisotropic dependence of both effective thermal conductivity measured by TRT and the steady state
temperature field around vertical FLS in the arbitrary oriented strata with respect to the surface of the
semi-infinite medium.

What is actually measured for the intermediate time values of the TRTs is the effective thermal
conductivity of the soil/rock formation in the direction perpendicular to the borehole axis. We have
provided effective conductivity as a function of the inclination angle, which should prove to be useful for
the geothermal applications. In addition, we have shown that the dip angle and the anisotropy factor
influence the steady-state temperature field of the designed installation. Therefore, it may be a discrepancy
between the real temperature spatial distribution around vertical or horizontal GCHP systems in the steady
state conditions and its prediction of the isotropic model with thermal conductivity value obtained from the

short time TRT, but without using the data of anisotropy and dip of the bedding.



The exact solution accounting for anisotropy, its asymptotic behavior and the steady state
expression for the temperature obtained here for any dip angle between the surface and the bedding should
prove to be useful for designing multiple borehole configurations in stratified medium.

Analytical formulae have been obtained for the asymptotic behavior of the average temperature in
horizontally and vertically stratified ground for intermediate- and long- time scales. The suggested
corrections for anisotropic effects (Equations HS and VS) may give errors, when estimating the steady state
average temperature by the isotropic model.

In these limiting cases the proposed response functions in Equations 13, 29 can be easily applied
to estimate maximum and minimum of the mean steady state temperature field of an arbitrary borehole
configuration using the superposition principle.

Due to the fact that the thermal conductivity of ground is higher along the layers the average thermal
response method provides the lowest estimation for the dimensionless response function approaching
steady-state limit; that is reached in the direction across the layers at the vertical stratification. This
conclusion is relevant when choosing a proper configuration to minimize temperature between vertical
sources of heat from data about the geometrical disposition of the layers and the surface. To this objective
the proposal consists in disposing a row of vertical heat sources normally to the lines of strata
intersection with the surface rather than along them at any values of the dip angle. This
recommendation regards also selection of orientation for  horizontal GCHP systems. The analytical
formulae for the temperature allow flexibility in the estimation of the temperatures within and around a

repository of nuclear waste in anisotropic rock.

NOMENCLATURE
a= % = thermal conductivity anisotropy factor
1
C = volumetric heat capacity of ground, Jm>K™!
Ei = exponential integral
27,
G=—""<T(r, t) —-T,> = generalized thermal response function for r >,

z
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Greek letters

a=A1/C
o =41C
o

_ 2
A= & 83

e=AlA,

= in-plane Fourier number

= depth of the borehole heat exchanger (BHE), m
= radial coordinate, m

= radius of the BHE, m

= coordinate vector, m

= heat flow per unit length, Wm™?
= vector of heat density per unit area, Wm2
= short time scale for the BHE, s

= steady-state time scale, s

= isotropic time scale for the BHe, s
= in-plane time scale for the BHE, s

= temperature of ground (K or °C)
= undisturbed ground temperature (K or °C)

= vertical axial coordinate, m

= isotropic thermal diffusivity, m?s
= in-plane thermal diffusivity, m?/s

= delta function

= dimensionless parameter

= dimensionless thermal conductivity tensor

= Euler’s constant

=Equation 20, effective thermal conductivity, W (Km)™

= in-plane thermal conductivity (parallel to bedding plane), W (Km)
= normal thermal conductivity ( normal to bedding plane ), W (Km)™

= three-dimensional thermal conductivity tensor, W (Km)™

= unit step function

= angle between the surface and strata, °



& . .
@ = arccos, /f = dimensionless parameter

Subscripts
| = direction parallel to bedding
S = steady-state

Superscripts

<.>(= .. dz) = integral mean
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Figure captions
Figure 1. In-situ TRT schematic and formations layers.
Figure 2. Direction of X', Y, Z’ principal axes of the thermal conductivity tensor. The XY plane

represents the ground surface at the dip angle ® from the X'Y plane.

Figure 3. Comparison between thermal response g-functions at r=r, =0.1m around the borehole
penetrating horizontal strata (® = 0) from two models: isotropic model (4, = 4, ) and anisotropic model (
A= a’4, ) of the ground. (a) Profiles of the g-function versus the natural logarithm of time t/t, and

the dimensionless coordinate z/H along the borehole; (b) Mid-point (z=H/2) (gray line) and mean g-
functions from the isotropic model and mean g-function from the anisotropic model versus the natural

logarithm of time. Exact solutions calculated for constant heat injection are shown in the range:
5r7 /oy <t <H?a®/ o,. The time is scaled by t, = H?/(9«) (Eskilson, 1987).

Figure 4. Effective scaled thermal conductivity versus the angle ® between the ground surface and
sedimentary planes, see Figure 2, for a=1.4.

Figure 5. Comparison between thermal response g-functions around the borehole penetrating vertical
strata from two models of medium. Mid-point (z=H/2) (gray line) and mean g-functions from the isotropic

model (4, = 4,) and mean § -functions in the X and Y directions from the anisotropic model ( 4 = a’i)
versus the natural logarithm of time. Exact solutions calculated for constant heat injection are shown in the
range: 5r’/a <t<a’H’/a. .

Figure 6. Comparison between isotherms curves of generalized steady-state § -functions from two 3

borehole configurations (with an inter-borehole distance of 3 m and H=50 m) at the ® ==/ 2: (a) along the

direction X; (b) along the direction Y, shown in Figure 2.
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Abstract: A dynamical estimate is given for the Boltzmann entropy of the Universe, under the
simplifying assumptions provided by Newtonian cosmology. We first model the cosmological fluid
as the probability fluid of a quantum-mechanical system. Next, following current ideas about the
emergence of spacetime, we regard gravitational equipotentials as isoentropic surfaces. Therefore,
gravitational entropy is proportional to the vacuum expectation value of the gravitational potential
in a certain quantum state describing the matter contents of the Universe. The entropy of the matter
sector can also be computed. While providing values of the entropy that turn out to be somewhat
higher than existing estimates, our results are in perfect compliance with the upper bound set by the
holographic principle.

Keywords: newtonian cosmology; emergent quantum theory

1. The Approach via Emergent Quantum Theory

In this article, we will argue in favour of emergent quantum mechanics as providing an appropriate
framework to estimate thermodynamical quantities of the Universe, such as the entropy.

The notion that quantum mechanics is an emergent theory has been discussed at length in the
literature [1-7]. Combined with the idea that spacetime is also is an emergent phenomenon [8-12], this
paves the way for a computation of some thermodynamical properties of spacetime in quantum-mechanical
terms. We would like to remark that a quantum-mechanical approach to the expansion of the Universe
was called for long ago in Reference [13], where it was suggested to regard the expansion of the
Universe as a scattering problem in quantum mechanics.

The expansion of the Universe is a long-standing experimental observation [14] that has in recent
years been refined thanks to very precise measurements [15,16]. In the Newtonian approximation, this
receding behaviour of the galaxies can be easily modelled by a phenomenological potential—namely,
an isotropic harmonic potential carrying a negative sign:

HZ
Utiubble () = —70r2- 1)

As the angular frequency, we take the current value of Hubble’s constant Hy. Thus, Urypple has
the dimensions of energy per unit mass, or velocity squared.

In the emergent approach to spacetime presented in Reference [12], gravity qualifies as an
entropic force. If gravitational forces are entropy gradients, gravitational equipotential surfaces can
be identified with isoentropic surfaces. Recalling the arguments of Reference [12], a classical point
particle approaching a holographic screen causes the entropy of the latter to increase by one quantum
kp. Here we will analyse a quantum-mechanical model in which the forces driving the galaxies away
from each other can be modelled by the Hubble potential (1). We will replace the classical particle of
Reference [12] with a collection of quantum particles (the matter contents of the Universe) described
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by the wavefunction . Let U denote the gravitational potential. Once dimensions are corrected using
h and kg, the expectation value (y|U|¢) becomes the quantum-mechanical analogue of the entropy
increase caused by a classical particle approaching a holographic screen. Thus, the expectation value
(w|U|yp) is a measure of the gravitational entropy of the Universe when the matter of the Universe is described
by the wavefunction .

The potential Ugyypple of Equation (1) encodes the combined effect of the gravitational attraction,
and of the repulsion caused by the dark energy on the matter content of the Universe (baryonic
and dark matter). We can therefore identify the Hubble potential Upyyppe 0f Equation (1) with the
gravitational potential U in the previous paragraph. Let us briefly recall why Uggppe in fact combines
a Newtonian gravitational attraction plus a harmonic repulsion. In the Newtonian limit considered
throughout in this paper, the gravitational attraction is computed by applying Gauss’ law to a sphere
filled with a homogeneous isotropic density of matter. Then, the gravitational field within the sphere
turns out to be proportional to the position vector, so the corresponding potential becomes a quadratic
function of the position. Altogether, the total potential at any point within the cosmological fluid is the
sum of two harmonic potentials; Hubble’s constant Hy is the frequency of this total harmonic potential.

We will first start with a flat Euclidean space governed by nonrelativistic Newtonian
cosmology. The latter leads to the same equation that governs the scale factor of general-relativistic
Robertson-Walker models [17]. On the other hand, it circumvents the mathematical sophistication
required by general relativity. The advantage of first performing a nonrelativistic treatment is
that it bears out the deep connection existing between the cosmological fluid and the Madelung
approach to Schroedinger quantum mechanics; this is done in Section 2.1. In Section 2.2, we
obtain a perturbative estimate for the entropy of the Universe; finally, this analysis is carried
out nonperturbatively in Section 2.3. As a next level of sophistication, we move on to a flat
Friedmann-Lemaitre-Robertson-Walker (FLRW) four-dimensional spacetime; due to the great
length of the calculations involved, the corresponding results will be presented in an upcoming
publication [18].

We would finally like to stress the following points:

(i) The wavefunction i we will be concerned with here is meant to provide a phenomenological
description of the receding matter in its recessional motion within a fixed spacetime.

(ii) We will comply with the cosmological principle, the latter stated in either one of the following
two (inequivalent) ways. In its first formulation, given the wave function ¢, the volume density
of matter ||? is spatially constant. In its second formulation, given ¢ and the three-dimensional
volume element d3V = /|g[dx'dx2dx3, the particle number ||>d3V is spatially constant. This
second formulation is weaker than—and implied by—the first one.

(iii) A quantum-mechanical wavefunction ¢ for the matter contents of the Universe will be used
to obtain an estimate of the gravitational entropy of the Universe.

(iv) Invoking Boltzmann’s principle, the same wavefunction ¢ can be used to obtain an estimate
of the entropy of the matter of the Universe (baryonic and dark matter).

(v) All entropies referred to in this paper are Boltzmann entropies.

We would like to thank the referees for drawing our attention to a number of issues and papers
where points related to those analysed here are dealt with from different perspectives. Specifically,
a wavefunction of the Universe was first considered in Reference [19]; the quantum potential was
shown to generate gravitational attraction between particles in Reference [20]; the Hubble potential
possesses no groundstate when considered on all of R? [21]; the nonexistence of a stable groundstate
has consequences on quantum fields on an expanding spacetime [22]. Since we are considering
the Hubble potential on a finite Universe (with radius Ry), the existence of a stable groundstate is
guaranteed. Additionally, the Hubble expansion is considered to maintain the Universe close to
equilibrium, so we can apply standard thermodynamical relations.
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2. Newtonian Cosmology a la Madelung

Newtonian cosmology represents a first step that succeeds in capturing some essential physics of
the Universe, while avoiding the technical difficulties of general relativity [17,23].

2.1. The Ideal-Fluid Description

In this section, we will establish that Newtonian cosmology can be conveniently regarded as a
nonrelativistic quantum mechanics.

In Newtonian cosmology, the matter content of the Universe is modelled as an ideal fluid satisfying
the continuity equation and the Euler equation,

g’t’+v (pv) =0, 867+(v V)v+:)Vp—F—O. @)

Above, p is the volume density of fluid mass, p is the pressure, v is the velocity field, and F
the force per unit volume acting on the fluid. The cosmological principle requires p and p to be
spatially constant; it also leads to the requirement that the velocity v be everywhere proportional to
the position vector r. This latter requirement is nothing but Hubble’s law, so the Hubble potential (1)
arises naturally as a consequence of the cosmological principle. The gravitational self-attraction of the
matter distribution and Hubble’s repulsion are both taken care of by the force F in the Euler equation.

Madelung long ago re-expressed Schrédinger quantum mechanics also in terms of an ideal fluid.
Specifically, one separates the nonrelativistic wavefunction ¢ into amplitude and phase,

_ ir) = i WS S
P = Aexp <h1'> = exp (S—i—hl'), A=:e’ =exp <2kB>, (©)]

where 7 is the classical mechanical action integral; we will later invoke Boltzmann’s principle to regard
S as the Boltzmann entropy and S := §/2kp as the dimensionless Boltzmann entropy. Substituting
the Ansatz (3) into the Schrodinger equation for 1, one is led to an expression containing a real part
and an imaginary part. The imaginary part turns out to be the continuity equation for the quantum
probability fluid,
BS
"

where the velocity field v and the den51ty p are defined by

! —VS- VI+—VZI_0 (4)

_l _ A2 _ 2§
=-VI, p=A"=e" ©)

The real part turns out to be the quantum Hamilton—Jacobi equation:

%—eri(VZ) +V+Q=0, (6)

where V = mU is the external potential, and we have introduced the quantum potential [24]

n V2A
Q=7 —1 @)
Finally, a Euler equation for this quantum probability fluid is obtained by taking the gradient of

the quantum Hamilton—-Jacobi Equation (6):

av

1 1
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We conclude that a one-to-one correspondence between the cosmological fluid on the one hand,
and the quantum probability fluid on the other is provided by the following replacements:

prre®s, v lyz, lw 5 1v0, Fer-Llvv. ©)
m 0 m m

The above correspondence suggests that, given the cosmological fluid in the Newtonian approximation,
we use nonrelativistic quantum mechanics as an equivalent description thereof. The value of m entering
Equation (9) is that of the overall matter contents of the Universe (baryonic and dark matter). This
matter is subject to the repulsive effect of the dark energy, and to its own gravitational self-attraction,
the combined effect of which is modelled by the effective Hubble potential (1).

2.2. Perturbative Estimate of the Entropy

2.2.1. Wavefunction of the Matter Distribution

We will model the ideal fluid of Newtonian cosmology by means of the probability fluid
corresponding to a scalar field i satisfying the Schrodinger equation. Initially, the latter will be taken to be
the free equation, for a perturbative treatment. That is, ¢ will be used to compute (p|U|y), with U
the Hubble potential (1). Alternatively, we can include the Hubble potential (1) in the Schrodinger
equation already from the start; this nonperturbative treatment will be carried out in Section 2.3.

The squared modulus |i|? will equal the volume density p of mass. The cosmological principle
requires the density p to be constant across space. In turn, the correspondence (9) implies that S must
be a constant, so the quantum potential Q will vanish identically. Again by the correspondence (9), the
pressure p must be spatially constant, which is also in agreement with the cosmological principle. The
effective Hubble potential will be introduced later on, as a perturbation to the free field ¢.

The free Schrodinger equation admits the plane-wave solutions

Pi(r) = % exp (ik - r). (10)
Ry

They have been normalised within a cubic box of side Ry, the radius of the observable Universe.
The cosmological principle is satisfied in its first formulation as given in Section 1. Moreover,
the constant amplitude A = R 3/2jeads to a vanishing quantum potential in Equation (7), in agreement
with previous requirements.

The free Schrodinger equation can also be separated in spherical coordinates. The resulting free
spherical waves ,;,,(r, 6, ¢) are then labelled by « (the modulus of the linear momentum k) and 1, m
(the angular momentum quantum numbers). The cosmological principle imposes I = 0. We will

therefore consider the free spherical waves

E exp (ikr) . (11)

191 =
Proo (7,6, ) IR, 7

They have been normalised within a sphere of radius R, instead of a cubic box. Once the spherical
Jacobian factor 47172 is taken into account, the second formulation of the cosmological principle given
in Section 1 is satisfied. Moreover, the amplitude A = 1/r also leads to a vanishing quantum potential
in (7) because

V2A

= v (1) = —4mré(r) = 0. (12)

We will use both plane waves (10) and spherical waves (11) in order to model the distribution of
the matter contents of the Universe. The results obtained from one or the other can differ at most by a
dimensionless factor of geometrical origin, due to the use of a cubic box as opposed to a spherical box.
Imposing boundary conditions on the wavefunction at the walls of the corresponding box only leads
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to a quantisation of the energy levels—a possibility that we will disregard here (see Section 2.4 for a
discussion of this point).

Since we are not imposing boundary conditions, we will work with a set of two
linearly-independent solutions to the free Schrodinger equation. In Cartesian coordinates, a
fundamental set of solutions is provided by the wavefunctions ¢y (x,y,z);in spherical coordinates, a
fundamental set of solutions is provided by the wavefunctions ¢4 00 (7, 6, ¢).

2.2.2. Expectation Values

From what was said above, the operator R*? = X? + Y? + Z2—which is proportional to the
effective potential (1)—is a measure of the amount of gravitational entropy enclosed by the Universe.

Specifically, the combination

Sq = /\/’“’”ZiHoR2 (13)

is dimensionally an entropy; a dimensionless factor N is of course left undetermined. We call S; the
gravitational entropy operator. Its expectation value in the cubic-box state (10) equals

(kg = A0 g2 (19

while in the spherical-box state (11), it reads

kgmHy R3
(¥x00|SgPo0) = N Bh 0?0-

(15)

Substituting the known values of the cosmological data [25] into Equations (14) and (15), we find
the estimate
(Sg)

ke 10'%3, (16)

where we have (arbitrarily) set N' = 1/2.6 when using the plane-wave result (14), and N' = 3/2.6
when using the spherical-wave result (15), in order to keep only powers of 10. Our final result (16)
saturates the upper bound set by the holographic principle [26].

We can also obtain an estimate for the entropy content of the matter described by the wavefunction
¢. Invoking Boltzmann’s principle, one regards the amplitude A of the wavefunction ¢ as the
exponential of the entropy (in units of kp) of the particles described by the wavefunction ¢. This
fact has been implicitly taken into account in the notation of Equation (3), from where we derive the

entropy in terms of the amplitude:
S =2kpIn A. (17)

Acting on the plane waves (10), the matter entropy operator Sy, is a constant,
Sm = —3k3 In Ro. (18)

Therefore, its expectation value in the state (10) equals

(x| Smlx) = —3kpIn Ro. (19)

The above is the correct behaviour for the entropy of an ideal gas, since the radius of the Universe
is inversely proportional to its temperature.
For the spherical waves (11), we arrive at a matter entropy operator Sy,

Sm = —2kpInr — kg In (47tRy) . (20)
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Its expectation value in the state (11) is found to be

(Px00|Sm|Pro0) = —3kpIn Ry, (21)

after dropping a constant independent of Ry. We again find the expected (ideal-gas) logarithmic
dependence of the entropy with respect to the temperature.

2.3. Nonperturbative Estimate of the Entropy

2.3.1. Exact Eigenfunctions

A nonperturbative evaluation requires solving the interacting Schrédinger equation Hyp = E,
where now )
h k
H=-—— 2 iff 2
Y 2"
Let us separate variables in Equation (22) using spherical coordinates. The standard factorisation
P(r) = R(7)Y;,,(6, ¢) leads to a radial wave equation

ket = mH3. (22)

Two linearly independent solutions with | = 0 are [27]
ia? 3 iA 3,
Rf\l)(r) =exp <2r2> 1F <4 BREY —1a2r2) (24)
and )
1 ia 1 iA 1
Rg\z)(r) = ;exp (272> 1F <4 VR —1a2r2) . (25)

Above, 1F;(«;7;z) is the confluent hypergeometric function, and the parameters a, A can be
expressed in terms of the mechanical data m, ke, E, Ho:

4. _ Mkest ._ 2E
a* .= 2 = hHy (26)
The complete interacting wavefunctions are (up to radial normalisation factors)
OD(r6,4) = ——RV(r), j=12 AcR 27
l)b/\(//(l)) \/H/\(), ) 4 . ()

Since A € R is the (dimensionless) energy eigenvalue, it plays the same role that the quantum
number n € N plays in the standard harmonic oscillator. Our harmonic potential does not have
quantised energy levels, but continuous energy levels A instead. However, the range of values covered
by A, while unbounded above, is bounded below by

1

E
0 2

mH3R3 (28)
or, in terms of the dimensionless eigenvalue A, by

mHyR3

ro=-—

= —2.6 x 10'%. (29)

Substituting this value of A¢ into Equation (27) produces the wavefunctions 1/)/(\]2, withj=1,2,
which are the analogues of the vacuum wavefunction of the usual oscillator. The bound (28) has been
determined by a purely classical argument; although the uncertainty principle will shift the minimum
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energy (28) by a positive amount, this correction can be discarded for our purposes, as it will be
negligible compared to (28) itself.

As opposed to the free wavefunctions (10) and (11), the existence of zeroes of the confluent
hypergeometric function 1 F; is a sure sign that the cosmological principle will be violated by the
wavefunctions (27), but the extent of this violation remains to be determined. We claim that:

(i) the expectation value of the quantum potential (7) is a measure of the violation of the
cosmological principle. More precisely, small values of the dimensionless ratio [(Q)/ (V)| imply
small violations of the cosmological principle, while large values imply large violations;

(ii) the ratio |(Q)/ (V)| achieves a minimum when evaluated in two states lp/(\]O), because the
numerator |{Q)| reaches a minimum while the denominator |(V)| reaches a maximum. That |(V)|
achieves a maximum when A = A is obvious. In what follows, we would like to argue that |(Q)| also
reaches a minimum when A = Ay.

Evaluating the quantum potential (7) in terms of the eigenfunction ¢, with eigenvalue E, leads to

2

h
Q=E— V4o [ 2V + (") (V") —2(y"9) Ty vy (30)
Its expectation value in the eigenstate ¢ equals
hZ
(Q) = E= (V) + o [ [y (V) + (9") 9 (Ty")2 = 299" Ty] @)

Altogether, the ratio

. 2
235 -t <V<>V> + 8,:<V> [ 1807 (V)R + (97) (V)R - 2V V) (32)

is a dimensionless number. If it vanishes, the eigenfunction ¢ satisfies the cosmological principle
reasonably well. If the ratio (32) is nonvanishing but nevertheless small in absolute value, the
eigenfunction ¢ will satisfy the cosmological principle at least approximately, and our computation of
the entropy will be on a sound basis.

Actually, the ratio (32) depends on the energy eigenvalue A. We expect a regime of values to
exist for A such that within this regime, the dimensionless ratio (Q)/(V) will be small enough to
guarantee the validity of the replacement of the cosmological fluid with the quantum probability
fluid. In order to justify this expectation, we first observe that for real eigenfunctions ¢, the ratio (32)
simplifies considerably:

= = 3)

Of course, our eigenfunctions (27) are not real. However, still assuming * = 1, the best possible
ratio (Q)/(V) is attained for E = (V). This makes the following assumption plausible: the complex
wavefunction Yo which minimises the ratio |(Q) / (V)| is that for which the energy eigenvalue Eq equals the
expectation value (Po|V|1o).

We therefore expect the two states 1,05\]0) of Equation (27)—with Ay given in Equation (29)—to be
those that minimally violate the cosmological principle. In other words, the correspondence put forth
in this paper (the quantum probability fluid as an equivalent description of the ideal cosmological
fluid) works best when applied to the states l/J/(\JO), while progressively becoming less and less reliable
as the energy increases.

Unfortunately, the exact vacuum-state eigenfunctions l‘bg\]o) of Equations (24) and (25) contain the
huge parameter A of Equation (29). Due to the oscillatory behaviour of the confluent hypergeometric
function, this renders the exact radial eigenfunctions (27) extremely cumbersome to work with,
both analytically and numerically. To simplify matters, we will replace the exact vacuum-state
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eigenfunctions 1/1/(\]0) of Equations (24) and (25) with a set of approximate radial eigenfunctions for the
vacuum state. We will also see that these approximate eigenfunctions will be real, so they will only
minimally violate the cosmological principle.

2.3.2. Approximate Eigenfunctions for the Vacuum State

We set | = 0 in Equation (23) and use E = E from (28) to arrive at the eigenvalue equation for the
vacuum state:

1d (,dR\  m*Hi /1, o\
o (r dr>+ - (r —RO)R—O. (34)
The change of variables
r =: Rox, R(r) =: f(x), (35)

where x € [0,1] is dimensionless, reduces Equation (34) to

Ld [ ,df 2,2 , _ m*HER}
—— —= -1 = = —.
2 dx (x dx) Tl =D =0 0="—5 (36)
As compared to (34), the above equation is defined on the interval x € [0, 1], which is more
manageable than the original » € [0, Ro|; moreover, all large numbers present in the problem are
contained within the dimensionless parameter oy (the opposite of A in Equation (29)):

0p = —Ag = 2.6 x 10'%. (37)

The parameter oy equals the entropy of Equation (16) in units of kp; in fact, modulo the irrelevant
factor 2.6, it equals the holographic bound [26]. We conclude that the radial wave Equation (36) encodes
information about the holographic principle.

We have seen in Section 2.3.1 that Equation (36) is exactly soluble. However, the sheer size of oy
renders the exact wavefunctions (24) and (25) totally useless: analytical computations with them are
out of the question, and numerical computations quickly get out of range. For this reason, we will
consider an approximate solution in two steps. In the regime x — 0, the radial wave Equation (36) can
be approximated by

1d (2df\ 20y
2 dr (x dx) qf(x)=0,  x—=0, (38)
while in the regime x — 1, the approximate form of (36) reads
Ld [ Ldf _
2 dr (x dx> =0, x— 1. (39)
Their respective solutions are
4 1 _ 1.
fo (x) = ;cosh (o0x), fy (x) = p sinh (0px), x—=0 (40)
and A
filx) = < + B, x— 1 (41)

As announced above, these eigenfunctions are real; by the discussion following Equation (33),
they violate the cosmological principle only minimally. The functions foi must be joined smoothly
to f1 at some point xg € [0, 1]; the joint function will be an approximate radial wavefunction for the
vacuum state.
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Beginning with the hyperbolic sine first, let us consider the radial wavefunction

sinh(opx)/x  if0 < x < x

flx) = (42)
A/x+ B ifxg <x <1,

up to an overall normalisation factor N(xg). Dropping terms of order exp(—0pxo) and higher (this
approximation is totally justified due to the sheer size of oy = 10'?3. For this approximation to break
down, one would have to go to a regime where pxg ~ O(1), or equivalently, xo ~ 107123, In turn, this
would imply that the exponential part of the wavefunction should be strongly suppressed in favour of
the term A/x + B. This, however, would be incompatible with the Hubble expansion), the matching
conditions that f and its derivative f’ be continuous at x yield

X00q

0
> 0 exp(0pxo), B=2 exp(0pXxp), (43)

A=—
2

while for the normalisation factor N(xg) of f we find

V120, ! exp(—0opxo)
(120"

N (JCO) = (44)
Equation (44) is singular at xy = 1; this results from dropping subdominant terms. Had we

dropped no subdominant terms at all, then N(xp = 1) would be perfectly regular. We can now

compute the expectation value (Sy) = N'kpop(x?) as a function of the matching point xo. We find

() (x0) = (1?11 (x0) = 15 (% + 330 +6), (45)

which no longer exhibits any singularity, since (x?)(xg = 1) = 1. Some other values are
(x®)(x0 =0.9) =095, (x*)(xg=05) =077, (x*)(xp=0.1) = 0.63. (46)

This result is easily interpreted: the Hubble potential drives an exponential expansion that causes
the Universe to concentrate mostly around the boundary at x = 1, even if the matching point x is
close to the origin. At the other end, when xy = 1, the corresponding entropy equals

o) = op(x?) = 10'%, (47)
kg
in complete agreement with the perturbative results of Section 2.2. In particular, the holographic
bound continues to be saturated in this nonperturbative approach. The effect of having xy < 1 reduces
this value somewhat, and the holographic bound is no longer saturated. However, the reduction thus
attained is negligible, far from the necessary ~10~1? that would be required to bring the entropy from
the holographic bound ~10'?® down to its estimated value ~101%4 [28-31].

One readily verifies that Equations (45) and (47) continue to hold if one replaces the hyperbolic

sine with a hyperbolic cosine in the wavefunction (42).

2.4. Concluding Remarks

In all three approaches considered here (perturbative using plane waves, perturbative using
spherical waves, nonperturbative using approximate radial wavefunctions), we have abstained from
applying boundary conditions to the wavefunction 1. An obvious boundary condition to impose
would be the vanishing of the wavefunction at Ry, the boundary surface of the Universe. Now,
requiring ¢(Rp) = 0 would quantise the allowed energy levels. This represents no problem per se,
but it creates some difficulties without actually improving our analysis. One expects the quantised
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energy levels to be so densely packed that, for all practical purposes, they will be indistinguishable
from a continuous energy spectrum. On the other hand, the boundary condition ¢(Rg) = 0 reduces
the two linearly-independent solutions of the Schrodinger equation to just one. For example, instead
of the plane waves (10), one would now have a sinusoidal wave vanishing at Ry, plus all of its higher
harmonics. We do not gain much by this, but we do lose some consistency, because sinusoidal waves
(as opposed to the complex exponentials (10)) no longer satisfy the cosmological principle. Analogous
arguments hold in the cases of the spherical waves (11) and the hyperbolic functions (42). Altogether,
these considerations justify not applying boundary conditions.

The dimensionless parameters Ay and oy (Equations (29) and (37)) carry opposite signs—they
have to, as A is the energy of the groundstate of a negative potential, while oy is its corresponding
entropy. However, they have the same absolute value. Given the physical constants at our disposal, oy
is the only (dimensionless) entropy and A is the only (dimensionless) energy that one can construct
(up to dimensionless factors which our analysis cannot determine). So, the equality oy = —Ay is
inevitable. In turn, this equality reflects a physical property, namely: the equality of gravitational
equipotential surfaces and isoentropic surfaces as dictated by the emergent spacetime scenario of
Reference [12], used here.

One could turn the argument around and try to reason as follows. Starting from a knowledge
of the actual entropy of the Universe o ~ 10'%, one derives the radial wavefunction describing
this nonmaximally entropic Universe: one simply substitutes the dimensionless eigenvalue

A = —o = —10'" into the eigenfunctions (24) and (25). Call the latter 1/1%)104 as in Equation (27).
The expectation value of R? in the states lp%)m should give back the initial entropy 10104,

However, the above logic is flawed, because the eigenfunctions lp%)m violate the cosmological
principle substantially—and not just minimally, as argued in Section 2.3.1. We can get an idea of
the order of magnitude of this violation. The radius R of the Universe described by lp%)m can be
inferred from Equation (36): write ¢ = mHyR?/h, with R replacing Ry, and solve for R. We find
R = 8 x 101 m—a far cry from the actual radius of the Universe, Ry = 4 x 1026 m.

The notion of the emergence of spacetime put forward in Reference [12] demands that if the
holographic bound is not to be saturated, then the quantum state of the Universe must be an
excited state instead of the vacuum—it is only in a state of maximal entropy that minimal energy
can be attained. Moreover, this must happen compatibly with the cosmological principle. Due to
the limitations of our approach (the Newtonian approximation), the Universe described by our
wavefunctions of Sections 2.2 and 2.3 has more entropy than necessary. On the positive side,
the Universe described by our wavefunctions complies with the cosmological principle, with the
holographic bound, and with the basic assumptions of emergent spacetime (forces are entropy gradients)
put forth in Reference [12].

3. Discussion

In the nonrelativistic approximation, the cosmological fluid can be very conveniently described a
la Madelung by separating the wavefunction of the matter contents of the Universe into amplitude
and phase. This observation opens the gate to the application of quantum mechanics in order to obtain
estimates of thermodynamical quantities of the Universe, such as the gravitational entropy.

In Section 2.2, we have carried out a perturbative computation. This perturbative analysis is
based on a set of free wavefunctions which one uses to evaluate the expectation value of the Hubble
potential. The nonperturbative computation performed in Section 2.3 is based on a set of interacting
wavefunctions, obtained by solving the Schrédinger equation corresponding to the Hubble potential.

Both the perturbative and the nonperturbative analysis yield the same result: our estimates (16)
and (47) saturate the upper bound established by the holographic principle [26]. Some estimates [28-31]
place (S,)/kg at around 10'%*. While a somewhat lower value of our entropy would clearly be
desirable, the fact is that the upper bound set by the holographic principle is respected by all of our
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results. We are inclined to believe that the Newtonian approximation applied throughout is responsible
for this saturation of the holographic bound, and that a fully relativistic treatment [18] will provide the
necessary refinements that will reduce our entropy down to values better fitting with current estimates.
Moreover, it is very rewarding to see the precise value of the holographic bound encoded in the wave
equation as the parameter oy (see Equations (36) and (37)). This means that our crude model bears an
element of truth.

Our analysis can be regarded as a quantum-mechanical application of the theory of emergent
spacetime presented in the celebrated paper [12]. We have made decisive use of the property of
emergence, both of classical spacetime and of quantum theory. As concerns spacetime, the emergent
property is used when regarding gravitational equipotentials as isoentropic surfaces. Concerning
quantum theory, emergence is used when regarding the wavefunction amplitude as the exponential of
the (matter) entropy, as dictated by Boltzmann’s principle.

Admittedly, the assumptions made throughout automatically put black holes beyond our scope.
Black holes are supposed to be the largest single contributors to the entropy budget of the Universe.
Whether or not quantum mechanics as we know it remains applicable to black holes is of course a
disputed question [30,31]. This understood, we would like to point out that our estimate is based on a
dynamical model—a feature which, to the best of our knowledge, is entirely new.
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Abstract: The classical thermostatics of equilibrium processes is shown to possess a quantum
mechanical dual theory with a finite dimensional Hilbert space of quantum states. Specifically,
the kernel of a certain Hamiltonian operator becomes the Hilbert space of quasistatic quantum
mechanics. The relation of thermostatics to topological field theory is also discussed in the context of
the approach of the emergence of quantum theory, where the concept of entropy plays a key role.
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1. Motivation

The approach of the emergence of quantum mechanics has provided interesting clues into
the deeper structure of the theory. The statement that standard quantum mechanics is an emergent
phenomenon [1-4] has found further support in a series of papers, some of which have been reviewed in
Reference [5]. Although this is a huge topic to summarize here, let us briefly mention some key points
of this approach. The underlying notion is that it provides a coarse-grained version of some deeper
theory, out of which quantum mechanics emerges as a kind of effective description. This effective
description—in using variables that arise as averages over large collections of individual entities
carrying the truly fundamental degrees of freedom—ignores the underlying fine structure. These
fundamental degrees of freedom have been identified in References [3,4] as those of cellular automata.

This state of affairs is reminiscent of the relation between thermodynamics (as an emergent
phenomenon) and statistical mechanics (the corresponding underlying theory). Based on this analogy,
we have in previous publications (see [5] and references therein) established a bijective map that one can
define between quantum mechanics, on the one hand, and the classical thermodynamics of irreversible
processes, on the other [6,7]. It must be stressed that the classical thermodynamics of irreversible
processes [6,7] is conceptually quite different from the usual thermostatics of equilibrium as presented in
the standard textbooks [8]. Specifically, in the theory of irreversible processes, the continual production
of entropy provides a rationale for the dissipation—or information loss—that has been argued to lie at
the heart of quantum mechanics [3,4]. The relevance of thermodynamical concepts to quantum theory
and gravity has been emphasized recently in references [9-13].

It might thus appear that the usual quasistatic thermodynamics [8] (i.e., the thermostatics of
equilibrium processes) possesses no quantum mechanical dual theory at all. In this letter, we point
out that such a conclusion is not true: the thermostatics of equilibrium processes does have a quantum
mechanical dual; namely, a quasistatic quantum mechanics. By quasistatic, we mean that the kinetic term
in the mechanical Lagrangian can be neglected compared to the potential term.

Neglecting the kinetic term in the Lagrangian function forces one to look elsewhere for the
dissipative mechanism that is characteristic of quantum theory [3,4]. In particular, such a mechanism
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can no longer be identified with the continual production of entropy associated with Onsager’s
kinetic term Li]-qiqf . The reciprocity theorem [6] ensures L;; = Lj;, and dissipation requires that this
matrix be positive definite; the latter two properties ensure that L;; qualifies as a metric. The result of
neglecting the kinetic term in the Lagrangian is a mechanics bearing some resemblance to topological
field theory [14]. Indeed, once the metric represented by the kinetic term is neglected, correlation
functions can no longer be metric dependent. Hence, while correlators can still depend on the
topology of the underlying manifold, they can no longer depend on its metric structure. In our case,
the underlying manifold will be given by the equipotential submanifolds (within configuration space)
of the potential function.

2. A Quasistatic Mechanics

A quasistatic mechanics is obtained by neglecting the kinetic term K in the mechanical Lagrangian
L = K — U, and keeping only the potential term U:

L=-U. 1)

Since our Lagrangian does not depend on the velocities 4, this phase space is constrained by the
requirement that all momenta vanish, p = 0, and the Hamiltonian equals

H=U. @)

We can now construct the reduced phase space corresponding to this reduced configuration
space, and eventually quantise it (for our purposes, it will not be necessary to apply Dirac’s theory
of constrained quantisation [15]). When moving along equipotential submanifolds, the particle is
effectively free; whenever motion takes place between neighbouring equipotentials, forces will cause
the particle’s kinetic energy to increase or decrease. However, the allowed motions must be quasistatic,
so even for these motions, K must be negligible compared to U. In classical mechanics, motion along
equipotential submanifolds plus a vanishing kinetic energy imply that a classical particle must forever
stay at rest. Quantum mechanically, due to the uncertainty principle, a (more or less localised) free
particle always carries a nonzero kinetic energy. So, neglecting the kinetic energy of a quantum particle
implies a large uncertainty in the position. This large uncertainty is reflected in a large spread of the
corresponding wavepacket: the latter encompasses a large interval of different classically allowed
positions (or states), all of which coalesce into a single quantum state. It is only in the limit of complete
delocalisation in space that a quantum particle can carry zero kinetic energy.

We have just described an information loss mechanism whereby different classical states (different
spatial positions on an equipotential submanifold, corresponding to different classically allowed
equilibrium states) are lumped together into just one quantum state. This information loss has been
argued to be a key feature of the quantum world.

3. The Thermostatics Dual to Quasistatic Mechanics

We claim that the quasistatic quantum mechanical model described in Section 2 possesses a dual
theory: the classical thermostatics of equilibrium processes. In what follows, we will exhibit the claimed
duality explicitly.

The classical thermostatics of equilibrium [8] is a theory of quasistatic processes. In particular,
all kinetic energies are neglected; the processes described are either in thermal equilibrium, or at
most differ infinitesimally from thermal equilibrium. This feature is in sharp contrast with
the thermodynamics of irreversibility [6,7] that we described in previous publications [5] as a
thermodynamical dual of quantum mechanics, whenever the kinetic energies involved could not be neglected.

Next we recall that classical thermostatics is—like quantum mechanics—an emergent theory.
By emergent, we mean that classical thermostatics is the result of coarse graining over very many
microscopic degrees of freedom; the resulting theory renounces the knowledge of detailed information
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about its constituent degrees of freedom, retaining just a handful of relevant averages such as pressure,
volume, and temperature. In other words, an information loss mechanism is at work. This situation is
similar to that described in Section 2 for the passage from classical mechanics to quantum mechanics.

In the dual thermostatics considered here, the counterpart of the mechanical action I = [ Ldt
is the entropy 5. We will identify isoentropic submanifolds (of thermodynamical state space) with
equipotential submanifolds (of mechanical state space). This is justified because in the approach of
emergence, forces are (proportional to) entropy gradients. In the particular case of the gravitational force,
this identification has been put forward in reference [16]; it coincides with the viewpoint applied in the
theory of irreversibility [7], and indeed with the whole programme of the emergent physics paradigm.
In this way, the quantum mechanical exponential

v (~11) o
exp (kSB) . 4)

The correspondence between expressions (3) and (4) has been known for a long time, having
been discussed more recently in reference [9] from the point of view of statistical mechanics. However,
we would like to stress that the theory being considered here as dual to quantum mechanics is not
statistical mechanics, but the thermostatics of equilibrium emerging from the latter.

Finally, the connection between the mechanical time variable t and the temperature T is as follows
(this substitution is widely applied in thermal field theory; e.g., [17]):

becomes, in the dual thermostatics,

i 1

ey — 5

h kgT ©)
where /i and kp are Planck’s constant and Boltzmann’s constant, respectively. The double arrow
is to be understood as replace every occurrence of it/h in the mechanical theory with —1/kgT in the
thermostatical dual, and vice versa. Quasistatic mechanics therefore corresponds to isothermal processes
in the dual thermostatics.

4. The Quasistatic Mechanics Dual to Thermostatics

Given some specific thermostatical systems, below we illustrate how to define their corresponding
(quasistatic) quantum mechanical duals.

4.1. The Ideal Gas

An expression for the entropy of a system in terms of its thermodynamical variables is called
a fundamental equation for the system [8]. To be specific, let us consider 1 mole of an ideal gas occupying
a volume V at a fixed temperature T. Its fundamental equation reads

S(V)=So+kgln <V>, (6)
Yo
where Sy is the entropy in the fiducial state specified by Vj; we take Sy to contain a constant contribution
from the fixed temperature T. The entropy depends only on the volume V; the latter, running over
(0,00), can be regarded as the thermodynamical coordinate for the isothermal processes of an ideal gas.
In order to construct a kinetic energy operator K for the quantum theory, the standard rule is

K: = —mvz, )
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where V2 is the Laplacian operator on functions. By definition, the Laplacian requires a metric 8ijt

_
V&
The fundamental Equation (6) provides us with a clue as to which metric can be meaningfully

chosen. We first observe that Equation (6) is valid in three-dimensional space, where the volume V
scales like 73; here r, 0, ¢ are spherical coordinates. This suggests using the Euclidean metric in R3,

V2= —0; (vag"a), g=|det(gy)l. ®)

ds? = dr? + r*d@? + r* sin® fd ¢?, )

and imposing the following two requirements. First, motion along the radial direction r must cause
an increase or decrease of the entropy, as per the fundamental Equation (6), with V = 47tr3/3; second,
the sphere r = 1y must define an isoentropic surface for each ry.

Further support for our argument follows from a classic result by H. Weyl: (we quote this result
from reference [18]): let R C R3 be a bounded region with piecewise smooth boundary, and let

V(R) = [;/gd3x denote its volume with respect to some Riemannian metric on R3. Then,
the eigenvalue equation for the Laplacian on R, V2f = Af, supplemented with some mild boundary
conditions, has a countable infinity of real eigenvalues A, satisfying 0 > Ay > A» > Az > .... These

eigenvalues can be arranged into a partition function Z(t),
Z(t): =Trexp (tVz) =) exp(thy), (10)
n=1

and it turns out that the small t asymptotics of Z(t) is given by

V(R
Z(t) ~ (47T(t)3’)/2' t — 0. (11)

An analogous result holds within R? (it is not necessary to assume that d = 3; it is not necessary
that the metric be the Euclidean one; it is also not necessary to assume that R is a sphere). However,
the Euclidean assumption is suggested by the fundamental Equation (6), while the assumption of
spherical symmetry (in no way imposed by the ideal gas) provides a welcome simplification. The volume
V occupied by the ideal gas within Euclidean space is naturally related to the spectrum of the Laplacian operator
within (and on the boundary surface of) V.

We will initially define the Hilbert space H of quasistatic quantum mechanics as the space of those
states that minimise the expectation value of the kinetic energy, subject to the constraint that they be
normalised (plus some boundary conditions to be specified below). Thus, introducing a Lagrange
multiplier —A € R, we need to solve

)

W(OPIKIW—MW@) =0, (ply) =1 (12)

Since K is selfadjoint, Equation (12) leads to
Kly) = Aly), (13)
so the Hilbert space H is initially defined as
H: =Ker(K—Amin), (14)

where Apin is the minimal kinetic energy; we have seen that A > 0. We will presently see how the
inclusion of a potential function U affects the definition (14) of the Hilbert space.
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4.2. Motion along Isoentropic Surfaces

We first analyse motion along a given isoentropic surface, which we take to be the unit sphere S2.
The angular part V%z of the Laplacian operator on R? leads to the kinetic energy operator Kg:

hZ

w1 [0 oP 1 0%y
S L TP 9 (. 9% ¢y
Ko = =531 Vel = “3ptsine [ae (Smeae) t sino aq)Z] ‘ (15)

Within the space L?(52), the eigenvalues A of Equation (13) are #%I(I +1)/(2M), with I € N ;
the least kinetic energy for motion on S? corresponds to the zeroth spherical harmonic Yoo = (477)~1/2:

Kg2 Yoo = 0. (16)

The corresponding particle is completely delocalised on S?, as befits the fact that its momentum
vanishes exactly. The Hilbert space Hg> is defined as the linear span of the spherical harmonic Yyy; i.e.,

Mo = Ker (vgz) : 17)

On a compact connected manifold, the only harmonic functions are the constants; the specific
value (471)71/2 is determined by normalisation. Although we have computed dim Hg. explicitly,
the finite dimensionality of Ker (V%z) C L2(S?) was already guaranteed on the basis of general results
concerning the theory of elliptic operators on compact Riemannian manifolds [19] (in this particular
case, one can more simply apply the Hodge theorem [20]: since the 2-sphere S? is a compact orientable
Riemannian manifold, we have

dim Ker (vgz) = 10(S$%) =1,

where B is the zeroth Betti number of the manifold in question). A finite dimensional Hilbert space
is a feature of many topological theories [14]: although a metric was initially required to define
a Laplacian operator, the metric dependence is softened in the end, through the requirement of
quasistatisticity (12).

Finally, we can add a potential function U = U(r) depending only on the radial variable r, and the
previous arguments remain entirely valid. We then get back to the situation described in Section 2:
a particle moving quasistatically along the equipotential submanifolds of a certain potential.

4.3. Motion across Isoentropic Surfaces

Next, we analyse motion across isoentropic surfaces. The radial part V2 of the Laplacian operator
on R3 gives rise to the kinetic energy operator K;:

o, n? (d¥p  2dy
K _2Mv’lp_2M<dr2+rdr)’ (18)
By Equations (13) and (18), we need to solve
d?yp 2dy ,»  2MA
—_— —_—— = = > M
dr2 + r dr Teyp=0 ¢ B2 - 0; (19)

a fundamental set of solutions is {y+(r) = r~texp(=icr)}. A vanishing kinetic energy is attained
when ¢ = 0. However, the corresponding wavefunction, (r) = 1/r, is neither regular at r = 0,
nor square integrable over the interval (0, o). Imposing regularity of (r) at r = 0, one is left with
the wavefunctions

P(r) = %sin(cr), (20)
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while the wavenumber ¢ € R remains undetermined. We can determine c if we recall the relation
between the squared wavefunction |¢|?> and the entropy [5]:

* = exp <kSB) . 1)

Collecting different microstates into a single pure quantum state is reminiscent of Von Neumann'’s
density matrix formulation of the entropy of a mixed quantum state. However, even a pure state
embodies a probability distribution; the latter has an associated Shannon entropy. The entropy of
a pure state is not monotonic in time under Schrodinger evolution; this problem remains unsolved.

Let r be the radius of the fiducial sphere in Equation (6). When evaluated at » = ry, Equation (21)
becomes (by Equation 20),

1 . _ So
P sin(crp) = exp (sz> . (22)

Now the sine function is bounded between —1 and +1. This requires fine tuning the value of
the fiducial entropy Sy as a function of the fiducial radius r, or vice versa, if Equation (22) is to have
a real solution for c. The simplest choice is to formally set Sy = —oo. This choice has the added
bonus that Equation (22) admits real solutions for ¢, without the need to fine-tune rj as a function
of Sp; it corresponds to imposing the additional boundary condition ¢(rg) = 0. Then, the admissible
eigenfunctions, with their corresponding wavenumbers ¢, € R, are given by

tpn(r):\/?lsin(cnr), cn:E n=12,... (23)

ro r 1o

We have normalised 1, within L? ([0, ]).
The least kinetic energy is attained when n = 1. Therefore, we define the Hilbert space H,
as the kernel
H, = Ker (v% + c%) . (24)

This one-dimensional space is generated by the wavefunction ¢;(r). More generally, the finite
dimensionality of Ker (V2 + ¢2) C L?([0,7]) forall n = 1,2,... is guaranteed by the theory of elliptic
operators on compact Riemannian manifolds [19].

So far, the total Hilbert space H is the tensor product of the spaces (17) and (24):

H=HeoH,. (25)

We have up to now considered a free particle. If a potential function U(r) is included, then the
Hilbert space (24) must be redefined to be

n? h?
H, = Ker <—2]VIV3 — 27(:% + u(r)> ’ (26)

and the latter substituted back into Equation (25). The above kernel remains finite dimensional. This is
because the addition of U(r) does not alter the ellipticity of the Hamiltonian; hence, general theorems
concerning the spectrum of elliptic operators on compact Riemannian manifolds continue to apply [19].
Of course, the presence of a potential on the quantum mechanical side modifies the fundamental
Equation (6) of the corresponding thermostatics.

We close this section with some remarks.

(i) The compact configuration space [0, 7] x S? has the advantage that, due to energy quantisation,
one can univocally identify a nonvanishing state of least kinetic energy. On the noncompact
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configuration space [0,00) x S?, the allowed energy eigenvalues run over [0,c0), and no
nonvanishing state of least energy exists.

(if) Results analogous to those presented above would continue to hold if the free quantum particle
were placed in a cubic box of volume L3, with vanishing boundary conditions for the wavefunction
on the sides of the cube. The use of Cartesian coordinates renders isoentropic surfaces (now
cubes) somewhat clumsier to work with than spheres, but the expectation value of the entropy
(see Equation 28 below) remains metric independent, and also the Hilbert space continues to
be one-dimensional.

(iii) Analogous results would also hold if we worked in d—dimensional Euclidean space R4, viz: finite
dimensionality of the Hilbert space, and metric independence of the expectation of the entropy.

4.4. A Metric Free Entropy

It is instructive to compute the expectation value of the entropy in the state (23). We set
V = 4mr3/3, Vy = 47r] /3, and write the quantum mechanical operator corresponding to the classical
entropy of Equation (6) as

S(r) = So + 3kgIn (r) i (27)
o

The carets are meant to indicate quantum operators. Subtracting the infinite constant Sy one finds
an expectation value of the entropy

(] S| 1pn) = 3kg /Oro 7|9 (1) In (:()) dr = 3k <Si(2"”> - 1> ) (28)

27tn

where Si(x) := fox t~1sintdt is the sine integral function. In particular, all terms depending on rq drop
out of Equation (28). This is in perfect agreement with the topological character [14] of our model:
the entropy cannot depend on the radius ry of the fiducial sphere, because the latter requires a metric
for its definition.

4.5. The Quantum Mechanical Partition Function

The quantum mechanical partition function Zqm (t) is defined by

Zqm(t) =) _dimH, exp <—;1Ent) , (29)
n

where H,, is the Hilbert eigenspace corresponding to the energy eigenvalue E,. The above sum is
usually divergent, but it can be made to converge by Wick rotating the time variable as per

Zgm(T) =) _dimH, exp (—;Enr) : (30)

In the quasistatic limit, the above sum is dominated by the least energy eigenvalue, Enin,
and Zgm(T) becomes Zqqm (7), the subindex “qqm” standing for quasistatic quantum mechanics:

. 1
Zgqqm(T) = dimH i exp (hEmmT> . (31)
Therefore,
Zgqm(0) = dimHmin, (32)

and the partition function of quasistatic quantum mechanics computes the dimension of the Hilbert space of
quantum states; also a conclusion that is reminiscent of topological models [14].
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5. Conclusions and Outlook

The application of differential and Riemannian geometry to the theory of thermodynamical
fluctuations has turned out to be extremely useful [21-23]. Thus, for example, the classical
thermodynamics of irreversible processes [6,7] requires a metric on phase space for its formulation.
This metric is provided by Onsager’s matrix of kinetic coefficients L;;. The metric enters the quantum
mechanical dual theory [5] through the kinetic term in the mechanical Lagrangian.

On the contrary, the thermostatics of equilibrium processes [8] is genuinely metric free. Therefore,
if thermostatics is to possess any quantum mechanical dual at all, this dual theory should be
a topological theory [14], in the sense that it should be metric independent.

That the classical thermostatics of equilibrium processes should possess a quantum mechanical
dual is suggested by two observations. First, by the claim that quantum mechanics is an emergent
phenomenon [1-5,24]. Second, by the widespread opinion that thermodynamics (be it of equilibrium [§]
or nonequilibrium [6,7]) is the paradigm of all emergent sciences. These conclusions remain unaltered
even if—as argued in reference [25]—the emergent aspects of quantum mechanics can only become
visible at very high energies.

Two guiding principles are at work here: the notion that forces are entropy gradients, and the
requirement that all processes be quasistatic. Entropy gradients, while defining a direction for
evolution, ignore microscopic structures, retaining only coarse-grained averages: this is a feature of
emergent phenomena. Ignoring the metric structure of the underlying manifold amounts to ignoring
the kinetic term in the Lagrangian. Quantum mechanically, due to the uncertainty principle, the effects
of the kinetic term cannot be cancelled completely, unless one accepts a complete delocalisation of
the particle in space. The result of following these two guiding principles is a quasistatic quantum
mechanics, which is dual to the classical thermostatics of equilibrium processes, and shares a number
of key properties in common with topological (i.e., metric free) models.

After completion of this work, there appeared reference [26], where the WKB expansion of
quantum mechanics is developed from the point of view of topological string theory [27]. Reference [26]
provides further evidence of the existing links between topological theories and quantum mechanics.
Some of these links have been analysed in the present paper, from the alternative standpoint of the
approach of emergence of quantum theory; further connections are being studied in an upcoming
publication [28].
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We investigate the ¢ meson nuclear transparency using some recent theoretical developments on the ¢ in
medium self-energy. The inclusion of direct resonant ¢ N scattering and the kaon decay mechanisms leads to a ¢
width much larger than in most previous theoretical approaches. The model has been confronted with photopro-
duction data from CLAS and LEPS and the recent proton induced ¢ production from COSY finding an overall
good agreement. The results support the need of a quite large direct ¢ N-scattering contribution to the self-energy.

DOLI: 10.1103/PhysRevC.96.034618

I. INTRODUCTION

The light vector meson properties in dense/hot nuclear
matter have been intensively studied the last decades in
the search, among others, of any signal of chiral symmetry
restoration. A good review of the related physics can be
found in Refs. [1,2]. These mesons are particularly appealing
because their dileptonic decays can provide a relatively clean
information of the nuclear medium interior as opposed to
strong decays undergoing a sizable final state interaction
before the detection of the decay products. In addition,
the ¢-meson width is very narrow in vacuum and is well
separated from the p and the w mesons what could help in
the experimental analysis and allow for the measurement of
any modifications of its mass or width.

Experimentally, ¢ production and its decays, both hadronic
and electromagnetic, have been investigated in heavy ion
collisions by the STAR and ALICE collaborations [3,4]. In
cold nuclei, ¢ production has been studied at Spring8 [5],
KEK [6], Jefferson Laboratory [7], and Jiilich [8]. One of
the findings is that, whereas the ¢ mass in the medium is
scarcely modified if at all, the width is much larger than
in vacuum [5-9]. Actually, the in-medium ¢ width seems
to be substantially larger than predicted by most theoretical
models.

This width is expected to come mostly from the decay
¢ — KK, which is dominant in vacuum. The medium effects
modifying it have been much studied [10-15] and involve a
quite rich dynamics. In nuclear matter, the kaons are just mildly
repelled and will move out of the nucleus. However, antikaons
are attracted by the nuclear medium and can also be absorbed
leading to hyperons and resonances such as A(1405) and
others. These mechanisms are instrumental leading to a large
¢ width. For instance, in Ref. [13], we obtain I'y ~ 30 MeV
at normal nuclear density to be compared to 4 MeV in vacuum.
Still, that result is not large enough to describe the experimental
data. This failure has been the cause for a search for additional
mechanisms which could contribute to the meson decay.

In Ref. [16], we explored the ¢ self-energy pieces related
to some direct ¢-nucleon interaction channels not previously

2469-9985/2017/96(3)/034618(6)

034618-1

considered. There, ¢-nucleon elastic scattering proceeds via
K *-hyperon loops which give rise to a self-energy with real and
imaginary parts. Our work was based in some recent studies
analyzing the vector meson scattering with baryons in two
different schemes. Both models account for a relatively strong
¢-nucleon interaction. As a consequence of these mechanisms
the ¢ meson gets an additional broadening up to 40-50 MeV
and a mild attraction at normal nuclear density. Our purpose
here is to test the results of the model of Ref. [16] comparing
with the available data and check whether a satisfactory
description of the ¢ self-energy in cold nuclear matter has
been reached. We will focus on its controversial imaginary
part, or equivalently the ¢ width.

A direct extraction of the in-medium width via the analysis
of the invariant mass of the decay products poses some
difficulties. For instance, in Ref. [6] the dilepton channel was
measured in carbon and copper nuclei for 12 GeV p 4 A
reactions. With this kinematics, most of the ¢ mesons move
very fast in the forward direction and escape from the nucleus
before decaying. As a consequence, the observed width is
frequently the free one. Nonetheless, a clear broadening was
observed for the heavier nucleus and when only the slower
¢ mesons were selected. On the other hand, the dominant
decay channel, ¢ — K K, presents some additional challenges
related to the final state interaction. The strong antikaon
absorption restricts the visibility of decays that happen at high
densities far from the surface. Also the real part of the optical
potential, including Coulomb, modifies the kaon trajectories
and distorts the invariant mass of the system.

Another observable, sensitive to the imaginary part of the
¢ self-energy is the nuclear transparency ratio given by the
quotient of the cross sections for ¢ production on nuclei and
on a free nucleon. This quantity depends on the loss of flux
in the medium and thus on the width of the ¢ meson and its
density dependence. The transparency has been measured in
photoproduction by the LEPS and CLAS collaborations [5,7].
This process had been suggested in Ref. [17] and was also
studied in Ref. [9]. Transparency for the case of proton induced
¢ production is more complicated due to the initial state
interaction of the proton beam that leads to some secondary

©2017 American Physical Society
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production mechanisms such as pN — w NN followed by
wN — ¢N. This process had been studied in Refs. [18-21]
and has been recently measured at Jiilich [8,22].

In this paper, we present a study of the ¢ nuclear
transparency for both photon and proton induced production
on nuclei using the theoretical model from Ref. [16]. We will
start by giving a brief reminder of the ¢ self-energy model
and introduce the formalism used in the calculation. Then we
proceed to the comparison with the experimental data.

II. THEORETICAL MODEL

Two sources of ¢ self-energy in nuclear matter are consid-
ered here, the mechanisms related to the K K decay, that will
be denoted as kaon cloud, and those coming from ¢ N — ¢ N
resonant scattering mediated by hyperon + vector meson and
other intermediate coupled channels.

In vacuum, the largest decay channel (83%) is ¢ — K K.
At leading order, the ¢ self-energy is obtained by evaluating
K(K) loop and tadpole diagrams. The nuclear medium
effects are incorporated by properly dressing the kaon and
antikaon propagators with their self-energies originating from
the KN(KN) s- and p-wave interactions. Details on the
calculation of this contribution to the ¢ self-energy can be
found in Ref. [13] and for the kaon/antikaon self-energy we
use the results from Refs. [23,24].

The K self-energy is relatively simple. The K N amplitude
is elastic and given the absence of resonances depends very
slowly on the energy. To a good approximation the self-energy
can be cast in the Tp form. The K case is more involved. The
p-wave part of the self-energy includes the coupling to several
particle-hole excitations such as A(11 15)N~!, Z(1195)N !,
and X*(1385)N~'. The s-wave part of the self-energy is
calculated in a unitarized chiral model and is dominated by
the excitation of the A(1405) resonance. A specially careful
and self-consistent treatment of the many-body corrections
is required in this case because of the vicinity to the KN
threshold. As a result, a quite large width is obtained for the
antikaons. Furthermore, the real part of the optical potential
shows an attraction of —60 MeV at normal nuclear matter
density for antikaons at rest in contrast to the mild repulsion
in the kaon case.

The novelty of Ref. [16] was the calculation of the
contribution to the ¢ self-energy in the medium related to the
¢N elastic scattering amplitude. We relied upon the results
of two different schemes recently developed to describe the
vector meson-baryon scattering. The first one [25-27] obtains
the low-energy vector meson-baryon amplitude within the
hidden local symmetry (HLS) approach. The second one [28]
uses an SU(6) spin-flavor symmetry extension of the SU(3)
chiral perturbation theory Lagrangian. This leads to the
generalization of the Weinberg-Tomozawa interaction between
pseudoscalar and vector mesons, and baryons from the light
octet and decuplet. In both schemes the scattering amplitude
is calculated in a coupled channels unitarized approach. These
models have been successful in reproducing masses and decay
widths of some negative parity resonances and the HLS one
has also been tested and constrained in the analysis of the
yp — K X reaction [27]. At the lowest order, in these models,
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there is no direct /N — ¢ N interaction but that process
happens via loops such as N — K*A — ¢ N. These loops,
on the other hand, produce an imaginary part for the scattering
amplitude through the opening of some decay channels.

The contribution to the self-energy is then obtained by
summing the scattering amplitude over the initial nucleon
Fermi distribution. Also Pauli blocking is taken into account
by replacing the vacuum nucleon propagators that appear in
the calculation by single-particle propagators in the Fermi
gas approximation. The new mechanisms produce a moderate
momentum dependence of the ¢ self-energy reflecting the
presence of some resonances on the ¢ N amplitude. Further-
more, the predictions of the two theoretical models differ
significantly at low momenta for both real and imaginary
parts of the optical potentials. Close to threshold the attraction
ranges from 5 to 40 MeV, what could strongly affect the
existence and spectrum of possible ¢ meson nuclear bound
states [29]. The imaginary part is stronger for the SU(6) model,
though both models provide a larger contribution than the
mechanisms related to the K K decay.

A. Nuclear transparency: Photoproduction

We start discussing the case of ¢ nuclear photoproduction
reactions. In this case shadowing is negligible. Thus, the
reaction takes place in the whole nucleus and the cross section
can be approximated by

do A 3 do N

_— = d - _— F . 1

TS / rp(r) 7o Fass (1)
where % and % are the elementary-nucleon and nuclear

differential cross section, respectively. F4ps is an absorption
factor accounting for the ¢ meson lost flux on its way out of the
nucleus. Here, in the production itself, Fermi motion and Pauli
blocking have not been considered. If we also set Faps = 1,
omitting ¢ absorption in the nucleus, we would get the trivial
result % = A‘%V, where A is the number of nucleons.’

On the other hand, for energies close to threshold, just
for kinematic reasons, the ¢ meson goes forwards and is
quite fast. The high momentum means that changes of
trajectory because of the small real part of the optical potential
can be neglected. Also, the quasielastic collisions are very
improbable, as the imaginary part of the self-energy is fully
dominated by inelastic channels according to our theoretical
models. Therefore, to a good approximation, the ¢ meson will
move forward until it gets out of the nucleus or it is absorbed.
Thus, we can model the absorption factor in an eikonal form
as [17]

* 1
Faps = exp (—/0 dl; Im H(P,p(r'))>, @)

where I1(p,p(r)) is the ¢ self-energy as a function of its
momentum p and at the nuclear density p, 7 is the ¢ production
point. Finally, r' =7 +1 /| p|. As long as the integrand of

"Notice the implicit assumption, supported by the experiment [30],
that the ¢ production cross section from protons and neutrons is very
similar.
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FIG. 1. Transparencies for the nucleus *’Ne as a function of the
¢ momentum with kaon cloud self-energy only or adding the ¢ self-
energies from the HLS [25,26] or the SU(6) model [28].

Eq. (1) does not depend on the direction of the ¢ momentum,

other than via ‘%’, we can write the following ratio between

the nuclear and the nucleon cross section:

oA
Py =

AO’N

L f &r p(r)exp <— / Oodlllmn(p,mr/))), 3)
A 0 P

which measures the transparency of the nucleus to the ¢ meson.

The effect on the transparency observable for the ¢N
resonant scattering is substantial, as expected from its large
contribution to the ¢ self-energy [16]. In Fig. 1, we show this
ratio between cross sections for 2’Ne as a function of the ¢
momentum for the theoretical models considered in this paper.

The nuclear density profiles for all cases have been
taken from [31,32]. The inclusion of the new ¢ N scattering
mechanisms leads to a much stronger absorption for the whole
momentum range explored than the kaon cloud alone. Addi-
tionally, the HLS model shows a strong energy dependence at
relatively low (< 600 MeV) momenta. At higher momenta the
nuclear transparency increases for all cases.

The only nuclear effects considered in this result and
in Eq. (3) are those related to ¢ absorption, incorporated
into the calculation of II, the ¢ self-energy. Other nuclear
effects affecting the production mechanism, rather than the ¢
propagation, are the Fermi motion of the initial nucleon and
the Pauli blocking of the final one on the y N — ¢ N process.
Pauli blocking will imply a reduction of the ¢ production
cross section. The Fermi motion will distort the distribution
of the final meson and nucleon and affect the Pauli blocking
itself. The flux reduction due to these sources can be estimated
for photon induced reactions by including in the integrand
of Eq. (3) a factor considering a Fermi average of these
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FIG. 2. Transparencies as a function of ¢ momentum for pho-
toproduction processes, with (65 = 0 degrees) and without Pauli
blocking for *Cu.

effects [17,33]:

G(Q.p)=1-0@2~ Q)(l 35+ i@ﬁ), “)
4 16

where O = |é| /kr, Q is the momentum transfer and kg
is the Fermi momentum of the nucleons. In Fig. 2, we
show how the transparency is modified by the Pauli blocking
of the final nucleon. The result depends on the scattering
angle. For the figure we have selected forward ¢ scattering
that maximizes the change. Opening the angle increases the
transfer momentum and as soon as it is above 2kp, Pauli
blocking becomes ineffective. There is a small reduction at
high ¢ momentum and practically no change below 1.2 GeV.
This reduction will also affect transparency ratios comparing
different nuclei because of the variation of the average density,
and thus of the Fermi momentum. However, the dependence
of the Pauli blocking correction on the nuclear size, beyond
A =~ 10, is minimal as shown in Ref. [17].

In Fig. 3, we compare our model with data from LEPS
[5] which measured the transparency detecting the ¢ mesons
through their K K decay. The transparencies are normalized
to that of lithium, the lightest nucleus measured in the
experiment. In this way, some systematic errors could be
reduced. Our presented results are obtained assuming forward
scattering, thus maximizing the Pauli blocking effects. Remov-
ing Pauli blocking would push up by less than a 5% [5] the
three curves. The photon spectrum had energies ranging from
1.5 to 2.4 GeV. We take an average momentum, pg = 1.8
GeV as suggested in [5]. We find that the inclusion of the
¢ N scattering mechanisms improves the agreement for both
models. In principle, the largest absorption corresponding to
the SU(6) model is favored. However, we find that it is very
hard to reproduce the steep change in data from lithium to
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FIG. 3. Ratio of ¢ photoproduction transparencies as a function
of the atomic number compared with data from LEPS [5].

carbon, even when artificially increasing the absorption by a
large factor.

In Fig. 4, we compare our model with data from CLAS [7].
In this case, the ¢ meson was detected via the eTe™ decay
avoiding the complication of the final state kaon interactions
and some other difficulties in the background subtraction and
the experimental analysis. The average ¢ momentum is 2 GeV,

Wood et al. —=—
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S
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<
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o
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0.2 |
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FIG. 4. Transparency ratios for ¢ photoproduction as a function
of the atomic number compared with data from CLAS [7]. Curves to
guide the eye.
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only slightly larger than for LEPS. According to our model
the transparencies at such close energies should be similar.
The results here are consistent with data. Lead transparency,
the one with the strongest nuclear effects, favors the inclusion
of the new mechanisms and overall the best fit corresponds to
the HLS model. Nonetheless, the large uncertainties prevent
us from reaching strong conclusions. The much larger oyy
cross section that would be required to accommodate LEPS
data would spoil the agreement with CLAS. Thus, the two
available photoproduction experimental results seem hardly
compatible.

As explained before, the LEPS data correspond to the
KK decay of the ¢ meson. The complicated final-state
interaction of the kaons could seriously affect the signal:
the K™ could modify its energy and direction because of
quasielastic scattering, while the K~ can even be absorbed
leading to hyperons. These effects could be included in a more
complete theoretical calculation. However, there are further
concerns related to the experimental separation of the ¢p and
the K™ A(1520) channels. Both of them could lead to the same
pKT K~ final state and thus, there are interferences which
would require a more detailed theoretical and experimental
analysis. There is some recent experimental progress along
this line for the yp — K+ K~ p reaction [34,35].

B. Nuclear transparency: proton induced production

The theoretical description of proton induced ¢ production
is more complicated [18-20] even when assuming that the
quasifree mechanism pN — pN ¢ is dominant. First, we must
consider the initial state interaction of the proton. A simple
approximation is to include an additional factor to account for
the proton flux reduction,

Fin = exp (— / o p() dz), 5)

where oy is the full nucleon-nucleon cross section. From here
on, we adapt to the COSY/ANKE setup of Ref. [8]. There, the
protons have a kinetic energy of 2.83 GeV. It is close to the
reaction threshold and thus Pauli blocking is irrelevant for
the primary reaction NN — N N¢ because the final nucleons
have a too large momentum. On the other hand, for the initial
distortion both 0, and o, are around 42 mb [36]. A second
change with respect to the photoproduction process is the
sizable isospin asymmetry in the production cross section.
According to both experimental data and theoretical models
[37-39] the cross section for pn — pn¢ is substantially larger
than for pp — pp¢. Also, the pn — d¢ process, which
further enhances the relevance of neutrons, is of comparable
size [37]. This isospin asymmetry is taken into account
substituting oy in Eq. (1) by

{N(Gpn—>pn¢ + Upn—>d¢) + Zo’pp—>pp¢>}/A (6)

with Z and N the number of protons and neutrons and A =
N + Z. We use for these cross sections the parametrizations
from Ref. [19]. Obviously, this isospin asymmetry leads to a
relatively larger ¢ production for heavier nuclei which have
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FIG. 5. Nuclear transparency ratios for the pA — ¢X reaction
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more neutrons than protons. The effect is of the order of 10%
for lead at the energy of Ref. [8].

Including the shadowing factor of Eq. (5) and the isospin
correction from Eq. (6) we compare our results with data from
Ref. [22] in Fig. 5. In the calculation we have taken an average
¢ momentum of 1.3 GeV, which approximately corresponds
to the experimental peak of the ¢ production differential cross
section for all nuclei [8] and also of the phase space distribution
of the elementary NN — N N¢ process at the studied energy.

The agreement is fair for all models and a simple x -squared
analysis favors the HLS one. We should mention that in the pro-
ton induced process, a good part of the cross section reduction
in nuclei comes from the initial state interaction of the proton.
Thus, the process is more peripheral and there is less sensitivity
to the ¢ meson absorption than in photoproduction [18].

Additionally, there are some caveats to be considered before
giving too much weight to these results. The contribution of
multistep processes to the ¢ production mechanism could also
be important. For instance, the initial nucleon could undergo
a quasielastic scattering loosing some energy, followed by
¢ production in a second step. Another possibility is the
excitation of a A resonance followed by a AN — NN¢
process. These two mechanisms were investigated in Ref. [18]
finding that they were relevant modifying the nuclear cross
sections, but hardly affected ratios such as that of Fig. 5. A
third mechanism, 7 production followed by 7 N — N¢, has
been studied in Ref. [19] leading to some enhancement of the
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nuclear transparency ratios. Given the influence of all these
mechanisms, with their large uncertainties, and the smaller
sensitivity to the ¢ meson absorption, we find that proton
induced production is less adequate than ¢ photoproduction to
obtain information on the ¢ self-energy in nuclear matter.

III. CONCLUSIONS

We have investigated the ¢ meson nuclear transparency
using the ¢ self-energy model developed in Ref. [16].
This self-energy includes direct ¢ N-scattering mechanisms,
evaluated in two different theoretical approaches, in addition
to the terms due to the supposedly dominant kaon-cloud
interactions. We find that the contribution associated to ¢ N
scattering is stronger than assumed in many previous theoret-
ical calculations. With this self-energy, we reproduce well the
nuclear transparency data obtained from ¢ photoproduction
reactions at CLAS. Furthermore, the agreement with the
LEPS photoproduction data is clearly improved when the ¢ N-
scattering effects are considered. However, an even stronger ¢
absorption would be required in this case. We find that CLAS
and LEPS data are hardly reconcilable, since they seem to
point to different in-medium ¢ absorption magnitudes.

The results also show a good reproduction of the proton
induced transparency data. However, this case is less sensitive
to the ¢ meson properties in the nuclear medium. Namely,
large changes of the self-energy lead to small changes of
the transparency which is dominated by shadowing effects.
Furthermore, the theoretical modeling is necessarily more
involved because of the importance of multistep production
mechanisms.

This work supports the relevance of the direct ¢pN-
scattering mechanisms on the description of the ¢ meson width
in the nuclear medium. However, there are still substantial
uncertainties in the available theoretical models describing ¢ N
scattering. This calls for new, more precise experiments, which
could help discriminating and constraining those theoretical
models. In particular, the measurement of other observables,
such as the spectrum of ¢ nuclear bound states, if they exist,
would be instrumental to determine both the real and the
imaginary part of the ¢ self-energy in nuclear matter.

ACKNOWLEDGMENTS

We acknowledge A. Ramos, E. Oset, L. Tol6s, and J. Nieves
for fruitful discussions and for providing us with numerical
codes implementing their models. This research has been
partially supported by the Spanish Ministerio de Economia
y Competitividad (MINECO) and the European fund for
regional development (FEDER) under Contracts No. FIS2014-
51948-C2-2-P and No. SEV-2014-0398 and by Generalitat
Valenciana under Contract No. PROMETEOII/2014/0068.

[1] R. Rapp and J. Wambach, Adv. Nucl. Phys. 25, 1 (2000).
[2] R. S. Hayano and T. Hatsuda, Rev. Mod. Phys. 82, 2949 (2010).

[3] M. Wada (STAR Collaboration), Nucl. Phys. A 904-905, 1019¢
(2013).

034618-5


https://doi.org/10.1007/0-306-47101-9_1
https://doi.org/10.1007/0-306-47101-9_1
https://doi.org/10.1007/0-306-47101-9_1
https://doi.org/10.1007/0-306-47101-9_1
https://doi.org/10.1103/RevModPhys.82.2949
https://doi.org/10.1103/RevModPhys.82.2949
https://doi.org/10.1103/RevModPhys.82.2949
https://doi.org/10.1103/RevModPhys.82.2949
https://doi.org/10.1016/j.nuclphysa.2013.02.188
https://doi.org/10.1016/j.nuclphysa.2013.02.188
https://doi.org/10.1016/j.nuclphysa.2013.02.188
https://doi.org/10.1016/j.nuclphysa.2013.02.188

D. CABRERA et al.

[4] B. Abelev et al. (ALICE Collaboration), Phys. Rev. C 91, 024609
(2015).

[5] T. Ishikawa, D. S. Ahn, J. K. Ahn, H. Akimune, W. C. Chang,
S. Date, H. Fujimura, M. Fujiwara et al., Phys. Lett. B 608, 215
(2005).

[6] R. Muto et al. (KEK-PS-E325 Collaboration), Phys. Rev. Lett.
98, 042501 (2007).

[71 M. H. Wood et al. (CLAS Collaboration), Phys. Rev. Lett. 105,
112301 (2010).

[8] M. Hartmann, Y. T. Kiselev, A. Polyanskiy, E. Y. Paryev, M.
Buscher, D. Chiladze, S. Dymov, A. Dzyuba et al., Phys. Rev.
C 85, 035206 (2012).

[9] P. Muhlich and U. Mosel, Nucl. Phys. A 765, 188 (2006).

[10] C. M. Ko, P. Lévai, X. J. Qiu, and C. T. Li, Phys. Rev. C 45,
1400 (1992).

[11] E. Klingl, T. Waas, and W. Weise, Phys. Lett. B 431, 254
(1998).

[12] E. Oset and A. Ramos, Nucl. Phys. A 679, 616 (2001).

[13] D. Cabrera and M. J. Vicente Vacas, Phys. Rev. C 67, 045203
(2003).

[14] P. Gubler and W. Weise, Nucl. Phys. A 954, 125 (2016).

[15] J.J. Cobos-Martinez, K. Tsushima, G. Krein, and A. W. Thomas,
Phys. Lett. B 771, 113 (2017).

[16] D. Cabrera, A. N. Hiller Blin, and M. J. Vicente Vacas, Phys.
Rev. C 95, 015201 (2017).

[17] D. Cabrera, L. Roca, E. Oset, H. Toki, and M. J. Vicente Vacas,
Nucl. Phys. A 733, 130 (2004).

[18] V. K. Magas, L. Roca, and E. Oset, Phys. Rev. C 71, 065202
(2005).

[19] E. Y. Paryev, J. Phys. G 36, 015103 (2009).

[20] A. Sibirtsev, H.-W. Hammer, and U.-G. Meifiner, Eur. Phys. J.
A 37,287 (2008).

PHYSICAL REVIEW C 96, 034618 (2017)

[21] J. Steinheimer and M. Bleicher, J. Phys. G 43, 015104 (2016).

[22] A. Polyanskiy et al., Phys. Lett. B 695, 74 (2011).

[23] A. Ramos and E. Oset, Nucl. Phys. A 671, 481 (2000).

[24] L. Tol6s, A. Ramos, and E. Oset, Phys. Rev. C 74, 015203
(2000).

[25] E. Oset and A. Ramos, Eur. Phys. J. A 44, 445 (2010).

[26] E. Oset, A. Ramos, E. J. Garzon, R. Molina, L. Tolos, C. W.
Xiao, J. J. Wu, and B. S. Zou, Int. J. Mod. Phys. E 21, 1230011
(2012).

[27] A. Ramos and E. Oset, Phys. Lett. B 727, 287 (2013).

[28] D. Gamermann, C. Garcia-Recio, J. Nieves, and L. L. Salcedo,
Phys. Rev. D 84, 056017 (2011).

[29] J.J. Cobos-Martinez, K. Tsushima, G. Krein, and A. W. Thomas,
Phys. Rev. C 96, 035201 (2017).

[30] W. C. Chang et al. (LEPS Collaboration), Phys. Lett. B 684, 6
(2010).

[31] H. De Vries, C. W. De Jager, and C. De Vries, At. Data Nucl.
Data Tables 36, 495 (1987).

[32] C. W. De Jager, H. De Vries, and C. De Vries, At. Data Nucl.
Data Tables 14, 479 (1974).

[33] C. Garcia-Recio, E. Oset, and L. L. Salcedo, Phys. Rev. C 37,
194 (1988).

[34] B. Dey et al. (CLAS Collaboration), Phys. Rev. C 89, 055208
(2014); 90, 019901(E) (2014).

[35] S. Y. Ryu et al. (LEPS Collaboration), Phys. Rev. Lett. 116,
232001 (2016).

[36] C. Patrignani er al. (Particle Data Group), Chin. Phys. C 40,
100001 (2016).

[37] Y. Maeda et al., Phys. Rev. Lett. 97, 142301 (2006).

[38] A.L Titov, B. Kdmpfer, and V. V. Shklyar, Phys. Rev. C 59, 999
(1999).

[39] L. P. Kaptari and B. Kéampfer, Eur. Phys. J. A 23, 291 (2005).

034618-6


https://doi.org/10.1103/PhysRevC.91.024609
https://doi.org/10.1103/PhysRevC.91.024609
https://doi.org/10.1103/PhysRevC.91.024609
https://doi.org/10.1103/PhysRevC.91.024609
https://doi.org/10.1016/j.physletb.2005.01.023
https://doi.org/10.1016/j.physletb.2005.01.023
https://doi.org/10.1016/j.physletb.2005.01.023
https://doi.org/10.1016/j.physletb.2005.01.023
https://doi.org/10.1103/PhysRevLett.98.042501
https://doi.org/10.1103/PhysRevLett.98.042501
https://doi.org/10.1103/PhysRevLett.98.042501
https://doi.org/10.1103/PhysRevLett.98.042501
https://doi.org/10.1103/PhysRevLett.105.112301
https://doi.org/10.1103/PhysRevLett.105.112301
https://doi.org/10.1103/PhysRevLett.105.112301
https://doi.org/10.1103/PhysRevLett.105.112301
https://doi.org/10.1103/PhysRevC.85.035206
https://doi.org/10.1103/PhysRevC.85.035206
https://doi.org/10.1103/PhysRevC.85.035206
https://doi.org/10.1103/PhysRevC.85.035206
https://doi.org/10.1016/j.nuclphysa.2005.11.007
https://doi.org/10.1016/j.nuclphysa.2005.11.007
https://doi.org/10.1016/j.nuclphysa.2005.11.007
https://doi.org/10.1016/j.nuclphysa.2005.11.007
https://doi.org/10.1103/PhysRevC.45.1400
https://doi.org/10.1103/PhysRevC.45.1400
https://doi.org/10.1103/PhysRevC.45.1400
https://doi.org/10.1103/PhysRevC.45.1400
https://doi.org/10.1016/S0370-2693(98)00491-2
https://doi.org/10.1016/S0370-2693(98)00491-2
https://doi.org/10.1016/S0370-2693(98)00491-2
https://doi.org/10.1016/S0370-2693(98)00491-2
https://doi.org/10.1016/S0375-9474(00)00363-8
https://doi.org/10.1016/S0375-9474(00)00363-8
https://doi.org/10.1016/S0375-9474(00)00363-8
https://doi.org/10.1016/S0375-9474(00)00363-8
https://doi.org/10.1103/PhysRevC.67.045203
https://doi.org/10.1103/PhysRevC.67.045203
https://doi.org/10.1103/PhysRevC.67.045203
https://doi.org/10.1103/PhysRevC.67.045203
https://doi.org/10.1016/j.nuclphysa.2016.04.018
https://doi.org/10.1016/j.nuclphysa.2016.04.018
https://doi.org/10.1016/j.nuclphysa.2016.04.018
https://doi.org/10.1016/j.nuclphysa.2016.04.018
https://doi.org/10.1016/j.physletb.2017.05.035
https://doi.org/10.1016/j.physletb.2017.05.035
https://doi.org/10.1016/j.physletb.2017.05.035
https://doi.org/10.1016/j.physletb.2017.05.035
https://doi.org/10.1103/PhysRevC.95.015201
https://doi.org/10.1103/PhysRevC.95.015201
https://doi.org/10.1103/PhysRevC.95.015201
https://doi.org/10.1103/PhysRevC.95.015201
https://doi.org/10.1016/j.nuclphysa.2003.12.012
https://doi.org/10.1016/j.nuclphysa.2003.12.012
https://doi.org/10.1016/j.nuclphysa.2003.12.012
https://doi.org/10.1016/j.nuclphysa.2003.12.012
https://doi.org/10.1103/PhysRevC.71.065202
https://doi.org/10.1103/PhysRevC.71.065202
https://doi.org/10.1103/PhysRevC.71.065202
https://doi.org/10.1103/PhysRevC.71.065202
https://doi.org/10.1088/0954-3899/36/1/015103
https://doi.org/10.1088/0954-3899/36/1/015103
https://doi.org/10.1088/0954-3899/36/1/015103
https://doi.org/10.1088/0954-3899/36/1/015103
https://doi.org/10.1140/epja/i2008-10649-7
https://doi.org/10.1140/epja/i2008-10649-7
https://doi.org/10.1140/epja/i2008-10649-7
https://doi.org/10.1140/epja/i2008-10649-7
https://doi.org/10.1088/0954-3899/43/1/015104
https://doi.org/10.1088/0954-3899/43/1/015104
https://doi.org/10.1088/0954-3899/43/1/015104
https://doi.org/10.1088/0954-3899/43/1/015104
https://doi.org/10.1016/j.physletb.2010.10.050
https://doi.org/10.1016/j.physletb.2010.10.050
https://doi.org/10.1016/j.physletb.2010.10.050
https://doi.org/10.1016/j.physletb.2010.10.050
https://doi.org/10.1016/S0375-9474(99)00846-5
https://doi.org/10.1016/S0375-9474(99)00846-5
https://doi.org/10.1016/S0375-9474(99)00846-5
https://doi.org/10.1016/S0375-9474(99)00846-5
https://doi.org/10.1103/PhysRevC.74.015203
https://doi.org/10.1103/PhysRevC.74.015203
https://doi.org/10.1103/PhysRevC.74.015203
https://doi.org/10.1103/PhysRevC.74.015203
https://doi.org/10.1140/epja/i2010-10957-3
https://doi.org/10.1140/epja/i2010-10957-3
https://doi.org/10.1140/epja/i2010-10957-3
https://doi.org/10.1140/epja/i2010-10957-3
https://doi.org/10.1142/S0218301312300111
https://doi.org/10.1142/S0218301312300111
https://doi.org/10.1142/S0218301312300111
https://doi.org/10.1142/S0218301312300111
https://doi.org/10.1016/j.physletb.2013.10.012
https://doi.org/10.1016/j.physletb.2013.10.012
https://doi.org/10.1016/j.physletb.2013.10.012
https://doi.org/10.1016/j.physletb.2013.10.012
https://doi.org/10.1103/PhysRevD.84.056017
https://doi.org/10.1103/PhysRevD.84.056017
https://doi.org/10.1103/PhysRevD.84.056017
https://doi.org/10.1103/PhysRevD.84.056017
https://doi.org/10.1103/PhysRevC.96.035201
https://doi.org/10.1103/PhysRevC.96.035201
https://doi.org/10.1103/PhysRevC.96.035201
https://doi.org/10.1103/PhysRevC.96.035201
https://doi.org/10.1016/j.physletb.2009.12.051
https://doi.org/10.1016/j.physletb.2009.12.051
https://doi.org/10.1016/j.physletb.2009.12.051
https://doi.org/10.1016/j.physletb.2009.12.051
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1016/0092-640X(87)90013-1
https://doi.org/10.1016/S0092-640X(74)80002-1
https://doi.org/10.1016/S0092-640X(74)80002-1
https://doi.org/10.1016/S0092-640X(74)80002-1
https://doi.org/10.1016/S0092-640X(74)80002-1
https://doi.org/10.1103/PhysRevC.37.194
https://doi.org/10.1103/PhysRevC.37.194
https://doi.org/10.1103/PhysRevC.37.194
https://doi.org/10.1103/PhysRevC.37.194
https://doi.org/10.1103/PhysRevC.89.055208
https://doi.org/10.1103/PhysRevC.89.055208
https://doi.org/10.1103/PhysRevC.89.055208
https://doi.org/10.1103/PhysRevC.89.055208
https://doi.org/10.1103/PhysRevC.90.019901
https://doi.org/10.1103/PhysRevC.90.019901
https://doi.org/10.1103/PhysRevC.90.019901
https://doi.org/10.1103/PhysRevLett.116.232001
https://doi.org/10.1103/PhysRevLett.116.232001
https://doi.org/10.1103/PhysRevLett.116.232001
https://doi.org/10.1103/PhysRevLett.116.232001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1103/PhysRevLett.97.142301
https://doi.org/10.1103/PhysRevLett.97.142301
https://doi.org/10.1103/PhysRevLett.97.142301
https://doi.org/10.1103/PhysRevLett.97.142301
https://doi.org/10.1103/PhysRevC.59.999
https://doi.org/10.1103/PhysRevC.59.999
https://doi.org/10.1103/PhysRevC.59.999
https://doi.org/10.1103/PhysRevC.59.999
https://doi.org/10.1140/epja/i2004-10080-2
https://doi.org/10.1140/epja/i2004-10080-2
https://doi.org/10.1140/epja/i2004-10080-2
https://doi.org/10.1140/epja/i2004-10080-2

4th International Electronic Conference

. - 4
E proceedlngs on Entropy and Its Applications rM\D\Py

21 November—1 December 2017

Proceedings

Boltzmann Entropy, the Holographic Bound
and Newtonian Cosmology *

Pedro Ferndndez De Cérdoba * and Jose Maria Isidro San Juan

Instituto Universitario de Matemédtica Pura y Aplicada, Universidad Politécnica de Valencia, 46022 Valencia,
Spain; joissan@mat.upv.es
* Correspondence: pfernandez@mat.upv.es
t Presented at the 4th International Electronic Conference on Entropy and Its Applications,
21 November—-1 December 2017; Available online: http:/ /sciforum.net/conference/ecea-4.

Published: 21 November 2017

Abstract: The holographic principle sets an upper bound on the total (Boltzmann) entropy content
of the Universe at around 10'?%kp (kp being Boltzmann’s constant). In this work we point out
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has a quantum probability fluid that exactly mimics the behaviour of the cosmological fluid,
the latter considered in the Newtonian approximation. One proves that the equations governing the
cosmological fluid (the Euler equation and the continuity equation) become the very equations that
govern the quantum probability fluid after applying the Madelung transformation to the Schroedinger
wavefunction. Under the assumption that gravitational equipotential surfaces can be identified
with isoentropic surfaces, this model allows for a simple computation of the gravitational entropy
of a Newtonian Universe.

Keywords: gravitational entropy; holographic principle; emergent spacetime

1. Introduction

There is a widespread certainty that the continuum description of spacetime as provided by
general relativity must necessarily break down at very short length scales and/or very high curvatures.
A number of very different approaches to an eventual theory of quantum gravity have been presented
in the literature; these candidate theories are too varied and too extensive to summarise here. On the
whole, the picture that emerges is that of a continuum description after some appropriate coarse
graining of some underlying degrees of freedom. Even if the precise nature of the latter is unknown
yet, one can still make progress following a thermodynamical approach: one ignores large amounts
of detailed knowledge (say, the precise motions followed by the atoms of a gas) while concentrating
only on a few coarse-grained averages (say, the overall pressure exerted by the atoms of a gas on the
container walls). This way of approaching the problem has come to be called the emergent approach.

In the emergent approach to spacetime, gravity qualifies as an entropic force. This means that we do
not know the fundamental degrees of freedom underlying gravity, but their overall macroscopic effect
is that of driving the system under consideration in the direction of increasing entropy. If gravitational
forces are entropy gradients, then gravitational equipotential surfaces can be identified with isoentropic
surfaces. We will consider a density of particles representing the (baryonic and dark) matter contents
of a hypothetical Newtonian Universe. This volume density will be identified with the squared
modulus of a nonrelativistic wavefunction ¢ satisfying the Schroedinger equation. Let U denote the
gravitational potential. Once dimensions are corrected (using 7 and k), the expectation value (p|U|y)
becomes a measure of the gravitational entropy of the Universe when the matter is described by the
wavefunction .
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2. Methods

In Newtonian cosmology, the Universe is regarded as being subject to a gravitational potential U
satisfying the Poisson equation
V2U = 47Gp. (1)

The matter content (baryonic and dark matter) is modelled as an ideal fluid satisfying the
continuity equation and the Euler equation,

op ov 1
Liv. - = : “Vp—F=0. 2
8t+v (ov) =0, at+(" V)v+pr 0 ()

The cosmological principle requires that the velocity field v be everywhere proportional to the
position vector r. This requirement is equivalent to Hubble’s law [1-3], which can be described
phenomenologically by the harmonic potential

H2
Uktubble (1) = —701'2- 3)

Hubble’s constant Hy is an angular frequency; the negative sign implies that this potential is
repulsive. Accordingly, Upypple satisfies the Poisson Equation (1) with a negative mass density.

Schroedinger quantum mechanics can also be understood in terms of an ideal fluid, the quantum
probability fluid. Following Madelung one factorises the nonrelativistic wavefunction 1 into amplitude
and phase:

S z
P =exp (ZkB + ih) . 4)

The amplitude exp(S/2kpg) is a real exponential; one can invoke Boltzmann’s principle to regard
S as a Boltzmann entropy of the matter described by yp—not to be confused with the gravitational
entropy S in Equation (16) below. It will also be convenient to define a dimensionless Boltzmann
entropy S := S§/2kg. The phase exp(iZ/h) is the complex exponential of the classical-mechanical
action integral 7. Substituting the Ansatz Equation (4) into the Schroedinger equation for ¢, one arrives
at a set of two equations. One of them is the continuity equation for the quantum probability fluid,

s 1 1 o,
gﬁ-%VS-VI—f—%VIfO, 5)
where 1
1 _ 228
vi= mVI, o =e>. (6)

The second equation obtained is known as the quantum Hamilton-Jacobi equation:

0L

1 2 —
= T3, (VD +V+2=0, @)

where V is the external potential present in the Schroedinger equation (we recall that the dimensions
of U in Equations (1) and (3) are velocity squared, whereas those of V in Equation (7) are mass times
velocity squared). Above,

hZ

Q= [(VS)2+V25} ®)

is known as the quantum potential.
Finally we need to derive an Euler equation for the quantum probability. This is achieved by
taking the gradient of Equation (7):
ov

1 1
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Comparison between Equations (2) and (9) produces a bijective correspondence between the quantum
probability fluid and the cosmological fluid. Which suggests that, given the cosmological fluid in the
Newtonian approximation, we use nonrelativistic quantum mechanics as an equivalent description thereof .
In this description by means of a quantum wavefunction ¢, the amount of mass my contained within a
volume V equals my = m [, d3x||?; the whole observable Universe is regarded as a sphere of radius
Rp. Considering the Universe as a sphere with finite radius has the added bonus that the instabilities [4]
due to the negative sign of the potential Equation (3) are avoided naturally.
In view of Hubble’s law Equation (3) it is reasonable to consider the effective Hamiltonian
oo Por kitp o 10

eff = 5 > oft = mHj (10)
as governing the overall expansion of the Universe, at least within the Newtonian limit. As a first
approximation it will also be useful to consider the free Hamiltonian

n_,
Hfree = —%V . (11)

Their respective eigenfunctions are readily obtained in spherical coordinates. For Equation (11)
we have the free spherical waves

1 1 .
lIJKOO(T’, 0, (P) = ﬁ; exp (IKF) ’ K € R, (12)

normalised within a sphere of radius Ry, and carrying zero angular momentum as required by the
cosmological principle. For the Hubble Hamiltonian Equation (10) one finds the exact eigenfunctions [5]

2 2
Dir,6,9) = %exp (5 )m (5 -5 5-ie) 13)
and op
2 2
D00,0) = Stew (B0 )in (- Foie). (1)

They also carry vanishing angular momentum, NS) and N,,(Cz) being radial normalisation factors.
Above, 1 F is the confluent hypergeometric function, and the parameters «, § are given by
2F . m*H}

_ <t — 0
“=i BE Tt (15)

with E the energy eigenvalue in Hogtp = Ep.

3. Results and Discussion

Our previous reasoning leads naturally to the operator R*? = X? + Y2 + Z? as a measure of
the amount of gravitational entropy contained within a Newtonian Universe in which the Hubble
repulsion arises as the net force. Specifically, the operator

kBmHO

Sg =N 7

R? (16)
is dimensionally an entropy; a dimensionless factor NV is of course left undetermined.We call S, the
gravitational entropy operator.

We can now compute the expectation value of the entropy Sq in the free eigenstates Equation (12)
and in the Hubble eigenstates Equations (13) and (14). For the free waves Equation (12) one finds
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R2
($r00| R puc0) = - 17)

Substituting the known values [6] of the cosmological data m, Hy, Rg into Equations (16) and (17)
we arrive at the estimate [7]

(00| Sg|x00) = 10'%kp. (18)

Above we have set N' = 3/2.6. Our result Equation (18) saturates the upper bound set by the
holographic principle. A finer estimate is obtained using the Hubble waves Equations (13) and (14).
After some numerical approximations one finds

Wp2 My RE@)n2,, ()
This leads to [5]
(Sl = 10%0%ks = (97 15191”) 0)

upon taking N/ = 1/6. This new theoretical estimate lies three orders of magnitude below the
holographic bound, thus representing a considerable improvement on the estimate obtained from the
free waves.

4. Conclusions

The holographic principle sets an upper bound of approximately 10'23kg on the entropy content
of the Universe. Some phenomenological estimates [8] place the actual value at around 10'%kp,
gravitational entropy (and, in particular, black holes) representing the largest single contributors to
the entropy budget of the Universe. Although Newtonian cosmology does allow for black holes, the
many simplifications made by our elementary model necessarily leave out some essential physics
of the Universe. Nevertheless, our toy model succeeds in capturing some key elements of reality.
For example, the upper bound set by the holographic principle is always respected, even by such
a crude approximation as the free waves Equation (12). The Hubble waves Equations (13) and (14)
represent a considerable improvement on the free waves, as they reduce the expectation value of the
entropy by three orders of magnitude.
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Abstract The emergent nature of quantum mechanics is shown to fottmw & precise
correspondence with the classical theory of irreversiidernodynamics.

1 Introduction

The aim of this tall is to establish a correspondence between quantum mechamics
the one hand, and the classical thermodynamics of irrddengrocesses, on the other.
This we do in order to provide an independent proof of theestant thatguantum
mechanics is an emergent phenomenbime emergent aspects of quantum mechanics
have been the subject of a vast literature; a very incompégtef refs. would include

[ 12,345 6L 17,18,]19, 10, 14, 12,113,/ 16] 17,[18,[19/ 20 2122226/ 31/, 34, 33].

2 Basics inirreversible thermodynamics

We first summarise, for later use, some basic elements ofdbsical thermodynamics
of irreversible processes in the linear regiime [28].

Let a thermodynamical system be given, deviating only glyginom equilibrium.
Assume that its entropy depends onV extensive variables!,...,y", so we can
write S = S(y',...,y"V). The tendency of the system to seek equilibrium is measured
by thethermodynamic force¥}, defined to be the components of the gradient of the

entropy:

oS
oy 1)

Now our system is away from equilibrium, but not too far awsy,we can assume
linearity between the fluxeg® and the forced’;:

Y. =

i N N
R P’ 3 . 3
g =L =319, Y=Y Ry¥, Ry=L9 (@
j=1

Iwork partially based on ref[[3] by some of the present autt{fr F. de C. and J.M.l.), presented by
J.M.1. at theSixth International Workshop DICE 2012: Spacetime—Maffrrantum Mechanics: from the
Planck scale to emergent phenomena (Castiglioncelloy, I&&ptember 2012).
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We user to denote thermodynamical time, and we suppose the ab@teorebetween
forces and fluxes to be invertible. A well-known result is @gesr’s reciprocity theo-
rem: the matrixl is symmetric,

L = 7% (3)

By (@), the rate of entropy production can be written eitheaajuadratic form in the
fluxes, or as a quadratic form in the forces:

N oS N N . N
§=X gt =X = 3 Rty = 3 L@
j=1 j=1 J=1 i,j=1

We can Taylor expand the entrogy around equilibrium and truncate the series at
second order, to find

N
1 i
S:SO_E.EISijny—i_.“’ (5)
1=

where the matrixs;; = —8%5/0y'0y’|o (the negative Hessian evaluated at equi-
librium) is positive definite. This truncation has the caqnsence that fluctuations
around equilibrium are Gaussian. Indeed, by Boltzmanniscple, the probability

Py, ...,yN) of finding the valueg', . . .,y of the extensive variables is given by
P 1 Ny _ Z71 i =7 _ 6
W'y =27 e (1) = 27 ew Zsuyy , (6
z] 1

whereZ is a normalisation factor.
For simplicity we setNV = 1 in all that follows. Our aim is to calculate the
probability of any pathy = y(7) in the thermodynamical configuration space. A

cumulativedistribution functionf;, (21 - -Z:) is defined such that it yields the prob-

ability that the thermodynamical paif{r) lie below the barrierg;, ..., y, at times
T <Ty<...<Tp:

T ... Tn

A stationary process is defined to be one such Byast invariant under time shiftsr:
Y- Yn Yy oo Yn
F, =F, . 8
(7’1...7'") (7’1—1-57'...7'"—1-57) (8)
In other words, the system that has been left alone long énthag any initial condi-

tions have been forgotten. Amconditionalprobability density functiory,, (?mzz
is defined, such that the product

T .-.Tn



measures the probability that a thermodynamical path y(7) pass through a gate
of width dy, at instantr, for all K = 1,...n. Similarly, theconditionalprobability

density functionyf, (%j: y’H) is such that the product

Tk—1

fi (yk yk_l) dyr dyr—1 (10)

Tl Tk—1

gives the probability thag = y(7) pass throughy,, atr, given that it passed through
dyr_1 at,_1. Finally a Markov process is defined to bae that has a short mem-
ory or, more precisely, one such that its cumulative, conditigmmobability function

satisfies
I (yn+1 Y1 yn) _ R (yn+1 yn) (11)

Tn+1 T ... Tn Tn+1 Tn
One can prove that, for a Markov process, the following fastdion theorem holds

[28]:
(Y = n () en () () @
T1...Tn Tn 1 Tn—1 2171 T

Interesting about this factorisation theorem is the faet i (ﬂi) is known from
Boltzmann'’s principle. Therefore, by stationarity, all weed to know is

Y2 Y1
h <T+5T‘7)’ (13)
and solving thei—gate problenf,, (212:) nicely reduces to solving the 2—gate prob-
lem /1 (75, |

Now, under the assumption that our irreversible thermodhical processes is sta-
tionary, Markov and Gaussian, the conditional probabdipnsity [I8) has been com-
puted in [28], with the result

T4+ 0T T /91 \/1 — e—270T exp _2kB 1 — e—2707

Here we have defined the thermodynamical frequency
S
Y= Ev
with R given as in[(2) and = —d2S/dy?|,. Furthermore, one can reexpress the
probability density[(T¥) in terms of path integrals overthedynamical configuration
space: up to normalisation factors one firids [28]

()= T by e g [Car i) o)

(T1)=y1 T1

(15)

Above we have defined the thermodynamical Lagrangian fongti

L)) = o [P0 + 7)) an

whose actual dimensions are entropy per unit time.



3 lIrreversible thermodynamicsvs quantum theory

We can now establish a precise map between quantum meclzautiadassical, irre-
versible thermodynamics. Letdenote mechanical timep the mass of the quantum
particle under consideration, andthe frequency of a harmonic potential experienced
by the particle.
In the first place, the thermodynamical time variabl@ust be analytically contin-
ued intoit:
T 4> it. (18)

Second, the thermodynamical frequendyecomes the mechanical frequencygf the
harmonic oscillator:

v w. (29)
Next we map the thermodynamical varialplento the mechanical variabie
Y > T (20)

As a rule,z will be a position coordinate. Hence there might be some dgimmal
conversion factor betweenandy above, that we will ignore for simplicity. Bearing
this in mind, we will finally make the identification

S mw
T > " (22)

between thermodynamical and mechanical quantities. We &guressed all the above
replacements with a double arraw in order to indicate the bijective property of our
map between quantum mechanics and classical, irrevetsdnimodynamics.

On general grounds, applying the replacemdnis (L8), (28),4nd [211), one ex-
pects thermodynamical conditional probabilities to mappanechanical conditional
probabilitie,

f1 (yz‘y1) & K (w2, ta|x1, 1), (22)
T2 1T

while thermodynamical unconditional probabilities arpested to map onto mechan-
ical unconditional probabilities:

fi(2) & e ol (23)

Here K (z2,t2|21, t1) denotes the quantum—-mechanical propagatorydndt) is the
wavefunction. As in[(20) above, one must allow for possiklenerical factors be-
tween probabilities on the thermodynamical and on the m@Echhsides; otherwise
bijectivity is perfectly preserved.

Our expectationg (22)[ (R3) are borne out by experiment-egxgent in our case
being explicit computation. Indeed one finds the followikgry — 0, the irreversible
thermodynamics corresponds to the free quantum—mechaaitele:

k

. o |
K(trCC)(IQaﬂxlaO) - SB fl ( lt2 01) 07 (24)
Y=

2While f is a probability densityK is a probability density amplitude; see ref] [2] for a dissioa of
this issue.



while, for v # 0, the irreversible thermodynamics corresponds to the quambe-
chanics of a harmonic oscillator:

iwt AV 2 .
B (L) =ew (5= G ) 2 O e n0). (25)
1

0 2 hw h
Above,V = mw?2?/2 is the harmonic potential, anlV = V' (z2) — V(x1). More-
over, if 1(z) = exp (—mwa?/2h) is the harmonic oscillator groundstate, then it
holds that, up to normalisation,

£ () = exp (= 50a%) = "™ @) 2, (26)

as expected.
Finally the path—integral representation of quantum-raaital propagators,

m(tg):wg

Dz(t) exp {% /t2 de L [x(¢t), :C(t)]} , (27)

t1

K (x2,ta|z1,t1) = /

I(t] ):Il

has a nice reexpression in terms of classical, irreversitdemodynamics. Indeed,
applying our dictionary[(18)[(19)[_(20) and {21) to the maztical path integral{27),

the latter becomes the thermodynamical path integral@reaen in[(16). This leads
us to the following relation between the action integraf the mechanical system and
the entropysS of its thermodynamical counterpart:

i 1

hI “ . S. (28)
It should be remarked that bofhand.S independently satisfy an extremum principle.
In the Gaussian approximation considered here, the ragpdicictuations (measured
with respect to the corresponding mean values afidS as given by their extremals)
are obtained upon taking the exponentials. We thus obtaimjtiantum—mechanical
wavefunction and the Boltzmann distribution function:

Y =./p exp (%I) , pp =Z texp <é$) . (29)

As usual,Z denotes some normalisation factor. Since, by the Born waanust have
ps = |¢¥|?, this provides us with an elegant expression combiningnioelynamics
and quantum mechanics into a single equation:

v =2""?exp (%S) exp (%I) . (30)

Egs. [28) and(30) are very inspiring, as they reveal a furestsah complementarity
between the mechanical action integral (on the mechanida) and the entropy (on
the thermodynamical side). We will later on return to the ptementarity between
these two descriptions, a feature already foreseen by gtriga30]. For the moment
let us simply remark the following consequence of this cam@ntarity, namely, the
symmetrical role played by Planck’s consténand Boltzmann’s constaritg. This
latter property, and the ensuing entropy quantisatione ten discussed at length in
refs. [1]2].



4 Emergence from irreversibility

It has been claimed thauantisation is dissipatiofB, [4,5,[6, 7] 8/ 10, 18, 19, 31]—
this claim is central to the emergence approach to quantuchamics. In more precise
terms, the previous statement implies that quantum bebaeian be expected from
certain deterministic systems exhibiting informatiorslo®ne could compare this state
of affairs to the relation between (equilibrium) thermodymics and (classical) statis-
tical mechanics. Namely, information loss in a microscdpeory (statistical mechan-
ics) arises as the result of averaging out over many degfdesealom; the emergent
theory (thermodynamics) contains less information theumiicroscopic predecessor.

Thanks to the map established in secfidn 3, the picture predéhere features
guantumness as an intrinsic property of dissipative systébonversely, by the same
map, any quantum system features dissipation. In our gictureversibility and quan-
tumness arise as the two sides of the same coin, thus becaminglementaryle-
scriptions of a given systent@mplementaritypeing understood here in Bohr’s sense
of the word). As opposed to the emergence property discusseds, the two theo-
ries (quantum mechanics and irreversible thermodynammsfain exactly the same
amount of information. It is interesting to observe thasely related views regarding
the complementarity between mechanics and thermodynaveiesdefended long ago
by Prigoginel[[30].

Now it has been (rightly) pointed out that correspondenckeanergence are not
quite the same concept [23]. This notwithstanding, we célnasgue that quantum
mechanics continues to arise asemnergent phenomenam our picture. This is so
because Boltzmann’s dictum applidgésomething heats up, it has microstructute
other words, every thermodynamics is the coarse grainisgie underlying statisti-
cal mechanics. Thus the mere possibility of recasting angireory in thermodynam-
ical language proves that the given theory is the coarsexagtaersion of some finer,
microscopic theory.

5 Gaussianity

As a technical remark, we should point out that we have wotkedughout in the
Gaussian approximation. On the thermodynamical side ofr@p this corresponds to
the linear response theory; on the mechanical side thissredghe harmonic approx-
imation. Within the regime of applicability of this assurgst we can safely claim to
have provided a rigorous proof of the statement thentum mechanics is an emergent
phenomenon, at least in the Gaussian approximation

Using the fact that any potential can be transformed intértreepotential or into the
harmonic potential by means of a suitable coordinate toansdtion (as in Hamilton—
Jacobi theory[[14, 15]), one would naively state that the $<SEun approximation is
good enough to “prove” that quantum mechanics is an emeggromenon also
beyond the Gaussian regime. However, this “proof”’ overiible fact that quantisation
and coordinate changes do not generally commute. Therdfengrevious reasoning
invoking Hamilton—Jacobi can only be seen as a plausikaliyument to support the
statement that quantum mechanics must remain an emergamimplenoralso beyond



the Gaussian approximation. There is, however, abundanatire dealing with the
emergent nature of quantum mechaniegardless ofthe Gaussian approximation,
using techniques that are very different from those preskinére, and with a spectrum
of applicability that ranges from the smallesti[L1] 24] te targest[[2[7. 29]. We will
therefore content ourselves with the proof of emergenceemted here, the expectation
being that some suitable extension thereof (possibly yséntyirbative techniques) will
also apply beyond the Gaussian approximation.
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Abstract It has been argued that gravity acts dissipatively on quantum—mechanical sys-
tems, inducing thermal fluctuations that become indistinguishable from quantum fluc-
tuations. This has led some authors to demand that some form of time irreversibility be
incorporated into the formalism of quantum mechanics. As a tool towards this goal we
propose a thermodynamical approach to quantum mechanics, based on Onsager’s clas-
sical theory of irreversible processes and on Prigogine’s nonunitary transformation the-
ory. An entropy operator replaces the Hamiltonian as the generator of evolution. The
canonically conjugate variable corresponding to the entropy is a dimensionless evolu-
tion parameter. Contrary to the Hamiltonian, the entropy operator is not a conserved
Noether charge. Our construction succeeds in implementing gravitationally—induced
irreversibility in the quantum theory.

1 Introduction

It has been known for long that weak interactions violate CP—invariance [10]. By the
CPT theorem of quantum field theory, time invariance must also be violated in weak
interactions; recent observations [32] confirm this expectation. Now quantum field
theory is an extension of quantum mechanics. Since time invariance is naturally imple-
mented in the latter, it would appear that only CP-violating quantum field theories can
also violate time invariance, because quantum mechanics as we know it is symmetric
under time reversal.

Actually such is not the case. A number of firmly established quantum—gravity
effects have been shown to be intrinsically irreversible; for background see, e.g., [23,
30, 51, 52, 55] and references therein. From the independent perspective of statistical
physics [40] it has also been suggested that time irreversibility should be taken into
account at the more fundamental level of the differential equations governing mechan-
ical processes. This is in sharp contrast with standard thinking, where irreversibility is
thought to arise through time—irreversible initial conditions imposed on the solutions to
time—reversible evolution equations. In view of this situation, a number of authors have
called for the due modifications to the standard quantum—mechanical formalism (for a
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detailed account and original references see, e.g., [38]). Specifically, in this paper we
tackle the problem of incorporating some form of time irreversibility at the level of the
differential equation governing evolution [40].

Closely related to this viewpoint is the emergent approach to physics. The latter
has been the subject of a vast literature (see [8] for a comprehensive review), but let us
briefly mention some noteworthy aspects. The notion of an emergent theory, that is,
the concept that a given physical theory could be an effective model of some deeper—
level degrees of freedom, has been postulated of a number of existing theories, most
notably of gravity and of quantum mechanics. In the particular case of the latter, refs.
[3, 14, 15, 22, 24, 25, 26, 48] address this issue from a number of different perspec-
tives. The paradigm that quantisation is dissipation, implicitly present in some of the
above approaches, has been made precise in [6, 5]. Frequently, these takes on quan-
tum physics can be completely recast in purely classical terms [4, 29, 53]. An alter-
native perspective, based on classical nonequilibrium thermodynamics [35], has been
advocated in [1, 2, 16]. Beyond quantum mechanics, the relevance of nonequilibrium
physics for quantum gravity and strings has been emphasised recently [18, 27].

The basic physical assumption we will make use of posits that spacetime is not a
fundamental concept, but rather an emergent phenomenon instead. In fact this hypoth-
esis is not at all new (for references and background see, e.g., [30]), some of its most
recent incarnations being [36, 37, 50]. Once spacetime is no longer regarded as a fun-
damental concept, but rather as a derived notion, then every theory that makes use of
spacetime concepts automatically qualifies as emergent. Such is the case of quantum
mechanics. For our purposes it will suffice to concentrate on the time variable and
expose its emergent nature. We will therefore try to express time in terms of thermo-
dynamical quantities, and explore the consequences for the quantum theory. Again,
the notion of time as having a thermodynamical origin is not new [7, 11], having reap-
peared more recently in [19, 41, 44, 43]; see also [13, 17, 20, 21] for related views. New
to our approach is the notion that an emergent time variable automatically implies that
quantum theory itself qualifies as an emergent phenomenon. Specifically, the possibil-
ity of reexpressing the nonrelativistic Schroedinger equation in purely entropic terms
(instead of its usual Hamiltonian language) implies that quantum mechanics involves
some degree of coarse graining of microscopic information. In our approach, the very
existence of an entropy operator replacing the Hamiltonian operator is an inequivocal
clue of this coarse graining.

To begin with, we would like to draw attention to the following analogy. On one
hand we have the quantum—mechanical time—energy uncertainty relation

AEAt ™ k. (1)

On the other hand, in the theory of irreversible thermodynamics [34, 35], one computes
the average product of the fluctuations of the entropy and the temperature for a thermo-
dynamical system slightly away from equilibrium (this is the linear regime, also called
the Gaussian approximation). This product turns out to be given by [31]

ASAT = kgT, (@)



ks being Boltzmann’s constant. The change of variables

ri=In T 3
T 3

where To is some reference temperature, reduces (2) to
ASAT ™ ke. 4)

In (4) we have taken the liberty of replacing the equality sign of (2) with an inequality;
the latter is saturated in the Gaussian approximation (used in the derivation of (2)).
Beyond the Gaussian regime, one expects the inequality to hold strictly. As we will
see, the analogy between (1) and (4) is more than just a happy coincidence—it is in
fact anything butaccidental.

2 Emergent time

Let t and T respectively denote nonrelativistic time and absolute temperature, as mea-

sured by an inertial observer that will be kept the same throughout. We posit that t—1
equals T modulo dimensional factors:

C _ ks
TTR" ®)

Here C is a dimensionless numerical factor, whose value we will pick presently in order
to suit our needs. Modulo this C, which will play a prominent role in what follows, the
relation (5) between time and temperature was postulated long ago by de Broglie [7].
A related change of variables has been used more recently in [45].

Beyond purely dimensional grounds, there are deeper motivations for Eq. (5).
Specifically, in [2, 16] we have established a map between quantum mechanics (in
the Gaussian approximation) and the classical theory of irreversible thermodynamics
(inthe linear regime).! Inthis latter theory [35] we have N independent thermodynam-
ical coordinates y!, ..., yN on which the entropy S depends, and N conjugate forces
Yy := 8S/dy%. Let t" denote thermodynamical time. The assumption of linearity
between the velocities y* and the forces Yj amounts to

g dy; N N - ,

y = = LYY, Y= Ry, R = (L)1 (6)

ar i i ij ij
i=1 i=1
Under the assumption that the underlying microscopic dynamics is time—reversible, the
constant matrix L;j turns out to be symmetric (Onsager’s reciprocity theorem) [34]. By
(6), the time rate of entropy production can be written either as a quadratic form in the
velocities, or as a quadraticform in the forces:
N N

s=  Ryyyi =  Liviv; @)

ij=1 ij=1

IAs argued in [2, 16], the linear regime in irreversible thermodynamics is the analogue of the semiclassi-
cal, or Gaussian, approximation to quantum mechanics.



We see that it is not the entropy S, but its time rate of production S, that plays the role
of a (harmonic) Hamiltonian, because?

ds

N .R__yiyi +LUYY (8)
dar

ij (]

§=95 _1
2

ij=1
Here again we see that inverse time can be regarded as temperature. InEgs.  (6)-

(8) above, the thermodynamical time t" and the mechanical time tare related as per the

Wick rotation, t’ = it[2, 16]. Thus we expectathermodynamical approach to quantum
mechanics to involve the complexification of time. Multiplying (5) through by H/T,
onerealisesthat (5) isroughlyequivalentto

ds ke
Cq = 9)

which bridges the gap between the mechanical point of view (the right—hand side of (9))
and the thermodynamical point of view (the left—hand side). The above is a handwaving
argument to justify equating the time variation of the entropy with the energy (modulo
dimensional constants); we will actually derive Eq. (9) later on (see (26)). Eqg. (9)
is also important because it holds beyond its Gaussian limit given in (8). In what
follows we will work out in detail the relationship between the mechanical and the
thermodynamical points of view expressed above.

3 Entropy vs. energy

3.1 The energy picture

For reasons that will become apparent presently let us call quantum mechanics, in its

standard formulation, the energy picture of quantum mechanics; we will also use the

term H—picture.® The evolution of pure quantum states is governed by the Schroedinger

equation,

. dy

ik_" = Hy. (10)
dt

The general solution to the above reads w(t) = U(t)yw(0), where

Ut) ;=Texp -

P =

i .
K, H@dt (11

and T denotes the ordering operation along the evolution parameter f.Whent € R,

the time—evolution operators U(t) define a 1-parameter group of unitary operators that
ensure the reversibility of time flow in the H—picture.

211 is positive definite for a dissipative process, hence also Rij.

3We use the term picture instead of its synonym representation in order to avoid confusion with the
technical meaning of the latter term in quantum-—mechanical contexts such as choice of basis in Hilbert
space, or group representation, or similar. Expressions such as Schroedinger picture, or Heisenberg picture,
or related terms used in standard quantum mechanics should also not be confused with our use of the word
picture.



3.2 The entropy picture

The purpose of this section is to develop the entropy picture of quantum mechanics, or
the S—picture for short.

Under the combined changes of variables (5) and (3), the evolution equation (10)
becomes

Jikedy = Sy, (12)
— Cdr
where we have defined the entropy operator S
S:= H 13
=T (13)

The new evolution parameter 7 is dimensionless, while S carries the dimension of an
entropy. Our time variable z coincides with the thermal time of [11, 41, 44], the latter
specified to the nonrelativistic limit correponding to the Schroedinger wave equation.

We will see presently that C € C, so our evolution variable z will actually be a com-
plexified (or Wick—rotated), nonrelativistic, dimensionless, thermal-time variable.
The solution to the evolution equation (12) can be written as

w(z) =Sc(2)w(0), =0, (14)

where

et -
Sc(r):=Texp K S(z)dz (15)
B 0

and T denotes the ordering operation along the the evolution parameter 7. If we now

pick C € R, the evolution operators {Sc(z), ¢ € R} in (15) form a 1-parameter group
of unitary operators.

As long as C remains real, Egs. (12)—(15) above simply restate standard quantum
mechanics using the alternative set of variables (z, S). Itis only for C ¢ R that time
evolution can become irreversible. For this purpose let us set, dropping an irrelevant
real normalisation,

C:=e", $ €R. (16)
On the complex plane, (16) corresponds to Wick-rotating the time axis by an angle
¢. Now certain special values of ¢ are known to correspond to specific physical situa-
tions. For example, ¢ = 0 corresponds to standard quantum mechanics, while ¢ = =

implements the time reverse of ¢ = 0. The value ¢ = —z/2 gives a positive real ar-
gument within the exponential of (15); we will see in section 3.3 that this corresponds
tothe case of maximal entropy production, or maximal dissipation. Finally, the value
¢ = n/2 givesanegative real argument within the exponential of (15); this will turn out
to correspond to the unphysical situation of maximal antidissipation. All other values
of ¢ therefore correspond to intermediate situations between exactly unitary evolution

(eventually, time—reversed) and maximal dissipation (eventually, antidissipation). For
obvious reasons we must pick the quadrant corresponding to the forward time direction

and positive dissipation, i.e., ¢ € [-z/2, 0]. Let the dimensionless variable x € R be a
measure of the external gravitational field acting on the particle of mass m described by

the Hamiltonian H, such that x = 0 describes the absence of gravitation, and x — o



describes the case of a strong gravitational field acting on m. From what is known
concerning the effects of gravitational fields on the quantum mechanics of particles we
expect the phase ¢ to depend on x roughly as follows:

T

¢(x)=—§'1 —e™, x = 0. (17)

Indeed, for x = O we have a perfectly unitary evolution (¢ = 0) as befits quantum
particles in the absence of gravitation, while for strong gravitational fields (x — o)
we have ¢ — —=z/2, and unitarity gives way to dissipation. Of course, the precise
profile (17) for the function ¢(x) is just one out of many possible, but it captures the
right physical behaviour, namely, that gravitational fields induce thermal dissipative
effects in the quantum theory, in such a way as to render quantum uncertainties in-
distinguishable from statistical fluctuations [46, 47]. In the absence of a gravitational
field, any inertial observer perceives a clear—cut separation between these two types of
fluctuations.
Altogether, (16) and (17) yield
T, .
C(x) = exp 5 1 —e™ | (18)

For the rest of this paper we will concentrate on the limiting case of a weak gravitational

field. So we have*
X

C(e) = 1+ie £=—" xz0. (19)
It remains to identify a dimensionless variable x that can provide a physically rea-
sonable measure of a weak gravitational field acting on the quantum particle.® It is
standard to parametrise such a field by the metric g, = #, + hyy, Where 7, is the
Minkaowski metrlc and rg,n asmall correct;on Itis also convenient to introduce the

quantities h*: hs;. The linearised Einstein equations
read —16aTv =y O N Lrn (20)
3] Ox°Ox* H 2 H

and we can take x = (h) as a variable that satisfies our needs, at least in the weak field
limit considered here. The angular brackets in (h) stand for the average value of the

function h over the spacetime region of interest. That (h) is nonnegative follows from
the fact that [49]

h=4 [T dxdydz, T*=0. (21)
r o
The square brackets around the trace T ¢ stand for the evaluation at a time earlier than
that of interest by the interval needed for a signal to pass with unit velocity from the
element dxdydz to a point a distance r apart.
Substitution of (19) into (15) leads to

Siai(r):=Texp 4t  S@E)dF | 22)
B 0

4We will henceforth drop terms of order 2 and higher.
%In a sense, the situation analysed here is complementary to that described in ref. [28].



and the set{S1+i.(z), r = 0} forms a 1—parameter semigroup of nonunitary operators.
Inthe limit ¢ = 0, the set {S1(z), = € R} becomes again the 1-parameter group of
unitary operators givenin (15) (with C = 1). The parameter ¢ allows for a continuous

transition between the unitary (¢ = 0) and the nonunitary (¢ f= 0) regimes.
Our choice (19) yields in (12)

dy
— (i + ks 4 =Sy (23)

It makes sense to call (23) the entropic Schroedinger equation.  Again, in the limit
& = 0 we recover a Schroedinger—like equation,

dy
- ikB; = Sy. (24)

The ¢ term on the left-hand side of (23) can be regarded as a perturbative correction
to the derivative term in (24). We see that it breaks unitarity explicitly, already at the
level of the differential equation governing evolution. The physical reason for this
breakdown of unitarity is the presence of an external gravitational field, the strength of
which is parametrised by .

Altogether, Egs. (22) and (23) define the S—picture of quantum mechanics.

3.3 S ratherthan H

One might argue that there is no need for the S—picture because the H—picture suffices.
Indeed it has been known for long that a simple, “phenomenological” implementation
of nonunitarity within the H—picture consists in the addition of a nonvanishing imagi-
nary part to the time variable t in (10):

(i + g')k(;l_f = Hy. (25)

Here ¢ € R is a small (dimensionless) perturbation. What distinguishes (25) from its
entropic partner (23), and why is the latter to be preferred over the former?

In terms of the variables (t, H), invariance under translations in t is reflected in
the conservation of the Noether charge H. There exists no preferred origint = 0 for
time. While (25) certainly leads to energy dissipation, the natural physical quantity to
describe dissipation is the entropy, where one expects to find dS/dt > 0 instead of a
conservation law. In the variables (z, S) of (23), one expects to have no conservation
law at all; one actually finds®

dS ks
gt - kA —igH, (26)

as anticipated in (9). Now, from (8) and the Wick rotation t” = it, we conclude that it
is Im (dS/dt), and not Re (dS/dt), that accounts for dissipation. Indeed, recalling (5),
the real part of (26) is the usual thermodynamical definition of temperature, 8S/0F =

6Here we are assuming dH/dt = O for simplicity.



1/T . In other words, even if Re (dS/dt) = keH/k f= 0, this latter equation
alone does not account for dissipation. Since

- e - k
Im da’it = e H, (27

there will be no conservation law for S under evolution in t if ¢ f= 0. The
same conclusion applies to evolution in 7 . Furthermore, dissipation vanishes in the
limit ¢ = 0 as had to be the case. Finally, for Eq. (27) to be consistent with the
second law of thermodynamics, we need to choose ¢ < 0, as anticipated in (19). This
latter point is obvious in the Gaussian approximation (8), where H is a positive—
definite quadratic form, but it also holds true beyond that approximation, because H
is bounded from

below (if needed, one adds a constant to shift the energy of the groundstate, to make it
nonnegative).

As already remarked, the operators (22) are unitary iff ¢ = 0. Here we see that their
nonunitarity differs considerably in the two cases ¢ > 0 and ¢ < 0. Since z > 0, had
¢ been positive, this would have turned the S1+i:(z ) into a semigroup of contraction
operators [54], which would describe an unphysical antidissipative world. On the
contrary, the choice ¢ < 0 of (19) leads to the opposite behaviour, dilatation, which is
in agreement with the second law of thermodynamics.

In the H-picture, whenever the Hamiltonian is time—independent, there exist en-
ergy eigenstates ¢ satisfying Hp = Eg; the wavefunction y then factorises as w = ¢
exp(—iEt/k). A similar property holds in the S—picture, assuming that H remains t—
independent, hence also 7 —independent. In this latter case one can readily check that
the factorised wavefunctions

v= ¢ e(ife)rs’ (28)

where ¢ does not depend on 7, lead to the eigenvalue equation
S(ﬂ = SkB(ﬂ, (29)

with s € R playing the role of a dimensionless entropic eigenvalue. Again, eqgs. (28)
and (29) above are in perfect agreement with the second law of thermodynamics.

To summarise, unitarity is violated in the S—picture, where ¢ < 0 appears, but not
in the H—picture, where the evolution equations (10) and (11) remain strictly valid. As
such, this “change of picture” between H and S is an instance of Prigogine’s nonuni-
tary transformation [40]. The apparent dilemma, “Is unitarity violated or not?”, will
be resolved in section 3.6.

3.4 Uncertainty vs. the second law

It is common lore that, at least for large enough temperatures, quantum fluctuations
are negligible compared to thermal statistical fluctuations [31]. When stating that, in
the presence of a gravitational field, quantum fluctuations are inextricably linked with
thermal statistical fluctuations, one is postulating a new kind of uncertainty principle:
the indistinguishability between quantum and statistical fluctuations [9, 46, 47]. Here



we will provide an example of this indistinguishability. A look at Eq. (1) and a com-
parison of (23) with (10) leads one to conclude the following uncertainty relation:

ASAz” Kg. (30)

It is rewarding to see the product of thermal fluctuations found in (4) nicely matched
by the product of quantum-mechanical uncertainties (30). This is more than just a
coincidence—it is an expression of the fact that, in the presence of a gravitational
field, quantum uncertainties can be understood as statistical fluctuations possessing a
thermal origin [46, 47]. The above uncertainty relation leads to the factor 2kg replacing
the quantum of action k, in perfect agreement with the results of [45].

Since z is dimensionless, we can safely set Az = 1 in (30) with the certainty that
this numerical value will not change upon changing units. This leads to

AS > kg >0, (31)

which becomes the familiar second law of thermodynamics when written as

AS = 0. (32)

Strictly speaking, the equality in (32) is never attained, as ks > 0. However, in the
limit ke — O we can saturate the inequality in (32) and have AS = 0. The limit
ks — 0 has been argued to correspond to the semiclassical limit k — 0 of quantum
mechanics [1].7

We conclude that the quantum—mechanical uncertainty principle provides the re-
finement (31) of the second law of thermodynamics (32), to which it becomes strictly

equivalent in the semiclassical limit ks — 0.

3.5 Commutators vs. fluctuations

In the standard quantum-mechanical formalism, nonvanishing commutators account
for uncertainties. Fortunately for us, uncertainties can arise from fluctuations just as
well as from commutators. In keeping with our previous arguments, here we will take
statistical fluctuations as our starting point, in order to arrive at commutators.

We will illustrate our point by means of an example. Consider a thermodynamical
system described by the temperature T, the pressure p, the volume V and the entropy
S. Now, in the Gaussian approximation, the probability P of a fluctuation Ap, AV,
AT, AS is given by [31]

P=zlexp — 1 '
P = —— (—ApAV + AT AS) - (33)
2ksT
If we have an equation of state F (p, V, T) = 0 we can solve for the temperature to
obtain T = g(p, V). This allows us to rewrite (33) as

1 APAV ATAs™

"In order to conform to the conventions of ref. [50], in ref. [1] we have normalised the quantum of
entropy to the value 2zkg instead of the value 2kg used here.

P=7lexp - (34)




This somewhat clumsy expression can be further simplified if we assume our system
to be an ideal gas, pvV = SoT :®

pP= 271 exp — B ApAV + ATAS

2—kB —So pV T (35)
Finally define the dimensionless variables
.. . . .. S
p1:= —In B% . gi:=In \% . p2:=In —%ra 2= g (36)
where po, Vo, To, So are fixed reference values, to arrive at
P=2zltexp _ESI?B_ (Ap1Aq: + Ap2Ag2 ) . (37)

The argument of the above exponential is very suggestive. Indeed, let g1, g2 be coordi-
nates on the thermodynamical configuration space Y , and consider the (dimensionless)
symplectic form on the cotangent bundle T*Y given by

Q =dp1 Adgi +dp2 A dga. (38)

We have
Q=dh 0:=pidqgs +p2dg2. (39)

Now Api1Ag: + Ap2Agz equals the (symplectic) area of a 2—-dimensional open surface
D within T *Y,

5

ApiAgi + Ap2Ag2 = (dpiAdgi+dp2Adg)= do, (40)
D D

the boundary of which is 6D f= 0 (the surface D can be taken to be open
precisely because D is caused by a fluctuation). Applying Stokes’ theorem we can
thus write for the probability (37)

P=2z1texp

So 7 g (41)

2k b

= Z_l - dg = Z_l - g .
T o AR TN
Starting from fluctuations, which render commutators unnecessary in the thermody-
namical description, we have arrived back at a mechanical description in terms of a
symplectic form. The inverse of the latter gives Poisson brackets and, upon quantisa-
tion, commutators. This simple example illustrates the thermodynamical analogue of
quantum commutators.

8Here So is the mole number n times the gas constant R. Whether or not our system is an ideal gas is
immaterial, as the change of variables (36) can be modified appropriately without altering our conclusions.
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3.6 Quantumness vs. dissipation

To round up our presentation of quantum theory in thermodynamical terms, let us see
how suggestive Eq. (5) is of a closely related geometric construction.

Assume being given two copies of the complex plane C, one parametrised by the
complex coordinate z, the other by w. Then the set formed by the two coordinate

charts{z € C}and {w € C} defines an (analytic) atlas covering the Riemann sphere
S2, where z = 0 (respectively, w = 0) corresponds to the north pole (respectively,

south pole). The transition between these coordinates is w = —1/z, which coincides
with (5) up to dimensional constants.

In this way it is very tempting to identify (t, T ) with (z, w); of course, the latter are
real 2—-dimensional variables, while the former are real 1-dimensional. We may thus
regard the pair “time, temperature” as coordinates on a copy of the circle S that one
might call the circle of time, or the circle of temperature just as well [12]. Since the
circle S is a compact manifold, charting it smoothly requires at least two coordinate
charts (in our case T and t). In physical terms, temperature is the physical variable that
compactifies time, and viceversa [33]. The rotation (by 2z radians) of any circle St
joining the north and south poles spans the whole sphere S2. This same geometrical
rotation (now by an angle &) corresponds to the Wick rotation of (19). Thus Wick—
rotating the circle of time S* by all possible angles generates the whole sphere S2.

Now, the H—picture discussed in section 3.1 corresponds to viewing quantum me-
chanics inthe absence of dissipation. Asalready observed, this situation corresponds
to the absence of a gravitational field. On the Riemann sphere S2, the H—picture de-
scribes quantum mechanics with respectto an evolution parameter t that runs over the

real axis Im(z) = 0 within the coordinate chart {z € C} around the north pole. Dis-
sipation appears when Wick-rotating this axis by ¢ < 0 as done in (19) and changing

variablesas per (5), in order to work in the coordinate chart{w &€ C} around the south
pole; thisis how the S—picture of section 3.2 arises. The H—picture is purely conserva-
tive (because it satisfies the conservation law dH/dt = 0), the S—picture is dissipative
(because it satisfies the second law Im(dS/dt) = 0) . We realise that the S—picture
involves dissipation/gravity, while the H—picture involves neither. This is analogous to
the equivalence principle of gravitation, whereby the action of a gravitational field can
be (locally) turned off by an appropriate change of coordinates.

The foregoing arguments implement a relativity of the notion of quantumness vs.
dissipation by means of U(1)-transformations. However this U(1) symmetry of Wick
rotations is broken the very moment one selects a specific value for ¢. Hence the dis-
tinction between quantumness and dissipation (falsely) appears to be absolute, while
in fact it is not. In particular, just as gravity can be (locally) gauged away, so can dissi-
pation. Turn this argument around to conclude that quantumness, or alternatively dis-
sipation, can be gauged away, although never the two of them simultaneously. Quan-
tumness is gauged away in the limit ¢ — —=z/2, while dissipation is gauged away in
the limit ¢ — 0.° Moreover, our statement concerning the relativity of dissipation is
equivalent to our statement concerning the relativity of quantumness. A concept closely
related to this latter notion was put forward in [42]. Compare now the concept relativ-

9Since we have systematically dropped terms of order &2 and higher, some of our expressions may need
amendments before taking the limit ¢ — —z/2, but this does not invalidate our reasoning.
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ity of quantumness with its transpose quantum relativity, or quantum gravity as usually
called: beyond the pun on words, these two concepts appear to be complementary, in
Bohr’s sense of the term “complementarity”.

4 Discussion

Our approach to quantum mechanics is an attempt to meet the requirement (demanded
e.g. in [39, 46, 47], among others) that gravity be incorporated into the foundations
of quantum theory. The absence of a link between quantum and gravitational effects
in the standard formulation of quantum theory is a feature that has been claimed to lie
at the heart of some of the conceptual difficulties facing the foundations of quantum
mechanics.

Specifically, in this paper we have presented a thermodynamical approach (follow-
ing the classical theory of irreversible thermodynamics [34, 35, 40]) that provides a
viable answer to this request, at least in a certain limit to be specified below. The incor-
poration of gravitational effects in a discussion of the principles of quantum mechanics
is being addressed here through the appearance of dissipation as a gravitational effect.
In this way the time—reversal symmetry of quantum mechanics is destroyed. Nonuni-
tarity is implemented here by means of a Wick rotation; the latter is a consequence
of gravitation. In fact Wick rotations of the time axis are the quantum-mechanical
counterpart to the equivalence principle of gravitation. Just as gravity can be (locally)
gauged away, so can dissipation/quantumness.

For ease of reference, below we present Egs. (5), (22), (23), (27) and (30) again
in order to summarise the relevant expressions of the S—picture of quantum mechanics
developed in this paper. Wehave

et _Ks g (42)
t K T, r=In T,
which relates inverse time and temperature through a Wick rotation by a small, dimen-
sionless parameter ¢ < 0. The latter encodes the strength of an external gravitational
field; in the absence of gravitation we have ¢ = 0. Applying the change of variables
(42), the usual Schroedinger equation and the uncertainty principle become

dy H
kB; = (i—&)Sy, S= ; ASAz 7 kg, (43)
where the Hamiltonian operator H is replaced with the entropy operator S. This en-

tropic Schrodinger equation is solved by w(z) = S(z )w(0), where the evolution oper-
ators S(z) in the dimensionless parameter z, defined as

S)i=Texp =2 "s@H)di , (44)
ke o

satisfy a 1-parameter semigroup of nonunitary operators (above, T denotes operator
ordering along the parameter z~ > 0). Finally the expression
“ds ks
Im —

dt = —¢ (45)

k
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relates the rate of entropy production to the Hamiltonian operator, while at the same
time fixing the sign of ¢ to be negative, in compliance with the second law of thermo-
dynamics.

The previous equations hold in the limiting case of a weak gravitational field acting
on a quantum particle described by the same equations. In view of the smallness of ¢ in
(44), itis only for large values of = that one can hope to measure the appearance of uni-
tarity loss. It is important to realise that, by just switching back and forth between the
energy picture (standard quantum mechanics) and the entropy picture (as summarised
in Egs. (42), (43), (44) and (45)), either quantumness or dissipation can be gauged
away, though never the two of them simultaneously. This fact we take as a reflection
of the equivalence principle of relativity, whereby gravitational fields can be (locally)
gauged away by means of coordinate changes.

The postulate (5) (first presented long ago by de Broglie [7] without the Wick rota-
tion e¥) leads to considering time as emergent a property as temperature itself . In this
way unitarity violation can also be regarded as an emergent phenomenon.
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Abstract We elaborate on the existing notion that quantum mechasias emergent
phenomenon, by presenting a thermodynamical theory thétias to quantum me-
chanics. This dual theory is that of classical irreversthErmodynamics. The linear
regime of irreversibility considered here correspond$itogemiclassical approxima-
tion in quantum mechanics. An important issue we addresevisthe irreversibility
of time evolution in thermodynamics is mapped onto the quartmechanical side of
the correspondence.

1 Introduction

In his Nobel Prize Lecture, Prigogine advocated an intrigui/pe of “complementar-
ity between dynamics, which implies the knowledge of trijees or wavefunctions,
and thermodynamics, which implies entropy” [18]. Anotheskil Prize winner, 't
Hooft, has long argued that quantum mechanics must emesgedome underlying
deterministic theory via information loss [11]. EntropyoiEcourse intimately related
to information loss, hence one expects some link to existden these two approaches
to quantum theory.
In an apparently unrelated venue, the Chapman—Kolmogayeaten [6]

F(Zl)F(ZQ) = F(Zl + 2’2), (1)

is a functional equation in the unknowhn, wherez,, z; are any two values assumed
by the complex variable. It has the general solution

F,(z) = e, 2

with ¢ € C an arbitrary constant. Implicitly assumed above is the iplidation rule
for complex numbers. In other wordE] (2) solMes (1) withipace of number—valued
functions. If we allow for a more general multiplication eusuch as matrix multi-
plication (possibly infinite—dimensional matrices), titha general solutiol2) of the
functional equatior{1) can be allowed to depend paranadtyion az—independent,
constanimatrix or operator A acting on some linear space:

Fa(z) = e, (3)
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The functional equatio 1), in its different guises, wilhp an important role in what

follows. We see that its solutions are by no means uniquesrtttipg as they do on the
space where one tries to solve the equation. Moreover, waedlthat the question of
specifying one solution space or another will bear a clolsgioa to the question posed
at the beginning—namely, the duality between thermodyngiamd mechanics, on the
one hand, and the emergence property of quantum mechanitise other.

Let X and) respectively stand for the configuration spaces of a mechbsystem
and a thermodynamical system, the latter taken slightlyyainan equilibrium. We
will be interested in the quantum theory based¥nand in the theory of irreversible
thermodynamics in the linear regime based)oifl6]. There exist profound analo-
gies between these two theories|[[lL, 8,[15,19, 20]. Furthexnseeming mismatches
between the two actually have a natural explanation in tiéext of the emergent ap-
proach to quantum theoryl[2] 4]; closely related topics waaralysed long ago in [3]
and more recently in %, 710, 10,112,114] 17,121, 22]. One cfelraismatches concerns
the irreversibility of time evolution in the thermodynaraigicture, as opposed to its
reversibility in the quantum—mechanical picture.

The standard quantum formalism is invariant under timensleThis is reflected,
e.g, in the fact that the Hilbert space of quantum statégt’) is complex and self-
dual [23], so one can exchange the incoming sfateand the outgoing statg)| by
Hermitean conjugation, without ever stepping outside ilrergHilbert space.?(X).
On the other hand, the thermodynamical space of states tothplex Banach space
L'(Y) of complex—valued, integrable probability densities J — C. This is in
sharp contrast to the square—integrable probability teasiplitudesof quantum the-
ory. Now the topological dual space f3 () is the Banach spade™ () [23]. These
two spaces fail to qualify as Hilbert spaces. In other wofaisany |¢) € L'()) and
any (¢| € Loo(y)El the respective normp||; and||¢y|| are well defined, but nei-
ther of these derives from a scalar product. All there exssésnondegenerate, bilinear
pairing

() L=() x L'(Y) —C (4)
taking the covectofy| and the vectof¢) into the numbef|e):

(]¢) == /y 0. (5)

Under these circumstances there is no exchanging the imgostate ¢) € L'()) and
the outgoing statéy| € L>°()), as they belong to different spaces. Therefore time
reversal symmetry is lost. We see tldidpensing with the scalar product in quantum
theory is the same as dispensing with time reversal symmetry

We have in[[1[ 8] tocuhed on several basic issues concernihgrenodynamical
formalism for quantum theory. Specifically, a map has beersitacted between the
quantum mechanics of a finite number of degrees of freedorieane hand, and the
theory of irreversible processes in the linear regime, endtmer. The current paper
elaborates further on the properties ofh@rmodynamical dual theorfpr emergent

1We follow the notations of ref[1]. In particular, the roubtackets in¢) and(v| refer to L1 ()’) and
its topological dualL>° (}), respectively, while the angular brackets of the quantueehanical kety) and
bra (x| refer to L?(X) and its topological duaL?(X). Concerning the measure dnand)), see below.



quantum mechanics. The underlying logic might be briefly mamsed as follows:
i) it has been claimed that thermodynamics is complementadyal, to mechanics;
if) mechanics is symmetric under time reversal while thermadyios is not;
iii) dispensing with time reversal symmetry is the same as dsspgnvith the scalar
product in quantum theory;
iv) the representation of the Chapman-Kolmogorov equdfionr{ihe quantum me-
chanical Hilbert spacé? (') makes decisive use of the scalar product;
v) here we construct representations[df (1) on the thermodigahf@anach spaces
LY(Y) andL>(Y), where no scalar product is present.

For simplicity we will henceforth assum& and)’ both equal taR, the latter en-
dowed with the Lebesgue measure.

The aim of our paper is not to reformulate the theory of irreil@e thermodynam-
ics as originally developed in [16]. Rathere intend to exhibit irreversibility as a key
property of quantum—mechanical behaviour

2 Different representations for Chapman—Kolmogorov

2.1 The quantum—mechanical representation
In quantum mechanics it is customary to wrlie (1) as
U(tl)U(tg) = U(tl +t2), teR, (6)

and to call it thegroup propertyof time evolution. IfH denotes the quantum Hamilto-
nian operator (assumed time—independent for simpliditgn [6) is solved by matrices
such as[(B), here called time—evolution operators and dkfise

U(t) :=exp (—%tH) . (7)
The solutions ofl{(b) satisfy the differential equation
. dU . dU
' = HU(),  H= lha‘tzo. 8)

Comparing [¥) with[(B) we have = t and A = —iH/h. TheU(t) are unitary on
L?(R). In a basis of position eigenfunctiofss, the matrix elements df (¢) equal the
Feynman propagatokzs|U(t2 — t1)|x1) = K (x2,t2|z1,t1). In terms of the latter,
one rewrites the group properfy (6) as

K (x3,t3]x1,t1) = /d£C2K($C37753|$C2,752)K($2,t2|$1,t1)- 9

There is a path integral for the Feynman propagétor

m(tg):wg

Dz(t) exp {% /t2 de L [x(¢t), :C(t)]} , (10)

ty

K (x2,ta|z1,t1) = /

I(t] ):Il
whereL is the classical Lagrangian function.

To summarise, the operatofs (7) provide a unitary repratientof the commuta-
tive group [6) on the Hilbert spade?(R).



2.2 Intermezzo

Here we recall some technicalities to be used later; a goodrgéreference is [23].

LY(R) is the space of all Lebesgue measurable, absolutely irtlegfanctions
¢ : R — C, i.e, functions such thaf;, [¢(y)|dy < co. This is a complex Banach
space with respect to the norfy||; = [; |¢(y)|dyE A a denumerabléasis (a
Schauder basis) exists far (R).

The topological dual space t'(R) is L>°(R), a duality between the two being
given in Eqgs. [(®),[(6). L>°(R) is the space of all Lebesgue measurable functions
¥ : R — C that are essentially bounddds., functions that remain bounded on all
R except possibly on a set of measure zdre® (R) is a Banach space with respect to
the norm|| - ||, defined as follows. A nonnegative numbkere R is said to be an
essential upper bound @f whenever the set of poinis € R where|y(y)| > « has
zero measure. The norf|| is the infimum of all those:

[|¥]|oo := inf {a € R* : a essential upper bound of 1/1} . (12)

A key property is that one can pointwise multiply € L>(R) with ¢ € L!(R) to
obtainy¢ € L'(R) becausefy, [v¢|dy < oo; this is used decisively in the pairinigl (5).
Another key property of.>°(R) is that it admits no Schauder basis.

The spacel.}(R) is canonically and isometrically embedded into its topalab
bidual,i.e., L(R) c L*(R)**. SinceL!(R) is nonreflexive, this inclusion is strict, a
property that will be used later ﬁﬂFinaIly, the absence of a scalar productiof{R)
andL°°(R) does not prevent the existence of unitary operators on ttienfatter being
defined as those that preserve the corresponding norm.

2.3 The representation in irreversible thermodynamics

In statistics, the Chapman—Kolmogorov equatidn (1) waskmeiwn before the advent
of quantum theoryl[6]. Here one is given a certain measureespahere assumed
equal toR endowed with the Lebesgue measure) and the correspondinagBapaces
L'(R) and its topological duaL>(R). These two will become carrier spaces for
representations of the Chapman-Kolmogorov equadiion (1).

One callsf; (2; 3:) the conditionalprobability that the random variablee R

takes on the valug, at timer, provided that it took on the valug at timer;. Then
one usually writes the Chapman—Kolmogorov equafibn (1)rimeaner similar to{9),

n (ys y1> :/dy2 " (ys‘m) f (yz y1>7 (12)
3171 73172 T2l

which expresses the Bayes rule for conditional probagditiA representation of this
equation by means of linear operatof&-) on L*(R) and onL>*(R) would thus have
to satisfy the algebra

U(T)U(T2) =U(T1 + T2), (13)

2Just for comparison, the norm on the Hilbert spaé¢R) is ||¢|]2 := ([ \¢(y)|2dy)1/2.
3The topological complementary spacelib(R), i.e., the spaceZ such thatl. ' (R)** = L1 (R) & Z, is
known in the literature, but it will not be necessary here.



which is again a presentation @1 (1). We can immediately oéathe matrix elements
of U(r):
Y2 | Y1
Gl = ) = £ (2] ). 14)

21T

As opposed to the quantum—mechanical case, the carriex fpabe representation of
the algebra{113) is Banach but not Hilbert. The reason farithihat one deals directly
with probabilities rather than amplitudes.

The question arises: if one were to express the mairix (1heifiorm given by the
general solutior{3), then clearly one would have: +, but what would the operator
A be? It is mathematically true, though physically unsatisfey, to claim that4
would be (proportional to) the logarithm of(7). One of the purposes of this paper
is to determine the operatat explicitly, and to interpret it in the terms stated in the
introduction. However, in order to do this, a knowledge & tlonditional probabilities

f1 (%j; yl) is needed.

T1
There are a number of instances in which pfje(zz ‘ :) are known explicitly.

An important example is that aflassical, irreversible thermodynamics of stationary,
Markov processes in the linear regimfeor such processes one has [16]

2
f Y2| Y1) _ 1 s/kp ox s (y2 — e_’Y(Tz—n)yl)
' 217 V21 V1 — e—2v(r2—71) P 2kp 1 —e2v(r2—71)
The notation used here is that 61 [1]. Specifically; is Boltzmann’s constant, the

entropy S is a function of the extensive parameigrand we expand in a Taylor
series around a stable equilibrium point. Up to quadratimsewve have

]. (15)
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Moreover, the assumption of linearity implies the follogsiproportionality between
the thermodynamical forcg := d.S/dy and the fluxy := dy/dr it produces|[15]:

g=LY, L>0. (17)

The Onsager coefficiedt must be positive for the process to be dissipative. Finally
v := sL. Sometimes one also usfs= L~!, soy = s/R.

The following path—integral representation for the coiadial probabilities[(15) of
these models is notewortHy [16]:

y(T2)=y2 1 T2

f (” yl) - / Dy(7) exp{—— / drﬁ[y;(ﬂ,y(f)]}. (18)
2171 y(T1)=y1 2kp T1

The above exponential contains tirermodynamical Lagrangiad, defined as

dy

L) = 5 [P0+ 220, o= T (19



The path integral{18) is the thermodynamical analogu¢ @f.(The corresponding
thermodynamical momentum, equalsRdy/dr, whereR plays the role of a mass,
and thethermodynamical Hamiltonia# corresponding td (19) reads
_ Ly Ry? 2
H=gpty— 5V (20)
It must be borne in mind, however, that the dimensions§ ahd# are entropy per unit
time. With this caveat, we will continue to cglf a Hamiltonian.

2.4 Mapping irreversible thermodynamics into quantum mectan-
ics

For the processes considered[inl (15) we claim that one camedgfierators o ! (R)
and onL>°(R)

2kp

with A suitably chosen, such that their matrix elements coinciile thiose given in
(@3). Hence thé/(r) will provide a representation of the algedral(13). In whilbfes
we construct{/(7) explicitly, but one can already expect the argunteraf the expo-
nential [21) to be someperatorversion of the thermodynamical Hamiltoniimction
given in [20). For this reason we have not distinguishedtimtally between the two.
This operatof{ will also turn out to be (proportional to) the unknown operat men-
tioned after eq.[(14). Froni (21) it follows that the thermoésnical analogue of the
guantum—mechanical equatibmn (8) is

dU(r)
dr

We can resort to our previous wotlkl [1] in order to identify thgerator in its
action onL!(R) and onL>(R). In [1] we have established a map between quantum
mechanics in the semiclassical regime, on the one hand,henth¢ory of classical,
irreversible thermodynamics of stationary, Markov preessin the linear regime, on
the other hand. In the mechanical picture, the relevantdragjan and Hamiltonian
functions are

2 2 2
_m (dz mw o 1l 5 mw®
L_2(dt) o v He=gopt e (23)

U(T) = exp (—Lm) (21)

dU(r)
dr T:O.

—2/€B :HU(T), H:—2k3 (22)

Comparing them with their thermodynamical partnérd (19) &), we see that the
mechanical and the thermodynamical functions can be wamsfd into each other if
we apply the replacemets

mw S

w —_— > —
s h 2kB 9
4While the first two replacements ¢f{[24) are dimensionallgrect without any further assumptions, the
third identification also requires thatandy have the same dimensions. Since this need not always be the

case, a dimensionful conversion factor must be understeadglicitly contained in the replacement« vy,
whenever needed.

T <y, (24)




as well as the Wick rotation
T =it (25)

Furthermore, Boltzmann’s constan is the thermodynamical partner of Planck’s con-
stanth multiplied by 2 [19]:

As a consistency check one can apply all the above repladsrt®iif) in order to
arrive at

Ult) = exp (—ihtH) & exp Gﬁﬂ) — U(7). 27)

However, we still have to identify the operat#f in its action on thermodynamical
states. This will be done in sectibnB.1.

2.5 Incoming statesvs. outgoing states

In principle, thermodynamical states are normalised podita densities, hence ele-
ments of L1(R). However, as we will see shortly, this viewpoint must be estl
somewhat. For this purpose let us call the elemenfs'¢R) incoming statesincom-
ing linear operator®);, are defined

Om : LY(R) — LY(R), (28)

so as to map incoming statés) € L!(R) into incoming state®;,|¢) € L'(R).
Incoming states are postulated to evolve in time according t

d
- 2k3¥ = Hinl9), (29)
-
whereH;, is an incoming linear operator, to be identified presently.
The space of outgoing states is the topological dudl'giR), henceL>(R). Out-

going linear operator®,,,; are similarly defined
Oout : L= (R) — L*™(R), (30)

in order to map outgoing statég| € L°>°(RR) into outgoing state&)|Oput € L= (R).
The operato©! that is transpose to an incoming operaf®y; is defined on the topo-
logical dual space:

OL : L®(R) — L™ (R). (31)

In this way O is actually an outgoing operat(ﬂ’outﬁ By definition the transpose
satisfies

(V|O8h]6) = (Y|Owml¢), V(¥ € L¥(R), V|$) € L'(R). (32)

5Since the topological bidudlZL! (R))** contains more than just!(R), we stop short of stating that
“The transpos&? . to an outgoing operata®. is an incoming operatad;,,”. The previous statement,
trivially true in finitely many dimensions and still true di¥ (R), no longer holds in our context, with the
consequence that twice transposing does not give back itiiealroperator. We will see in sectin B.2 that

this fact has far-reaching implications.




What equation should govern the time evolution of outgotiages? Clearly it can
only be
(wl

therefore
—2kB (¢|¢ (Y[ HEID) + (| Hin|B). (34)

The right—hand side of the above is generally nonzero: itesges the irreversibil-
ity property of time evolution in thermodynamics. This isa try from the time—
symmetric case of standard quantum mechanics, vihid(éy|¢))/dt = 0.

One further point deserves attention. In standard quantechanics on.?(R),
the matrix elementy|O|¢) = [ dz¢*(2)Og¢(x) naturally carries the dimensions of
the operato®; here both)* (z) and¢(x ) have the dimensiofx]~'/2 of a probability
amplitude onR. In the thermodynamical dual to quantum theory, the inconsitate
|¢) € L*(R) carries the dimensiofy] ~! because it is a probabilityensity while the
outgoing statéy| € L>°(R) is dimensionlesbecause it imot meant to be integrated
on its own. It is only upon taking the pairingl (5) th@at| will be integrated against
O|#). So the dimensions dfi|O|¢) are again correct, although the dimensional bal-
ance between incoming and outgoing states that existéd(iR) has disappeared.

Altogether, dispensing with the scalar product in quantheoty is the same as
dispensing with time reversal symmetry. Moreover, dispensith the scalar prod-
uct has the consequence that, as thermodynamical statesust regard not just the
elements of_! (R) but also those of its topological dua (R).

3 The harmonic oscillator representation of irreversible
thermodynamics
For mechanics we use tlitmensionlessoordinater € R. Then the quantum har-

monic oscillator equation oh?(RR) reads

(- s o)) vt e @

wheree is a dimensionless energy eigenvalue.

3.1 The oscillator on the Banach spaces!(R) and L>°(R)

For thermodynamics we use thenensionlessoordinate; € R. Then the dimension-
less thermodynamical momentum is representedidgdy, and the equation for the
thermodynamical oscillator reads

(5 +0)ut) =out)  ser (36

Above,o is a dimensionless eigenvalue (entropy per unit time), lvhie require to be
real for physical reasons. With respect[iol(35), the onlyngesain [36) is the sign of



the potential term (se€_(119) arid(20)). Elg.1(36) identifiesaheratof{ explicitly in
its action onL!(R) and L>°(R), a question posed in sectibn.4. Specifically, for the
action of the Hamiltonian on the initial states we have

d2
Hin = “aE y?: LY(R) — L*(R). (37)

The operatof{,; is formally the same a#,,,, but it acts on the dual space:
Houwt = ——5 —y° : L°(R) — L>(R). (38)

In order to solvel[(36) we first look for a factorisationwofy) in the form
w(y) = h(y) exp(ay®),  aeC, (39)
wherex is some constant to be picked appropriately. WitH (3911 (8& finds

(f—;h(y) + 4aydiyh(y) + [2a+0) + (4a® + 1)y?] h(y) = 0. (40)
The choicer = i/2 simplifies [40) considerably:

L ) + 2y h(y) + i+ o)h(y) = 0. (41)
dy? dy
Finally the change of variables= ei%y reduces[(4]1) to

L) = 2L - (1= ioi() = 0 2)

where we have definddz) := h (e—igT" z) = h(y). Now (42) is a particular instance
of the Hermite differential equation on the complex plane,
H"(2) —2zH'(2) + 2vH(2) = 0, veC. (43)

In our case we havery = —1+io with o € R, sov ¢ N. Whenv ¢ N two linearly in-
dependent solutions to the Hermite equation are given biémmite functiondd,, (z)
andH,(—z), where[138]

o (z) = 2r(1_u) n; (_1)715!(77) (22)". (44)

The above power series defines an entire functionefC for any value ofv € C. Its
asymptotic behaviour i§ [13]:

iy
v ﬁe Z_V_l 22

H,(z) ~ (2z2) (=) e”, |z| = o0, w/4<arg(z)<5mw/4. (45)




In @8) we have dropped subdominant terms, keeping onlyahdihg contributions;
the angular sector 7/4 < arg(z) < 57 /4 isimposed on us by the change of variables
z = elf y made above foy € R.

Altogether, two linearly independent solutions[fal(36)responding to the eigen-
valueo € R are given byw* (y), where

wo—i(y) = H,%Jr%o (:I:ei%y) el /2, (46)
By (@8), their asymptotic behaviour foy| — oo is

. 3x —l4ioc —m(o+i)/2 Can 1
)~ (s205%) 1 F v YR ()
2

&y

e W2 (47)

We are looking for eigenfunctions withib' (R) and/orL>°(R). Eqn. [4T) proves that
wy (y) € L*(R) butwy (y) ¢ L' (R).

3.2 The spectrum

Summarising, the operaterd?/dy? — 32 on L>°(R) has an eigenvalue spectrum con-
taining the whole real lin®R [ This spectrum is twice degenerate, the (unnormalised)
eigenfunctions corresponding to € R being given in Eq. [[46). The same opera-
tor acting onL!(R) has a void spectrum. This latter conclusion is not as tragjit a
might seem at first sight—on the contrary, everything fitsetbgr once one realises
that evolution in thermodynamical time is irreversible, and that the spaéé(R),
which admits a Schauder basis, has a topological 86&IR) admitting no Schauder
basis. Let us analyse these facts from a physical and fronttzematical viewpoint.

Physically, an empty spectrum @ (R) just means thahere can be no incoming
eigenstatesMoreover, no incoming state can ever evolve into an incgreigenstate
under thermodynamical evolution. This is an expressiomre¥ersibility. However, as
a result of evolution irr, one can perfectly well obtaioutgoingeigenstates. The latter
remain outgoingigenstatesinder thermodynamical evolution.

Mathematically, in standard quantum mechanicsI3(R) one is used to taking
the transpose of a matrix by exchanging rows with columnsplifitly understood
here is the existence of Schauder bases in the spaté(&f) and in its topological
dual (againZ?(RR)). Once one diagonalises an operator, how can it be thagitspose
is not diagonal as well? While this cannot happer.#{R), this can perfectly well
be the case when dealing with the spaéégR) and L>°(R), becausd.!(R) admits
a Schauder basis whil&>(R) does not In turn, this is a consequence of the fact
that we are renouncing probability densitsnplitudes(elements ofZ.?(R)) in favour
of probability densitiegelements of.L!(R)), as befits a thermodynamical description
of quantum theory.

One would like to identify the thermodynamical analoguehef uantum mechan-
ical vacuum state; one expects to somehow map the quantuchameal state of least
energy, or vacuum, into the thermodynamical state of maxéntopy. Let us recall

6Actually the eigenvalue spectrum of this operator ot (R) also contains nonreal eigenvalues (see
(@8)), but here we are only interested in real eigenvalues.
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that the (unnormalised) quantum-mechanical vacuum waeétn is exp(—22/2).
The Wick rotation[(2b) introduces the imaginary unit, giyims the ternexp(iy?/2) in
#@8). Nowr = —1/2 + ic/2 = 0 only wheno = —i, a possibility we have excluded
per decree. Let us temporarily sidestep this decree andhabidet

( d? 2) +iy?/2 _ . Fiy?/2
— ==ty e = F1e (48)
dy?

is very reminiscent of the equation governing the quantuechanical vacuum. The
thermodynamical density corresponding to the statg+iy?/2) equals the constant
unit function onR, which is nonnormalisable undéfr- ||; in L*(R) but carries fi-
nite norm undet]| - || in L>°(R). As a perfectly uniform probability distribution,
exp(=iy?/2) is the thermodynamical state that maximises the entréiythe eigen-
states in[(46) are thermodynamical excitations thereafc@éhey carry less entropy.
Of course, we cannot allow the eigenvalues: +i within our spectrum, but the above
discussion is illustrative because, hy1(47), all our thedymamical eigenstateE (46)
tend asymptotically to a linear combination of the state§? exp [+1 (o In(y) + y?)].
In other words, all our thermodynamical eigenstates camtegpreted afluctuations
around a state of maximal entropy

3.3 Irreversibility vs nonunitarity

A key consequence of irreversibility is nonunitarity. Camy to the operator& (¢) of
(@), which are unitary o.?(R), the operatoré((7) of (21) arenorunitary onL>°(R).

Nonunitarity is readily proved. Leb, € L*°(R) be such that{,, w, = cw,.
Sinces € R we have, by[(211),

U(T)w, = exp (—1) W, To € R, (49)
o%n
hence
TO
eyl =0 (=52 ) wnllo 70 € R, (50)
B

which proves our assertion. To summarise: combining (ZXJ) and [38) we find,
after reinstating dimensional factors, that the operators

T 1 d2 R~?

U(T) = exp [% (ﬁd—yQ + TVQQ)] ; T 20, (51)
provide anorunitary, infinite—dimensional representation of the ChapakKolmogorov
semigroup[(IB) or.>°(R). The spacd.!(R) also carries an infinite—dimensional rep-
resentation of (13) on which the operatdrs](51) act.

It is interesting to observe that the eigenfunction&in (48)ich we have discarded
for reasons already explained, circumvent the above precéilise their eigenvalues
are purely imaginary. Each one of them actually provides @dirhensional unitary
representation of{13) oh>(R).

11



4 Discussion

Classical thermodynamics is the paradigm of emergent iggeolt renounces the de-
tailed knowledge of a large number of microscopic degredseeflom, in favour of a
small number of macroscopic averages that retain only samaese—grained features
of the system under consideration. It has been claimed ititérature that quantum
mechanics must be an emergent thebh/ [2, 4, 11]. As one fupteee of evidence in
support of this latter statement, in this paper we have dgesl a thermodynamical
formalism for quantum mechanics.

In the usual formulation of quantum theory, one is concemigd the matrix el-
ements(1)|0]¢) of some operato®, where the incoming state) belongs toL?(R)
and the outgoing stat@)| belongs to the topological dual space, agatfiR).

In the thermodynamical theory that is dual to quantum meiclsaone is again
concerned with matrix elements of the typg|O|¢). However, now the incoming
state is not square integrable but just integrallec L' (R), while the outgoing state
(¢| € L>=(R) belongs to a totally different space. Neithef(R) nor its topological
dual L>°(R) qualify as a Hilbert space, because their respective noomsoti derive
from a scalar product; they are just Banach spaces. The edbséra scalar product
is the hallmark of irreversibility. Indeed the thermodyriesithat is dual to quantum
mechanics is that of irreversible processes (considenegihé¢he linear regime).

One is often interested in the case when the opetaisrthe time evolution opera-
tor U connecting the incoming and the outgoing states. Not bdioged to exchange
the incoming and the outgoirggatesn the transition probability:|U|¢), because they
belong to different spaces, emphasis falls onglexzesd/ connecting these two. Ir-
reversibility manifests itself through the nonunitariitibe representation constructed
here for the Chapman—Kolmogorov equation. The latter ifuthetional equation sat-
isfied byl/.

Incoming state$p) € L*(R) are probability densities, as opposed to the probability
densityamplitudes¢) € L?(R) of standard quantum theory. Outgoing states €
L>(R) have a different physical interpretation. The nofim ||, can be regarded
as a probability density that isot meant to be integrated. Indeed a general function
1 € L°°(R) need not be normalisable under the noffms|; and|| - || on L' (R) and
L?(R) respectively. There is nothing unusual about this—sdatiestates in standard
quantum theory also give rise to nonnormalisable prolgldtnsities.

As an example, in sectidn 3.1 we have worked out the spectouthé thermody-
namical harmonic oscillator. This implies solving the Ssdinger equation for the
repulsivepotentialV (y) = —y?2, the wrong sign being due to the Wick rotation con-
necting irreversible thermodynamics to mechanics. Noprisingly, the spectrum is
empty when diagonalising the Hamiltonian on the spat@R), while exhibiting rich
features on the spade™(R). In particular, all our eigenstates turn out to be nonnor-
malisable under the nornis: ||; and|| - ||> on L'(R) and L?(R) respectively, hence
they all are analogous to scattering states in standarduueaheory. However all our
eigenstates are normalisable under the njori. of L>(R).

An apparently striking feature is the reluctance of incognitates to buileigen-
statesof the Hamiltonian, as seen in sectionl3.2. This apparefitdlify disappears
once one realises thatitgoingstates make perfectly good eigenstates. Furthermore,

12



the existence of outgoing states that cannot be reachedebiyntle evolution of any
incoming state whatsoever is another sign of irreverggbiliVe cannot renounce ir-
reversibility because we have programatically dispensédtine reversal symmetry.
Hence incoming eigenstates must go.

Exeunt omnes.
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Abstract: Quantum mechanics has been argued to be a coarse-graining of some underlying
deterministic theory. Here we support this view by establishing a map between certain solutions
of the Schroedinger equation, and the corresponding solutions of the irrotational Navier-Stokes
equation for viscous fluid flow. As a physical model for the fluid itself we propose the quantum
probability fluid. It turns out that the (state-dependent) viscosity of this fluid is proportional to
Planck’s constant, while the volume density of entropy is proportional to Boltzmann’s constant.
Stationary states have zero viscosity and a vanishing time rate of entropy density. On the other hand,
the nonzero viscosity of nonstationary states provides an information-loss mechanism whereby
a deterministic theory (a classical fluid governed by the Navier-Stokes equation) gives rise to an
emergent theory (a quantum particle governed by the Schroedinger equation).

Keywords: quantum mechanics; irreversible thermodynamics

1. Introduction

Interaction with an environment provides a mechanism whereby classical behaviour can emerge
from a quantum system [1]. At the same time, however, dissipation into an environment can change
this picture towards the opposite conclusion. Indeed certain forms of quantum behaviour have
been experimentally shown to arise within classical systems subject to dissipation [2,3]. Now systems
in thermal equilibrium are well described by classical thermostatics, while small deviations from
thermal equilibrium can be described by the classical thermodynamics of irreversible processes [4].
It is sometimes possible to model long-wavelength dissipative processes through the dynamics of
viscous fluids. Fluid viscosity provides a relatively simple dissipative mechanism, a first deviation
from ideal, frictionless behaviour. Two relevant physical quantities useful to characterise viscous
fluids are shear viscosity # and the entropy per unit 3-volume, s [5]. In a turn of events leading back
to the Maldacena conjecture [6] it was found that, for a wide class of thermal quantum field theories
in 4 dimensions, the ratio 7 /s for the quark—-gluon plasma must satisfy the inequality [7]

S h

> ks’ )

» |3

The predicted value of the ratio #/s for the quark-gluon plasma has found experimental
confirmation [8]. The simultaneous presence of Planck’s constant 71 and Boltzmann’s constant kp
reminds us that we are dealing with theories that are both quantum and thermal.

One might be inclined to believe that these two properties, quantum on the one hand, and thermal
on the other, are separate. One of the purposes of this paper is to show that this predisposition must
be modified, at least partially, because the terms quantum and thermal are to a large extent linked
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(see, e.g., [9-11] and refs. therein). In fact, that these two properties belong together follows from the
analysis of refs. [1,3], even if the conclusions of these two papers seem to point in opposite directions.

In this article we elaborate on a theoretical framework that can accomodate the ideas of
the previous paragraph. In plain words, this framework can be summarised in the statement
quantum = classical + dissipation, although of course this somewhat imprecise sentence must be made
precise. To begin with, we will restrict our analysis to quantum systems with a finite number of
degrees of freedom. So we will be dealing not with theories of fields, strings and branes, but with
plain quantum mechanics instead.

In the early days of quantum mechanics, Madelung provided a very intuitive physical
interpretation of the Schroedinger wave equation in terms of a probability fluid [12]. Decomposing
the complex wavefunction ¢ into amplitude and phase, Madelung transformed the Schroedinger
wave equation into an equivalent set of two: the quantum Hamilton-Jacobi equation, and the
continuity equation. Further taking the gradient of the phase of ¢, Madelung arrived at a velocity
field satisfying the Euler equations for an ideal fluid. In Madelung’s analysis, the quantum potential
U is interpreted as being (proportional to) the pressure field within the fluid. It is important to stress
that Madelung’s fluid was ideal, that is, frictionless. Independently of this analogy, Bohm suggested
regarding the quantum potential U as a force field that the quantum particle was subject to, in
addition to any external, classical potential V that might also be present [13].

There exists yet a third, so far unexplored alternative to Madelung’s and Bohm's independent
interpretations of the quantum potential. In this alternative, explored here, the quantum potential is
made to account for a dissipative term in the equations of motion of the probability fluid. The velocity
field no longer satisfies Euler’s equation for an ideal fluid—instead it satisfies the Navier—Stokes
equation for a viscous fluid. It is with this viscosity term in the Navier-Stokes equation, and its
physical interpretation as deriving from the Schroedinger equation, that we will be concerned with
in this paper.

It has long been argued that quantum mechanics must emerge from an underlying classical,
deterministic theory via some coarse-graining, or information-loss mechanism [14-20]; one refers
to this fact as the emergence property of quantum mechanics [21]. Many emergent physical theories
admit a thermodynamical reformulation, general relativity being perhaps the best example [22,23].
Quantum mechanics is no exception [24,25]; in fact our own approach [9,26] to the emergence
property of quantum mechanics exploits a neat correspondence with the classical thermodynamics of
irreversible processes [4].

In this article, the dissipation that is intrinsic to the quantum description of the world will
be shown to be ascribable to the viscosity 1 of the quantum probability fluid whose density equals
Born’s amplitude squared [i|?>. Moreover, the viscosity 7 will turn out to be proportional to 7,
thus vanishing in the limit # — 0. Now mechanical action (resp. entropy) is quantised in units of
Planck’s constant 71 (resp. Boltzmann’s constant kp), and Equation (1) contains these two quanta.
(Concerning Boltzmann's constant kp as a quantum of entropy, see refs. [23,27]). Hence an important
implication of our statement quantum = classical + dissipation is that quantum and thermal effects are
inextricably linked.

Some remarks on conventions are in order; we follow ref. [5]. The viscosity properties of a fluid
can be encapsulated in the viscous stress tensor 0/,

1

0v; 0dvy 2 _ dv ov

/ i k 1 1

f gy (9990 25 90 gy 00 2
Uik U(axk ox; 3 zkaxl>+g lkaxl/ ()
where # (shear viscosity) and ¢ (bulk viscosity) are positive coefficients, and the v; are the components
of the velocity field v within the fluid. Then the Navier-Stokes equation reads

N v Ly, T2y L(r 41 V) =
TR AR p(g+3)V(v v) = 0. 3)
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Here p is the pressure, and p the density of the fluid. In the particular case of irrotational flow
considered here, the Navier-Stokes equation simplifies to
ov 1 1 o2 / 4
= ZVp— L = = £ 4
ot VIV Vp - D=0, =g @
For notational simplicity, in what follows we will systematically write # for the viscosity
coefficient i1’ just defined, bearing in mind, however, that we will always be dealing with Equation (4)
instead of Equation (3).
The above must be supplemented with the continuity equation and the equation for heat flow.
If T denotes the temperature and x the thermal conductivity of the fluid, then the equation governing
heat transfer within the fluid reads

as , 0U; B

We will use the notations Z and S for mechanical action and entropy, respectively, while the
dimesionless ratios Z /% and S /2kp will be denoted in italic type:

[:=— Si=—. (6)

The factor of 2 multiplying kp, although conventional, can be justified. By Boltzmann's principle,
the entropy of a state is directly proportional to the logarithm of the probability of that state. In turn,
this is equivalent to Born’s rule:

(Boltzmann) S =kpln <"ZZ)’2> > [p]® = o> exp <I§3) (Born). (7)

Above, || is the amplitude of a fiducial state ¢y with vanishing entropy. Such a fiducial state is
indispensable because the argument of the logarithm in Boltzmann’s formula must be dimensionless.
It is convenient to think of 1y as being related to a 3-dimensional length scale [ defined through

Li= [, ®)
One can also think of ¢y as a normalisation factor for the wavefunction.
2. The Physics of Navier-Stokes from Schroedinger

2.1. Computation of the Viscosity

Our starting point is Madelung’s rewriting of the Schroedinger equation for a mass m subject to
a static potential V = V(x),

1h%—lf + h—vzlp - Vy =0, )
by means of the substitution
P = Poexp (S + I> = oA exp <;II) , A:=eS. (10)

This produces, away from the zeroes of ¢, an equation whose imaginary part is the continuity
equation for the quantum probability fluid,

BS

5+ ! —VS-VI+ fv2z =0, (11)
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and whose real part is the quantum Hamilton-Jacobi equation:

oT 1 )
§+%(VI) +V+U=0. (12)
Here 2’ < )
__mvaA_ 2, o2
U= -2 = [(VS) 1V 5} (13)

is the quantum potential [13]. Next one defines the velocity field of the quantum probability fluid
vi= lVI (14)
= VL.

Then the gradient of Equation (12) equals

ov 1 1

b . - — =0. 1

8t+(v V)v+mvu+mvv 0 (15)
The flow (14) is irrotational. We will sometimes (though not always) make the assumption

of incompressibility, V -v = 0. This reduces to the requirement that the phase 7 satisfy the

Laplace equation,

V2T = 0. (16)

We will see in Equation (23) that the above Laplace equation is an equivalent restatement of the
semiclassicality condition.

At this point we deviate from Madelung’s reasoning and compare Equation (15) not to Euler’s
equation for an ideal fluid, but to the Navier-Stokes equation instead, Equation (4). For the
correspondence to hold, we first identify (Vp)/p with (VV)/m. Second, it must hold that

Lou+ vy —o. (17)
m o

That is, the gradient of the quantum potential must exactly compensate the viscosity term in the
fluid’s equations of motion. Thus frictional forces within the fluid are quantum in nature. Altogether,
we have established the following:

Statement 1. Whenever condition (17) holds, the gradient of the quantum Hamilton—Jacobi equation, as given
by Equation (15), is a Navier—Stokes equation for irrotational, viscous flow:

ov

Vo v vyve Ivey s tup =
at—l—(v V)v va+pr—0. (18)

Here the pressure p of the quantum probability fluid and the mechanical potential V are related as per

1 1
while the density p of the fluid is given by
m m
o =mlp|* = l—3e25 = 1—3A2. (20)

Given V, m and p, the equation (Vp)/p = (VV)/m defines a vector field p = pVV/m, that
however need not be a gradient field Vp. We will see later (statement 4) that, at least in the classical
limit, the above equation is integrable, thus defining a scalar function p such that p = Vp.

The order of magnitude of the viscosity coefficient # can be inferred from Equations (13), (14)
and (17): since U is O(h?) and T is O(h), we conclude:
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Statement 2. Whenever condition (17) holds, the viscosity coefficient 1 of the quantum probability fluid is

proportional to Planck’s constant:
1

n= 1—30 (h). (21)

It is worthwhile stressing that Equation (21) only provides an order of magnitude for # as

a function of i—namely, 7 is a linear function of 7. The denominator /°> has been included for

dimensional reasons, while a dimensionless factor multiplying the right-hand side of Equation (21) is

allowed. (This dimensionless factor is undetermined, in the sense that our argument does not provide

its precise value—not in the sense that the viscosity 7 is undetermined.) Moreover, this dimensionless

factor will generally depend on the quantum state under consideration, because both U and 7

are state-dependent. Although the viscosity of the quantum probability fluid depends, through

an undetermined dimensionless factor, on the quantum state, the order of magnitude provided by
Equation (21) is universal.

2.2. Viscous States vs. Dissipation—Free States

Condition (17) need not be satisfied by all wavefunctions, as the functions S and 7 are already
determined by the quantum Hamilton—Jacobi equation and by the continuity equation. Thus our next
task is to exhibit a class of quantum-mechanical wavefunctions for which condition (17) is indeed
satisfied, either exactly or at least approximately.

2.2.1. Exact Solutions

Equation (17) integrates to
U+ gvzz —Co(t),  Colt) €R, 22)

where the integration constant Cy(f) may generally depend on the time variable. Let us for simplicity
set Co(t) = 0. Using (13) and (20) the above becomes
3
%WI — e [(VS)Z + vzs] : (23)
One can regard (23) as a Poisson equation V2@ = o, where the role of the electric potential
@ is played by the phase Z and that of the charge density ¢ is played by the right-hand side
of Equation (23). The bracketed term, (VS)? + V25, is actually proportional to the Ricci scalar
curvature of the conformally flat metric g;; = e’s(")(S,»j, where J;; is the Euclidean metric on R3.
Equation (23) has been dealt with in ref. [28], in connection with the Ricci-flow approach to emergent
quantum mechanics; it will also be analysed in a forthcoming publication. For the moment we will
relax the requirement that Equation (17) hold exactly, and will satisfy ourselves with approximate
solutions instead.

2.2.2. Approximate Solutions

Under the assumption that p is spatially constant, Equation (17) integrates to
U(x,t) = Cy(t), Ci(t) €R, (24)

where Equations (14) and (16) have been used; the integration constant Ci(t) may however be
time-dependent. Equivalently, one may assume that S in Equation (23) is approximately constant as a
function of the space variables, hence 7 is an approximate solution of the Laplace Equation (16). Still
another way of arriving at Equation (24) is to assume the flow to be approximately incompressible,
V -v ~ 0. Of course, p = mA?/13 is generally not spatially constant. However, in the semiclassical



Entropy 2016, 18, 34 6 of 11

limit, the amplitude A = e° is a slowly-varying function of the space variables. Under these

assumptions, Equation (24) holds approximately:

Statement 3. In the semiclassical limit, the sufficient condition (17) guaranteeing the validity of the Navier—
Stokes equation is equivalent to Equation (24).

We can now consider the effect of taking the semiclassical limit in the identification
(Vp)/p = (VV)/m made in Equation (19). In this limit p is approximately constant, and the above
identification defines an integrable equation for the scalar field p. Therefore:

Statement 4. In the semiclassical limit, the identification (Vp)/p = (VV)/m made in Equation (19)
correctly defines a scalar pressure field p within the probability fluid.

In the stationary case, when ¢ = ¢(x)exp(—iEt/h), the quantum potential becomes
time-independent, and condition (24) reduces to the requirement that U be a constant both in space
and in time:

U(X) =Gy, C e R (25)

Statement 5. In the semiclassical limit of stationary eigenfunctions, the sufficient condition (17) guaranteeing
the validity of the Navier—Stokes equation is equivalent to Equation (25).

One expects semiclassical stationary states to possess vanishing viscosity because, having a
well-defined energy, they are dissipation-free. This expectation is borne out by a simple argument:
Equation (17) and the (approximate) spatial constancy of U imply 7V?v = 0. This reduces the
Navier-Stokes Equation (4) to the Euler equation for a perfect fluid. Therefore:

Statement 6. All semiclassical stationary states have vanishing viscosity: 5 = 0.

Thus, as far as dissipation effects are concerned, the combined assumptions of stationarity and
semiclassicality lead to a dead end. Furthermore, we cannot lift the requirement of semiclassicality
because stationarity alone does not guarantee that the sufficient condition (17) holds. Even if
we per decree assign a non-semiclassical but stationary state # = 0, that state need not satisfy
condition (17)—the very assignment of a viscosity 77 would be flawed.

A physically reasonable assumption to make is that viscosity must be proportional to the density
of the fluid:

1 = Cap. (26)

Here C3 is some dimensional conversion factor that does not depend on the space variables:
C3 # C3(x). Then Equation (17) integrates to

U+ mCs (V . V) = Cy, Cs €R (27)

When the flow is incompressible, V - v = 0, and Equation (27) reduces to the case already
considered in Equations (24) and (25). Thus the proportionality assumption (26) provides an
independent rationale for the semiclassical approximation made earlier, and viceversa. In turn, this
shows that the semiclassicality condition can be recast as done in Equation (16). We conclude:

Statement 7. In the semiclassical limit, the viscosity 1 is proportional to the density p of the quantum
probability fluid. In particular, the viscosity 1 is approximately spatially constant for semiclassical states.
Moreover, the proportionality factor C3 in Equation (26) is linear in Planck’s constant h:

Cy = % f. (28)
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Here f > 0is an arbitrary dimensionless factor. By what was said previously, f = 0 when the
state considered is an energy eigenstate, while f > 0 on all other states. Hence f is best thought of as
a function f : H — R on the Hilbert space ‘H of quantum states.

Having exhibited the existence of approximate solutions to condition (17), whenever dealing
with dissipation effects we will restrict our discussion to nonstationary states.

2.3. The Ratio of Viscosity to Entropy Density

We have interpreted dissipation as a quantum effect within the probability fluid. Hence
the increase ds/dt in the volume density of entropy of the probability fluid also qualifies as a
quantum effect. Here we will compute ds/dt in the semiclassical regime, both for stationary and
nonstationary states.

Considering a stationary state first, we expect ds/dt = 0 because # = 0. This expectation is
confirmed by the following alternative argument. We see that Equation (5) reduces to

ds 0s k V2T

=2 - . S . 29
G5t Ys=tT (29)
because the dissipation term ¢, vanishes. On the other hand, by Boltzmann’s principle (7) we can
write the entropy S in terms of the amplitude A = e as

szszanq'fD — 2kgIn A. (30)
0

This is reminiscent of the expression for the entropy of an ideal gas as a function of its
temperature, viz. S = gkgIn(T/Ty), with ¢ a dimensionless number and T, some fixed
reference temperature. This suggests identifying the quantum-mechanical amplitude A with the
thermodynamical temperature T, at least in the absence of friction—as is indeed the case for
stationary states and for the ideal gas. So we set

T
A= —. 31
i @)

Thus V2A = 0 implies V2T = 0. In the semiclassical approximation, A is a slowly-varying
function, and one can approximate V2 A by zero. Thus substituting Equation (31) into Equation (29),
we arrive at a counterpart to statement 5:

Statement 8. In the semiclassical approximation, the entropy density of any stationary state is constant in
time: ds/dt = 0.

Our next task is to obtain an estimate for the order of magnitude of the entropy density s. This
is readily provided by Equation (30):

Statement 9. In the semiclassical approximation, the volume density of entropy s of the quantum probability
fluid is proportional to Boltzmann's constant:

1
s = 1—30 (kg). (32)
As already mentioned regarding Equation (21), the denominator /3 has been included for
dimensional reasons, and an undetermined, dimensionless factor multiplying the right-hand side
is allowed. Finally combining Equations (21) and (32) together we can state:
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Statement 10. For the quantum probability fluid in the semiclassical approximation, the order of magnitude of
the ratio of viscosity to entropy density is

T_o(l

s = (@) ( kB> : (33)

Again an undetermined, dimensionless factor multiplying the right-hand side is allowed, but
the dependence on the length scale | has dropped out.

2.4. NonstationaRy States: Emergent Reversibility

Nonstationary states can be readily constructed as linear combinations of stationary eigenstates
with different energy eigenvalues. The ratio #/s of the viscosity to the entropy density of a
nonstationary state is important for the following reason. Any nonstationary state thermalises to a
final equilibrium state. The time required for this transition is of the order of the Boltzmann time 73,

h
TB - — kBiT 7 (34:)
where T is the temperature of the final equilibrium state [29]. In Equation (31) we have related the
temperature T to the amplitude A = [tpeq| of the equilibrium state wavefunction teq. Therefore:

Statement 11. For semiclassical, nonstationary states of the quantum probability fluid, the Boltzmann time
is directly proportional to the ratio 11/ s of the viscosity to the entropy density of the initial state, and inversely
proportional to the amplitude of the final equilibrium state.

Out of this analysis there arises a nice picture of the thermalisation process, whereby a
nonstationary state decays into a final stationary state. In this picture we have a slow dynamics
superimposed on a fast dynamics. The latter corresponds to nonstationary states; the former, to
stationary states. Viscous states correspond to the fast dynamics, while dissipation-free states pertain
to the slow dynamics. Time reversibility emerges as a conservation law that applies only to the
emergent, slow dynamics.

2.5. Stationary States: Emergent Holography

Turning now our attention to stationary states, let us see how an emergent notion of holography
arises naturally in our context. For stationary states we first set dS/dt = 0 in the continuity
Equation (11), then apply the semiclassicality condition (16), next divide through by 7 and finally
switch from 7 to I as per Equation (6). This establishes:

Statement 12. For semiclassical stationary states we have
VI-VS=0(172). (35)

For such states, Equations (25) and (35) are equivalent.

In the limit I — co we have VI - VS = 0, and the foliation I = const (This is abuse of language.
Strictly speaking, the equation I = const defines only one leaf of the foliation. The foliation itself
is the union of all the leaves obtained by letting the constant run over the corresponding range.)
intersects orthogonally the foliation S = const. That the length scale [, in our case of semiclassical
stationary states, can be regarded as being sufficiently large, follows from Equation (8). Indeed a
classical, perfectly localised state around x = xq carries a wavefunction é(x — xp), the amplitude of
which is almost everywhere zero. As this localised state spreads out, ceasing to be perfectly classical,
its width can be taken as an inverse measure of its localisation. In other words, the limit # — 0 is
equivalent to the limit I — oo. Thus neglecting the right-hand side of Equation (35) we arrive at:
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Statement 13. Semiclassical stationary states provide two independent foliations of 3-dimensional space by two
mutually orthogonal families of 2-dimensional surfaces, respectively defined by I = const and by S = const.

The foliation I = const is well known since the early days of quantum theory. On the other
hand the foliation S = const was little used in mechanical contexts until the groundbreaking
contributions of refs. [22,23] to the notion of emergent spacetime. Specifically, in ref. [23], isoentropic
surfaces S = const are taken to be holographic screens, while also qualifying as equipotential surfaces
V = const of the gravitational field. We see immediately that:

Statement 14. Under the above assumptions of stationarity and semiclassicality,

(i) the vector field V1 is parallel to the foliation S = const;

(ii) the vector field V S is parallel to the foliation I = const;

(iii) whenever VI # 0 # VS, the vector fields VI and V'S define an integrable 2—dimensional distribution
on R3.

The integrability of the distribution defined by the vector fields VI and VS follows from the
semiclassicality property VI - VS = 0. Then Frobenius’ theorem guarantees the existence of a family
of 2-dimensional integral manifolds for the distribution. (A purely differential-geometric proof of
this statement can be found in ref. [30]; a related theorem by Liouville, in the context of classical
integrability theory, can be found in ref. [31].) Each leaf of this integral foliation, that we denote by
F = const, is such that its two tangent vectors VS and VI point in the direction of maximal increase
of the corresponding quantities, S and I. Therefore:

Statement 15. Under the above assumptions of stationarity and semiclassicality, the foliation F = const is
orthogonal to the two foliations S = const and I = const simultaneously.

According to ref. [23], the leaves S = const are holographic screens, enclosing that part of space
that can be regarded as having emerged. We see that the leaves I = const play an analogous role
with respect to the time variable. Now the wavefunction contains both amplitude and phase. Hence
the two foliations S = const and I = const must appear on the same footing—as is actually the case.
Taken together, these facts can be renamed as the holographic property of emergent quantum mechanics.
To be precise, this holographic property has been analysed here in the semiclassical regime only; we
defer a full analysis until a forthcoming publication.

3. Discussion

To first order of approximation, any viscous fluid can be characterised by its viscosity coefficients
and by its volume density of entropy. In this paper we have obtained an estimate for the order of
magnitude of these quantities, in the case of irrotational flow, for the quantum probability fluid. Our
analysis makes decisive use of Madelung’s factorisation of the quantum wavefunction into amplitude
and phase. However, we deviate substantially from Madelung on the following key issue: Madelung’s
probability fluid is ideal, while our is viscous. Correspondingly, Madelung’s fluid satifies Euler’s equation
for a perfect fluid, while ours satisfies the Navier-Stokes equation. Consequently, the pressure
within the fluid is also different: in Madelung’s analysis, pressure is (proportional to) the quantum
potential U, while our pressure is (proportional to) the external potential V in the Schroedinger
equation. In our alternative approach, the quantum potential is responsible for the appearance of viscosity.
Thus classical friction in the fluid can be regarded as the origin of quantum effects. Moreover, the
dissipation that is inherent to quantum phenomena, under the guise of viscosity in our case, is a
nonstationary phenomenon.

By letting the quantum potential account for the viscosity of the probability fluid, our analysis
lends support to the emergent paradigm of quantum mechanics: the resulting theory, once dissipation
has been taken into account, is no longer classical but quantum. We regard viscosity as the dissipation,
or information-loss mechanism, whereby the fluid described by the Navier-Stokes equation
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(a classical process) becomes the quantum wavefunction satisfying the Schroedinger equation
(a quantum process). This mechanism illustrates the statement quantum = classical + dissipation made
in the introductory section.
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Abstract We present a map of standard quantum mechanics onto a doay,theat
of the classical thermodynamics of irreversible procesgésile no gravity is present
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1 Introduction

The holographic principle [3, 30, B1] has permeated widesd theoretical physics
over the last twenty years. Stepping outside its initialrquen—gravity framework, it
reached string theory [2IL, B3] as well as more establishethitts such as QCD [18]
and condensed matter thedry|[15], to name but a few.

Another theoretical development of recent years is thegeition thatgravity
arises as an emergent phenomeri@4, [25,[32], a fact that has far—reaching conse-
quences for our understanding of spacetime. Added to thsipdisve properties al-
ready known to be exhibited by gravity 16,126, 28] 29], thpeps the gate to the
application of thermodynamics to (supposedly) nonthemhgkics. Indeed, thermo-
dynamics is the paradigm of emergent theories. It renoutieeknowledge of a vast
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amount of detailed microscopic information, keeping justaamdful of macroscopic
variables such as volume, pressure and temperature—seanfftoistate robust physical
laws of almost universal applicability. These macroscepitables are coarse—grained
averages over the more detailed description provided bysorderlying, microscopic
degrees of freedom. Which brings us to yet another theatdireakthrough of recent
times that is worthy of mention: the notion efergencé/].

The property of emergence has been postulated not only eftgraut also of
Newtonian mechanics [32] and of quantum mechanics[[10,d Kgy concept here is
that of anentropic force Equipped with thermodynamical tools as befits any emergent
theory, we have in refs[ [11, 12,113] developed a framewoak thaps semiclassical
quantum mechanics onto the classical thermodynamicsenfarsible processes in the
linear regime, the latter as developed by Onsager, Prigogimd collaborators [23,
271]. Within this framework, the statement often found in likerature,quantisation is
dissipation[4], can be given a new interpretation.

In this paper we elaborate further on the above—mentionga ehaemiclassical
quantum mechanics onto the classical theory of lineanénsble processes (sections
@ and[3); we call these two theoridsial to each other. From there we move on to
the nonlinear regime of the thermodynamics or, equivafetdl the quantum regime
beyond the Gaussian approximation (sedfion 4). Next weitata a holographic—like
principle for quantum mechanics (sectdn 5) and place itdrrespondence with the
second law of thermodynamics (sectldn 6)). The téxmiographic—likeis meant to
stress that, while it is true that no gravity is present in fsamework, an undeniable
conceptual similarity with the holographic principle ofantum gravity underlies the
principle postulated here. We summarise our conclusiossdtior[ V.

A word on notation is in order. Rather than using naturalgnite will explicitly
retain Planck’s constaritand Boltzmann'’s constatts in our expressions, in order to
better highlight the properties of the map presented heedas quantum mechanics
and irreversible thermodynamics. In particular, the rb&t & plays on the mechanical
side of our correspondence will be playediy on the thermodynamical side. If we
were to seti = 1 = kp, the fact that they are counterparts under our correspaeden
[819] would be somewhat obscured.

2 Basics inirreversible thermodynamics

The following is a very brief summary of some notions of igesible thermodynamics
[23,[27] that we will make use of.

Let an irreversible thermodynamical system be charaetfiy its entropy func-
tion S. Assume that the thermodynamical state of the system isrdigted by just one
extensive variable = z(7), wherer is time variable. We can thus write= S(z(7)).
At any instant of time, the probabilit)? of a state is given by Boltzmann’s principle,

kpIn P = S + const. (1)

Let .Sy denote the maximum (equilibrium) value 8f and let us redefine the coordinate
x S0 it will vanish when evaluated at equilibriuttiy = S(x = 0). Irreversible thermo-
dynamicsl[[23] analyses the response of the system whemdrivay from equilibrium.



For this purpose one introduces tinermodynamical force,

ds
X =—— 2
. ()
which measures the tendency of the system to restore eguilib Nonequilibrium
causes fluxes to appear in the system, that is, nonvanishieglerivativeslz /dr and
dS/dr. Further one supposes that the irreversible process @msidslinear. This
amounts to the assumption that the flux is proportional tddhee,

d
L _1x, L>o0, 3)
dr
whereL is a positive constant, independentiofindr. One also writed{3) under the
form 4
X
X=R—
dr’

where the dimensions ok are time x entropyx x~2. Eq. [4) is often termed a
phenomenological lawindeed numerous dissipative phenomena, at least to fist or
of approximation, take on the form of a linear relation bedwe driving forceX and
the corresponding fludz/dr: Ohm's law in electricity, Fourier’s law of heat transfer,
etc, are familiar examples. In linear irreversible thergmainics, the time rate of
entropy production is the product of those two:

ds dx
— =X— 5
dr dr ()

On the other hand, Taylor—expanding the entropy aroundrieximum) equilib-
rium value and keeping terms up to second-order we have

R=L"1>0, 4)

1 d?
5250—55:172—1-..., S:__(d—:vg) > 0. (6)
0

Three consequences follow from truncating the expan§ipat(6econd order. First,
the forceX is a linear function of the coordinate
X = —szx. (7

Second, in conjunction with Boltzmann'’s principlé (1), #sepansion[({6) implies that
the probability distribution for fluctuations is a Gaussiathe extensive variable:

P(z) = Z 'exp <%> =Z texp (—%sa@) , (8)
whereZ is some normalisatidh Third, the phenomenological lai (4) specifies a linear
submanifold of thermodynamical phase space:

d

RS + sz = 0. 9
dr

Iwe will henceforth omit all normalistion factors, bearingind that all probabilites are to be nor-
malised at the end.




Fluctuations around the deterministic law given by Eg. (@) be modelled by
the addition of a random forcE,. This turns the deterministic equatidd (9) into the

stochastic equation
dzx

R— + sz = F,. (10)
dr

We are interested in computing the patk= =(7) under the influence of these random
forces, under the assumption tlfgthas a vanishing average value. While mimicking
random fluctuations, this assumption ensures that the net fmntinues to be given
as in the deterministic Eq.J(9). Now our aim is to calculat phobability of any path
in configuration space. For this purpose we need to introdowes concepts borrowed
from ref. [9].

The unconditional probability density functiofi (f) also calledone—gate func-
tion, is defined such that the produﬁ(f) da equals the probability that the random
trajectoryz = z(7) pass through a gate of width: aroundz at the instant-. The

conditional probability density functiojf (ﬁ; o1 ) also called théwo—gate function

T1

is defined such that (”jz ‘ fll) dxo dz; equals the probability that a thermodynamical

path pass through a gate of widths aroundzs at timer,, giventhat it passed through
a gate of widthdz; aroundz; at timer;. The assumption that our stochastic process

(10) satisfies the Markov property ensures that the unciondit probability f (ﬁj)

1

can be obtained from the conditional probabilﬁ;(fj 7'1) by lettingm, = —cc in

the latter and setting a fixed value ©f, sayz; = 0. Informally speaking: Markov
systems have a short—lived memory.

Let us consider a time intervét;, 7,,4+1) , which we divide inton subintervals
of equal length. Then the conditional probabilities obey @hapman—Kolmogorov

equation,
f (x”“‘xl) :/dxn.../dng (x"“ “) Lt (wz\xl) SENGE
Tn+1 171 Tn+1 ! Tn T2 171
where alln — 1 intermediate gates ab, x3, . . ., x,, are integrated over. In particular,

the unconditional probability densi;ﬁ/(f) propagates according to the law

T2\ T2 |1 T
(@) faos()i) e

Itturns out that, for a Markovian Gaussian process, the itiondl probability function
f (fj ””1) that solves the Chapman—Kolmogorov equation is givei by [23

T1

s(T2—71)/2R

() s
Tl T 2kp \/7r sinh [s(m2 — 71)/R]

X ex _i [es(miﬁ)/QR T9 — e*S(Tzfﬂ)/ZR :171} 2
p 2kp 2 sinh [s(2 — 71)/R] .



As a consistency check we observe that, in the limit> oo, the conditional probabil-
ity (I3) reduces to the unconditional probabilify (8). Usthe Chapman—Kolmogorov
equation[(Ill) one can reexpress the conditional probaffld) as

f Tpt1 ‘:cl o 1 /Tn+1 R dz N 2 s (14)
=exp | ——— T — T = —
a1 | 1 Pl 4k5 /. ar 7 T R

min

subject to the boundary conditionsr; ) = z1 andz(7,+1) = ©,+1. Above,y carries
the dimension of inverse time, while the subscnph reminds us that the integral is to
be evaluated along that particular path which minimisesrttegral.

Now f (ﬁj) can be obtained fronf (Izgl) by lettingr; = —oco andz; = 0in

T2
the latter. In order to take this limit in Eql_{I14) we first defithethermodynamical

LagrangianS to be

R (dz 2
or, dropping a total derivative,
R|[(dz\*> ,,

The dimensions of are entropy per unit time. The corresponding Euler—Laggang
equation reads

d%z
@ — ’}/2(E = O, (17)
while
2(7) = 2977772 (18)

is the particular solution td (17) that satisfies the boupdanditionsz(r = —c0) =0
andz(r = 2) = x3. Thus evaluating(14) along this extremal path yields

()=o) = eelager] e

This is again in agreement with Boltzmann'’s princifle (1}He Gaussian approxima-
tion (@). Moreover, the conditional probability densify(fj ﬁll) admits the path—
integral representation [:E]

z(T2)=22 T2
f(IQ‘m) :/ Dz(7) exp{—i/ dTS}. (20)
T2 1T1 z(11)=21 2kp T1
In fact, a saddle—point evaluation of the path intedral (akadily seen to yield the
two—gate function{14).

The above Egs[]2)E(R0) have obvious generalisations teeaith D independent
thermodynamical coordinates.

2What quantum theorists call the Feynman path integral wekspiendently developed in ref_[23] by
Onsager and collaborators, who appear to have arrived atdtien of a path integral all by themselves,
without previous knowledge of Feynman'’s earlier warki[14].



3 Quantum mechanics vs. irreversible thermodynam-
ics

The attentive reader will have noticed the striking siniijdbetween Eqs[{2)E{20) and
the quantum mechanics of the harmonic oscillator. The spoeding Lagrangian is

m (dz\? k

Mechanical time is denoted by the variabjet is related to thermodynamical time
through the Wick rotation
T =it. (22)

We define as usual the angular frequeadhroughw? = k/m. Let us for simplicity
assume that the thermodynamical extensive coordinatethe dual irreversible ther-
modynamics is a length. In this way no dimensionful factarégded to reinterpret it
as the coordinate of the harmonic oscillator in the mectzmioal theory. Then the
Wick rotation [22) and the replacemeﬁ'lts
mw S

provide us with a dictionary to establish a 1-to—1 map betvike linear, irreversible
thermodynamics of sectidi 2 and the quantum mechanics dfatreonic oscillator.

Specifically, let us spell out the entries of this map, oney @]. The mechanical
Lagrangian[{21) is readily obtained from its thermodynahaounterpart{{16) upon
application of the replacemenis122).123):

S L
T (24)
The above also makes it clear that the thermodynamical gnalof Planck’s constant
is twice Boltzmann’s constartk z. In this way the thermodynamical path integfall (20)
becomes its usual quantum—mechanical expression. Urtaoraliprobabilitiesf (f)
in thermodynamics become wavefunctions squawregd, )| in quantum mechanics.
Thus the 1-gate distribution functidn {19) gives the sgdianedulus of the oscillator

groundstate,
() = (T2, @

The thermodynamical conditional probabiliy{13) beconmmepprtional to the quantum-—
mechanical Feynman propagator. Away from the causticdatter is given by

mw
2rihsin (w(te — t1))

K($27t2|£€1,t1) = \/ (26)

SImplicit in the replacement§ (23) is the assumption thatlieemodynamical extensive variabie and
the mechanical variable, both have units of length. A dimensionful conversion faésato be understood
in case the dimensions do not match.
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xpd—
P 2n sin (w(ta — 1))

and one actually finds

T2 |T1
! ( it 10 ) B
where AV = V(z2) — V(z1), with V(z) = ka?/2 the harmonic potential. The
Chapman—Kolmogorovequatidn{11) becomes the group psoplgsropagators, while
the propagation law{12) exactly matches that for waveionst) under propagators
K. Altogether, the promised 1-to—1 map is complete.

Our Egs. [[(Z21)-£{27) have obvious generalisations to higheedsions. Since the
concept okquipotential submanifoldsill play a key role in our duality between quan-
tum mechanics and irreversible thermodynamics, it will eful to consider the lowest
dimension in which equipotential manifolds &edimensional surface€onfiguration
space is then 3—dimensional, which we take t®Becoordinatised by, v, z. For sim-
plicity we will assume the harmonic potential to be isotmsio the harmonic force is
Fj, = —k(z,y, z). On the thermodynamical side of our correspondence, tnisltates
into the fact that Onsager’s (inverse) coefficieRts R,, R. in Eq. (4) are all equal,
so the dissipative force acting on the systertis= R(dz/dr,dy/dr,dz/dr). We
then have a thermodynamical Lagrangian

(23 + 27) cos (w(t2 — t1)) — 2wom1] }

iwt AV 2mw
p(T—E) TK((EQ,“(El,O),

(27)

R[fdz\* [dy\* [dz\> L o 5 o
S=75 (E) +(E) +<E) +7 (@ + Y+ 27) (28)
and a mechanical Lagrangian
m [ (da\? dy 2 dz\? 9, 9 9 2—
5_5 (E) +<E> +<E) —wi(z* +y* +27) (29)

The latter has the family of 2—dimensional spherés- 32 + 22 = p? as equipotential
surfaces within the mechanical configuration spRée We claim that the thermody-
namical counterpart of this family of spheres is the familp-edimensional submani-

folds ) ) )
dz dy dz 2/.2 2 2y _ 2
() (2)+ (&) s 5

within the thermodynamical phase spdgg; we may call the above hypersurfaces
isoentropic submanifold\lthough we seem to have a dimensional mismatch between
isoentropic submanifolds and equipotential surfaces, rtismatch disappears if we
restrict to those thermodynamical trajectories that §atiiee equation of motion of the
thermodynamical Lagrangian (28). This equation was ginefd¥) and solved i {18);

we see thatpn shell the velocitydz/dr is proportional to the coordinate This
property effectively allows us to replace the tefdx/dr)? + (dy/dr)? + (dz/d7)?

in Eq. [30) with a constant multiple af + y2 + 22. In turn, this reduces the family of
5-dimensional submanifolds {30) to a family of 2—dimenal@pheres—exactly as in
the mechanical case.

(30)



We conclude thatquipotential surfaces for the mechanical problem bec@meri-
tropic surfaces for the thermodynamical problem, and \écs& This is in nice agree-
ment with the results of ref.[ [32] for the gravitational patial, in the context of a
theory of emergent spacetime.

4 Beyond the harmonic approximation

While explicit expressions for our map between quantum raeits and irreversible
thermodynamics are difficult to obtain beyond the harmoppraximation considered
so far, some key physical ideas can be extracted from thequeanalysis and gen-
eralised to an arbitrary potential. On the thermodynansadé, this generalisation
implies going beyond the Gaussian approximation made in @yor, equivalently,
beyond the assumptioll] (7) of linearity between forces angéu

Let a mechanical system be described by a Lagrangian funftie £(g;, ¢;). For
simplicity we assume our configuration space td& an additionaR stands for the
time axis. The mechanical time variab|enitially real, will be complexified presently.

We will equate certain spacetime concepts (on the left—Isatelof the equations
below) to certain thermodynamical quantities (on the )ighd begin with, we observe
that the two physical constantsandkp allow one to regard timeand temperatur@
as mutually inverse, through the combination

1 kg
T = T. (31)
Admittedly, this observation is not nel [5].

Corresponding to the mechanical system governed by theabg&gn£(g;, ;)
there will be a thermodynamical system whose dynamics wilgbverned by an en-
tropy S = [ Sdt. Following our previous resulE(24), let us postulate théofeing
differential relation between the two of them:

1 C C

hﬁdt = % ds = T Sdt, C eC. (32)
Again, dimensionality arguments basically fix the two sidéthe above relation, but
leave room for a dimensionless numligr Agreement with the Wick rotatiod (P2)
requires that we se&f = —i. Now Eq. [32) overlooks the fact that the right-hand side
contains the exact differentidls, while the differentialCd¢ on the left—hand side is
generallynotexact. In other words, while there exists a well-definedagtfunction
S = [&dt, the line integrall = [ L£dt generally depends on the trajectoryR¥
being integrated along.

The mechanical actioh, howevercandefine a path—independent function of the
integration endpoint if we restrict to a certain class ofertories inR”. Let us see
how this comes about. Lét = V(g;) be the potential function of the mechanical
system under consideration. The equation

V(¢;) = const (33)



defines, as the constant on the right—hand side is variethiyfaf (D—1)—dimensional,
equipotential submanifoldsf R”. An elementary example, whed = 3, is the case
of the Newtonian potential generated by a point mass locattelde originO. Then
the above family of equipotential surfaces is a family of @emtric sphere§, of in-
creasing radip > 0, all centred atD. This family of equipotentials, singular only at
O, defines a foliation oR® — {O}, so the latter space equals the unign.oS, of all
leavesS,. This foliation can also be used to define a coordinate systeR? — {O}.
Namely, one split®3 — {O} into 2 tangential directions to the spheres of the foligtion
and 1 normal direction. For example, the standard spherizatinates, 0, o centred
at O qualify as such a coordinate systepbeing the normal coordinate afdy the
tangential coordinates.

Returning now to the general case when bbtlandV (¢;) are arbitrary, Eq.[(33)
defines, for each particular value of the constant on the—+fggnd side, one equipoten-
tial leafL,, of a foliationu,,LL,, of R”. Here the subindex stands for a certain (local)
coordinater onR” that is normal to all the leaves. TH — 1 tangential coordinates
thus span thé D — 1)-dimensional leavek,,, each one of them being located at a
specific value of the normal coordinate We will assume that all the leavés, are
compact.

Trajectories withirR” that run exclusively along this normal coordinatehus be-
ing orthogonal to the leaves, are such that the action iatégtoesdefines a function
1,, of the integration endpoint; the subindexeminds us of the restriction to these nor-
mal trajectories. Independence of path is merely a consegue the 1-dimensionality
of the normal directions to the equipotential lealigs This is the particular class of
trajectories mentioned above: along thefd; defines an exact differential/,,. For
these normal trajectories, the differential equationh (B2kes perfect sense as an equal-
ity between two exact differentials. For these normal ttajges we can write

%In - %S = const. (34)

Now the sought—for thermodynamicannotbe the standard thermodynamics of
equilibrium processes as presented in any standard textisag, ref. [6]. Among
other reasons for this not being the case, standard eduitithermodynamics does
not include time as one of its variables. We have already ati@&3 produced evi-
dence that it must in fact be thexplicitly time—dependent, classical thermodynamics
of irreversible processeas developed by Onsager, Prigogeteal [23,[27]. We will
present arguments in sectioh 5, to the effect that quantatessarise through a dissi-
pative mechanism. For completeness the thermodynamiabl@gquantum mechanics
must be supplemented with the relation

1 0as
T - %7 (35)
which must always be satisfied. So we tdkd (35)dfinethe internal energ¥’ of the

thermodynamical theory, given thatand.S have already been defined.



5 Quantum states as equivalence classes of classical tra-
jectories

A key consequence of using normal and tangential coordiniaf®” is that quantum
states), to be constructed presently, will factorise as

d’ = lbt?/)n ) (36)

or sums thereof. Here, the normal wavefunctiogndepends exclusively on the nor-
mal coordinaten, while v, is a function of the tangential coordinates. For example,
in the case of the Coulomb potential, the wavefunctigrwould be a spherical har-
monicY;,, (0, ¢), while v,, would be a radial wavefunctioR,,;(p). This construction
contains elements that are very reminiscent of those préseef. [32]. In this latter
papergquipotential surfaces of the gravitational potential aentified as isoentropic
surfaces Our equipotential leaves are the counterpart ofltblgraphic screensf

ref. [32].

Moreover, the classical mechanics exhibits a precise nmsmavherebyifferent
classical trajectories coalesce into a single equivaleoless that can, following ref.
[L7], be identified as a single quantum state So the presence of Planck’s constant
in Eq. (32) obeys not just dimensional reasons—it is the sige of an information—
loss mechanism, a dissipative processs that is truly qoaimuature.

Let us see how this dissipation comes about. In order to donthineed to explain
why many different classical trajectories coalesce inte single quantum state. A
guantum of area on the le&f, measured.%, whereLp denotes the Planck length.
According to the holographic principle, at most 1 bit of infaation fits into this quan-
tum of areal%. One classical trajectory traversing this quantum of amreesponds
to 1 bit of information. Classically one can regard the stefdensity of trajectories as
being correctly described by a smooth distribution funttithere fit some .4 x 10%°
classical trajectories into each square meter of area oledfé.,,[3]. Although this
is a huge number, it sets an upper limit on the potentiallyitdinumber of classical
trajectories that can traverse one quantum of &rea

The holographic principle alone would suffice to accountffi@ lumping together
of many different classical trajectories into one equimake class. One equivalence
class, or quantum state, would be comprised by all thoserdifit classical trajectories
crossing one given quantum of aréa.

Of course, theactual number of quantum particles traversing one square meter
of area on the leal.,, is much smaller than the aboudet x 10%°. The reason is
simple: quantum effects become nonnegligible on mattertvedébre quantum—gravity
effects become appreciable on the geometry. Again, theéeexis of a (now particle—
dependent) quantum of area is responsible for this. Thibea®en as follows.

Let m be the mass of the particle under consideration. Its Comptrelength
Ac = h/(me) imposes a fundamental limitation on its position, that wa call a
quantum of lengthdenoted?;. This @1, which is particle—dependent, is of a funda-
mentally different nature than tlggeometrioquantum of length. . On configuration
spaceR?, this gives rise to a quantu@p_; of (D — 1)—dimensional volume within
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the leafl,,, with measure (proportional td\)gfl, and to a quantum of length; along
the normal coordinate.
In the presence of more than one particle species with diftenasses, each mass

m; defines one value of the quantt(@rgll. Then a quantum of volume that remains

valid for all particles is the largest value of all tho@%{r This is the quantum of
volume determined by the lightest particle.

Let us now elucidate how quantum statesan arise as equivalence classes of
different classical trajectories. By Ed._{36) we have tooaurt for the appearence of
the normal wavefunctiofp,, and of the tangential wavefunctiah.

Starting withi, let us consider all the different classical trajectoriasérsing any
one quantum of volumé&p_; within a leafL,,. The allowed values of the momentum
carried by those trajectories are those compatible withuttoertainty principle. Since
the particle has been spatially localised to an accuracycofilong each tangential
coordinate, the corresponding momentum can be specified sxeuracy ofi/\c.
Therefore, corresponding to a spatial quantum of voldme ; in the leaf, we have a
quantum of volumePp_; = (A/Ac)P~! in momentum space.

We are now in a position to state a postulate:

All the different classical trajectories traversing anyajquium of volumé&)p_; in
the leaflL,,, and simultaneously traversing a quantdtp_; in tangential momentum
space, are to be regarded as different representativessbbjue tangential state;.

An analogous postulate for the normal coordinate reads:

All classical trajectories traversing any quantum of lem@}?; along the normal
coordinaten, and simultaneously traversing the corresponding quan&rim normal
momentum space, make up one normal state

In support of the above postulate, let us return to Eql (2Bgre the mechanical
combinationmw/h has been identified with the thermodynamical quotiefiRk ).
The constant, defined in Eq.[{(6), carries the dimensions of entrapy 2, sos/(2kz)
has the dimensions2. Thuss/(2kg) is homogeneous to the inverse square of the
Compton wavelengthy>.

On the other hand, the constantand the frequency in (23)) are all the data
one needs in order to univocally specify the irreversiberttodynamics that is dual
to the given quantum mechanics. The previous statementhwitlds exactly true in
the harmonic approximation of sectibh 3, is raised to thegmty of a principle in the
above postulate. Indeed, let us assume going beyond theoharimpproximation in
mechanics. In the thermodynamical dual theory, this is\edent to considering terms
beyond quadratic in the Taylor expansibh (6). Higher dévead3S/dz3, d*S/dx?,
etc, evaluated at the equilibrium point, simply introdu@wvnconstantss, sy, etc,
which can be dimensionally accounted for in terms of just piysical constants,
namelykz and\c. Up to a set oflimensionlessoefficients, all the data we need in
the irreversible thermodynamics can be constructed ind@fihz and powers of¢.

These arguments render our above postulate a very plassitdéanent. Moreover,
they provide an estimate of the entropy increase of the amount of information loss)
involved in the lumping together of many classical trajeie®into just one quantum
state. Namelythe increase in entropyAS due to the formation of one equivalence
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class of classical trajectories is a positive multipleX3f times the coefficient,
AS = ns\Z, n >0, (37)

wheren is a dimensionless numhgiAdmittedly, our arguments leaveundetermined,
although one could resort to Landauer’s principle [20] idearto argue that must be
of order unity). More importantly, the surface density ofrepy s can be naturally
identified, via Eq.[(3]7), with the entropy increas& due to the formation of quantum
states as equivalence classes [16, 17]. In other wirdslissipation that is inherent to
irreversible thermodynamics has a natural counterpartiragtum mechanics

Having described the dissipative mechanism whereby claldsajectories organise
into quantum states, we go next to a counting of the numbeuahiym states. Since
the leaflL,, has been assumed compact, it encloses a finite nuWpefvolume quanta
Qp—1. Tentatively identifying this numbeN,, with the (complex) dimension of the
tangential Hilbert spac@{;, we immediately realise that the quantum of momentum
Pp_1 is contained an infinite number of times within tangentiahnemtum space (this
is however a&ountablenumber of times). Indeed the momenta may grow to arbitrarily
large values. Therefore, the tangential Hilbert spAgas infinite—dimensional, and
separable.

On the other hand, the dimension of the normal Hilbert spégés infinite already
from the start (again a countable infinity, heri¢g is separable). The reason for this is
the noncompactness B : the normal coordinate must cover an interval of infinite
Iengtrﬂ This implies that the normal coordinate encloses an inf{ttil@ugh countable)
number of length quani@;. Multiplication by the number of independent momentum
quantaP; does not alter this separable, infinite—dimensionalit§{gf

Altogether, the complete Hilbert spaéé of quantum states is the tensor product
H: ® H,. However, because it singles out the normal coordinatene might worry
that our construction depends on the particular choice e&fll,, within the foliation.
Now the only possible difference between any two ledvgsandL,, is the value of
their (D — 1)—dimensional volume. Hence the numbers of volume quahtaand
N,,, they enclose may be different—but they are both finite. Thissfble difference
is washed away upon multiplication by the (countably inépitumber of momentum
quantaPp_; corresponding to each leaf. The dimensiortfis therefore countably
infinite regardless of the point, orns, along the radial coordinate—thatis, regardless
of which leaf is considere.

As explained in ref. [[l1], determining the tangential wavedftionsi, does not
require a knowledge of the specific dynamics under condideralnstead, this tan-
gential dependence is univocally fixed by the geometry ofl¢a@esL,,. In more

4In case more than just one normal coordinate is needed,tétengent is to be understood as meaning
the sum of all the lengths so obtained.

5We should remark that the assumption of compactness ofakiedk,, can be lifted without altering our
conclusions. A noncompact leaf encloses an infinite (yehtadle) number of volume quantay 1. Upon
multiplication by an infinite (yet countable) number of mamen-space quant®p 1, the dimension of
the tangent Hilbert spack; remains denumerably infinite. This form of holography in eththe leaves
are noncompact replaces the notioniride vs. outsidéhe leaf with the equivalent notion @he side of
the leaf vs. the other sid®ne should not dismiss this possibility as unphysical:cbestant potential, for
example, can be regarded as having either compact or nor@bm@guipotential submanifolds.
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technical terms, the wavefunctiogig must provide a complete orthonormal set for a
unitary, irreducible representation of the isometry grofithe leaved.,,. Moreover,
as argued in ref[]1], the modulus squajetf, evaluated at the valug is proportional

to the surface density of entropy flux across the leaf

6 Quantum uncertainty vs. the second law

Just as Planck’s constahtrepresents a coarse—graining of phase space into cells of
minimal volume, or quanta of action, so does Boltzmann'sstamtk g represent a
quantum of entropyThis implies that any process must satisfy the condition

AS =Nkp, NEeN. (38)

The above expresses a quantised form of the second law afdldgnamics. The
extreme smallness of the numerical valué gfin macroscopic units makes this quan-
tisation macroscopically unobservable. In particulatessN = 0, the second law
becomes

AS > kp. (39)
In this form, the second law is actually a rewriting of the gwan—mechanical uncer-
tainty principle for the canonical palt, t:

AEAt > (40)

N St

Of course, this derivaton of the uncertainty relatd@w At > #/2 is heuristic, because
time is a parameter in quantum mechanics. It is only in thétlig — 0 that the
second law[(39) reduces to its classical formulatio$i > 0. The limitkg — 0 is
the thermodynamical counterpart of the usual semiclastmc# 7 — 0 of quantum
mechanics.

We conclude that the equivalence between Es] (39)[add $4@)cbnsequence
of our basic postulatd (B2). In other words, the second [&#8l) épresses, in the
thermodynamical theory, the same statement as the unagnpainciple [40) expresses
in the quantum—mechanical theory.

Our correspondence implies that, while one needs two caabwériablesF ¢ in
order to express the uncertainty principle in the quantusoty just one variablé&
is needed in order to write the second law. An equivalent wagaging this is that
entropy is a selfconjugate variablene does not have to multiply it with a canonical
variable (say¢) in order to obtain a produgtS carrying the dimensions of the quantum
kp. The variableS already carries the dimensions of its corresponding quaii!.

7 Discussion
The holographic principle of quantum gravity states tha&rehfits at most 1 bit of

information into each quantum of aré in configuration space, whefg- is Planck’s
length. For guantum mechanics, in secfibn 5 we have postiithat

13



There fits at most 1 quantum state into each quantum of volumg? in phase
space, whereby the Compton length of the particle in question extends once along
each coordinate and once along each conjugate momenjum a 2 D—dimensional
phase space

Thus our postulate is conceptually analogous to the hofiftcarinciple of quan-
tum gravity. We should stress, however, that our postulats chot follow from, nor
does it imply, the holographic principle of quantum gravity

We can summarise our construction as follows. Let a quantuachanical system
be given in configuration spa@&® . Let this latter space be foliated as pg/L,,, where
each leaf.,, is an equipotential submanifold, in dimensibr-1, of the given mechani-
cal potential functiofV (¢; ). Assume that each lekf, encloses a finité)—dimensional
volumeV,, sodV, = L,. Then quantum states ii,, are equivalence classes of
different classical trajectories. These equivalenceselmgomprise all those classical
trajectories that fit into one given quantum of volume in cgufation space, with the
corresponding momenta inside the corresponding quantumoimentum space. No
quantum particle can be located to an accuracy better teaoitnpton wavelengﬁm
Hence a physically reasonable unit for defining this quarafitangth (and thus areas
and volumes) is the Compton wavelength. Configuration sigaédivided into many
such elementary volume quanta, each one of them (with thesmonding quanta in
momentum space) defining one different quantum state.

The quantisation of phase—space area by Planck’s coristamoceeds along lines
that are somewhat similar to ours, although not exactlytidah We recall that, semi-
classically, the (symplectic) area eleméptA dg, divided by#, gives the number of
different quantum states fitting into that area element. él@x; the coordinate width
dg may be arbitrarily squeezed, provided the momentinis correspondingly en-
larged, and viceversa.

On the contrary, our construction makes use of the Comptomrbleagth Ao as
a fundamental quantum of length (for the specific particlesiaered), below which
no sharper localisation is possible: there is no squeehimgarticle below this lower
limit. This gives rise to an arrangement of different claaktrajectories into equiv-
alence classes that, following ref. _[17], we identify withasntum states. This is an
irreversible, dissipative mechanism that exhibits the rgieyet nature of quantum me-
chanics. The Hilbert space of quantum states is determigatkscribed in section
B

Under our correspondence, an irreversible thermodynagaicde mapped into a
guantum mechanics, and viceversa. This correspondencéensgarded adictio-
nary that allows one to switch back and forth betweequantum—mechanical picture
and athermodynamical picturef one and the same physics.

A key point to remark is the following. Thermodynamical apgches to quan-
tum theory are well known [5, 22]. In particular, the link Meen (complex—time)
quantum mechanics, on the one hand, andethélibriumstatistical mechanics of the
Gibbs ensemble, on the other, has been known for long. WeldIstness that we
havenotdwelled on this long—established connection. Rather, ¢hegorrespondence

8Unless, of course, one is willing to allow for pair creationt @f the vacuum, thus quitting quantum
mechanics and entering field theory.
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explored here is that between (complex—time) quantum nmchaand theclassical
thermodynamics oifreversible processesClassicalityof the thermodynamics means
that/ does not appear on the thermodynamical side of the corrdspae, its role be-
ing played instead by Boltzmann’s constapt Irreversibility implies the existence of
dissipation, as befits the presence of quantum effects.
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Abstract: We present a brief overview of some key concepts in the theory of generalized
complex manifolds. This new geometry interpolates, so to speak, between symplectic
geometry and complex geometry. As such it provides an ideal framework to analyze
thermodynamical fluctuation theory in the presence of gravitational fields. To illustrate the
usefulness of generalized complex geometry, we examine a simplified version of the Unruh

effect: the thermalising effect of gravitational fields on the Schroedinger wavefunction.

Keywords: differential-geometric techniques; fluctuation theory; Unruh effect

1. Introduction

The theory of thermodynamical fluctuations provides a solid link between macroscopic and
microscopic physics.  Classical fluctuation theory [1] often sheds light on counterintuitive
quantum-mechanical phenomena, thus helping to bridge the gap between the classical world and the
quantum world. For example, Heisenberg’s uncertainty principle can be nicely illustrated resorting to
the theory of Gaussian fluctuations around thermal equilibrium [2].

On the other hand, the theory of thermodynamical fluctuations can be recast using the geometric
language of differential manifolds [3-9]. This reexpression of a physical discipline in more abstract
mathematical language goes a long way beyond a mere rewriting of the concepts involved. It renders

the theory more versatile, enlarging its scope. Moreover, since the advent of Einstein’s general relativity
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a century ago, (pseudo) Riemannian geometry belongs to the technical skills that any physicist has to
master (at least at a working level). This places (pseudo) Riemannian geometry at a vantage point.
In the opposite direction (i.e., thermodynamics as applied to geometry) one should mention at least two
developments. The first one is a whole body of knowledge on the thermodynamics of black holes [10,11].
More recently, the reexpression of Einstein’s relativity as a thermodynamics [12,13] has had far-reaching
consequences for our understanding of spacetime.

Here we would like to report on another recent development in geometry with implications on the
thermodynamics of fluctuations: the theory of generalized complex manifolds [14,15].

In trying to understand the thorny relationship between gravity and the quantum [16-19] it has
been argued that gravity acts dissipatively on quantum systems [20]. Specifically, in the presence of
a gravitational field, thermal fluctuations become indistinguishable from quantum fluctuations [21-23].
This raises the fundamental question: How is one to treat thermal and quantum fluctuations on the
same footing? Is it altogether possible? We will see here that generalized complex manifolds provide
one viable answer to this question, one that appears not to have been explored yet in the geometrical

approach to thermodynamics.
2. Geometry and Fluctuations

2.1. Riemannian Geometry

As a very elementary example, consider a thermodynamical system in an equilibrium state described
by the following variables: temperature 7', pressure P and volume V. In the Gaussian approximation,
choosing 7" and V as independent variables, the probability W of a fluctuation AT, AV around
equilibrium is given by [24]

W = Wyexp

Cy 1 oP
AT? — ) AV? 1
T2 2T (av)T 1 L
The thermodynamic inequalities Cy > 0 and (OP/0V)r < 0 ensure that the argument of the above

exponential is negative definite. This suggests considering the following (positive definite) Riemannian

metric on the 2-dimensional manifold coordinatised by 7', V:

Cy 1 [OP o
2 .__ 2 2 _ . i
= o T 2T <6v)TdV o ?

The metric coefficients g;; are of course (7, V')-dependent functions. This Riemannian structure encodes

all the relevant information. For example, the average value (f(7,V')) of an arbitrary function f =
F(T,V),
(f(r,vy)y=2z" / F(T,V)exp (—grrT? — gvvV?) Vg dTdV 3)

where Z := [./gexp(—grrT? — gvvV?)dTdV, naturally involves the metric. The role of

Riemannian geometry in fluctuation theory is well known and has been reviewed at length in [8].
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2.2. Symplectic Geometry

As our starting point here we will consider a certain thermodynamical system in equilibrium, in order
to arrive at a corresponding symplectic structure.

Again in the Gaussian approximation, the probability W of a fluctuation AP, AV, AT, AS is given
by [24]

W = Wyexp {— (—=APAV + ATAS)] “4)

2kgT
Assume an equation of state F'(P,V,7) = 0 that can be solved for the temperature to obtain
T = g(P,V). For simplicity let us consider an ideal gas, PV = SyT"

1 (—So APAV . ATAS)} 5)

W= Woexp l_% PV T

It is convenient to define the dimensionless variables

P Vv T S
=—In(— =In(— =In({— = 6
n n(H})’ 41 D(VO>7 P2 11<T0>7 q2 S, (6)

where Fy, Vj and T are reference values. Then Equation (5) becomes

S
W = Wyexp [—ﬁ (Ap1Ag + AP2AQ2)} (7

We can regard ¢, and ¢- as coordinates on a thermodynamical configuration space S, with p; and ps as
their conjugate momenta. Thus the g1, p1, g2, p2 are Darboux coordinates for the symplectic form

w=dp; Adg; +dps A dgo (8)

In this way we identify Ap;Aq; + ApsAge in Equation (7) as the symplectic area of a 2-dimensional
surface F induced by the fluctuation:

AplAql + ApquQ = / (dp1 N d(]1 + dpg A\ dq2> (9)
F

Finally substituting Equation (9) into Equation (7) we find

W = Wyexp <—;€—(; / w) (10)
F

i.e., the probability of this thermal fluctuation is proportional to the exponential of the symplectic area
of the fluctuation surface F'.

The importance of symplectic structures in classical mechanics is widely recognized and need hardly
be recalled [25]. In fact not just Riemannian geometry, but also symplectic geometry, pertains to the
realm of thermal fluctuations: the first law of thermodynamics endows the thermodynamic phase space
with a contact structure, which includes symplectic geometry as a sub-case [3,4,6,7].

A real 2n-dimensional manifold M is symplectic if there exists a closed, non-degenerate, rank 2
antisymmetric tensor field w;; defined everywhere on M. Let z* be local coordinates around = € M, so

W= %wijdxi A dz? with wj; = —w;;. Since the matrix w;; is nonsingular, an inverse /% exists such that
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w;;m% = §F. The Poisson brackets of two functions f, g are defined as {f, g} := 77%0; fOrg, and the
integrability condition dw = 0 turns out to be equivalent to the Jacobi identity for these Poisson brackets.

In this way the following symplectic analogue of Equation (3) allows one to compute the average
value (f) of the function f on M:

(fy=27" /M fexp (—w) (11)

Above, the exponential e™* is defined by Taylor expansion, powers being taken with respect to the
wedge product. Then the 2n-dimensionality of the symplectic manifold picks out just one differential
form that can be integrated against M, namely the 2n-form (—1)"w"/n!; all other terms in the Taylor
expansion give a vanishing contribution when integrated. The factor (—1)"/n! has been included in
the normalization Z. As had to be the case, this average involves the data concerning the symplectic
structure on M.

One can also regard a symplectic structure as providing an isomorphism from the tangent space
T, M into the cotangent space TM at each x € M. Specifically, the tangent vector X = X'0; is
mapped into the 1-form w(X) = ¢ = &da’, with § = w;; X7. This viewpoint motivates the following
definition (equivalent to the above, but more useful for later applications): a symplectic structure over
a 2n-dimensional manifold M is an isomorphism w, between the tangent and the cotangent fibers over
each point z € M,

we: T,M — ToM (12)

such that, under the operation of taking the linear dual (denoted by an asterisk),

W = —Wy, VreM (13)

xT

Moreover, the integrability condition dw = 0 must be satisfied.

2.3. Complex Geometry and Kdhler Geometry

Informally one could say that the imaginary unit is the hallmark of quantum mechanics. That
i = \/—1 pertains to the quantum world has been very interestingly argued recently in [26,27]. More
standard arguments have been known for long; such are the heat equation in imaginary time it, or the
fact that quantum commutators |- , -] formally equal v/—1 times classical Poisson brackets {-,-}. Here
we will briefly recall the role played by complex structures in the theory of coherent states [28,29].

Let M be a real 2n-dimensional phase space endowed with the symplectic form w. For simplicity
let us also assume that M admits a holomorphic atlas compatible with the symplectic structure (this
compatibility condition is called the Kihler property). In plain words, the real and imaginary parts of the
holomorphic coordinates z’ are Darboux coordinates for w (here assumed dimensionless for simplicity):

A 1 A
23:—(q]—{—ipj)7 j=1...,n (14)

V2

Upon quantisation, the Darboux coordinates ¢’ and p; become operators () and P; on Hilbert space
satisfying the Heisenberg algebra [Q7, P} = iéi. Creation and annihilation operators are defined in the
standard fashion: A} = (@7 —iP;)/v/2, Aj := (Q’ +iP;)/+/2, and quantum excitations are measured
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with respect to a vacuum state |0) satisfying A;|0) = 0, for all j = 1,...,n. Coherent states |27) are
eigenvectors of A;, the eigenvalues being the holomorphic coordinates (14):

Aj|27) = 27)27), j=1,...,n (15)

(No sum over j implied). In order to illustrate our point let us consider a 1-dimensional harmonic
oscillator. The expectation value of the Hamiltonian operator H = ATA + 1/2 in the state |z) equals
(z|H|z) = |2|* + 1/2. Since the energy fluctuation in the state |2) equals

(AH), =2, =2€C (16)

the relative fluctuation goes, for large enough |z|, like

(AH). 1
~ 2] = o0 (17)
(z|H]z) 2]
But 1/|z| is the inverse of the square root of the Kihler potential K(z,z) := |z|* for the Euclidean

metric on the complex plane C. This simple example illustrates the important role played by complex
manifolds in the quantum theory.

Every complex manifold M admits a (positive definite) Hermitian metric h;;dz*dz? that is compatible
with the complex structure [30]. Then an analogue of Equations (3) and (11) gives us the average value
(f) of a function f on M:

(fy =271 /M fexp (—hiz'27) Vh Hdzk A d2 (18)
k=1

The normalization Z includes all factors of i = \/—1 coming from the volume element, and h :=
| det h;j|. As had to be the case, this average involves the data concerning the complex structure on M.
Formally, a complex structure .J over a real 2n-dimensional manifold M is an endomorphism of the
tangent fibre over each point z € M
Jp: T,M — T, M (19)

satisfying
J? = -1, Ve € M (20)

xT

as well as the integrability condition that the Nijenhuis tensor N vanish identically. (We will
not write down the Nijenhuis tensor explicitly; see reference [30] for details). Roughly speaking,
Equation (20) expresses the existence of the imaginary unit i = \/—1 locally around the point z € M.
The integrability condition N = 0 ensures that the complex coordinates thus constructed locally truly
transform holomorphically across different coordinate patches on the manifold M. (The Kihler property
assumed in Equation (14) above is an additional hypothesis, that an arbitrary complex manifold may, but

need not, satisfy in general).
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2.4. Generalized Complex Geometry

Our original motivation was the statement [21-23] that, in the presence of a gravitational field,
quantum fluctuations become indistinguishable from thermal fluctuations. We have argued that thermal
fluctuations are associated with symplectic structures, while quantum fluctuations come along with
complex structures. How, then, is one to treat thermal and quantum fluctuations on the same footing?
This is trivially achieved by those phase spaces M that qualify as Kdhler manifolds. However, the Kéhler
condition is very restrictive: not only does M have to be simultaneously complex and symplectic; these
two independent structures also have to be compatible.

In references. [3,4] the geometry of the thermodynamic phase space (including fluctuations) results in
a para-Sasakian manifold, which is the contact-geometry equivalent of a Kihler manifold in symplectic
geometry. This means that if one restricts to a proper even-dimensional subspace, the geometry is indeed
that of a Kihler manifold. This geometry achieves the goal of treating thermal and quantum fluctuations
on the same footing.

Generalized complex structures (GCS) also achieve the goal of providing a unified framework for
thermal and quantum fluctuations. The following is a brief summary of GCS extracted from [14], duly
tailored to meet our needs. For simplicity we prefer to work locally around a point x € M. Global
issues can be taken care of by the corresponding integrability conditions, to be mentioned along the way
whenever necessary. For our purposes the 2n-dimensional manifold M is assumed to be a phase space,
that is, Ml = TS, for a certain n-dimensional configuration space S.

Rather than considering the fibres 7,M or 7'M separately, in generalized complex geometry one
considers their direct sum: over each point x € M one erects the fibre 7;,IM @ T M. The total space of
the bundle so constructed is 6n-dimensional: 2n dimensions for the base M, 4n dimensions for the fibre.

An inner product is defined on the fibre 7, M & Ty M:

(X +6Y ) =5 (€() +n(X)) an

Above, X, Y € T, M are tangent vectors, while £, 7 € 1M are 1-forms, all evaluated at z € M. It turns
out that this inner product is pseudo-Riemann with signature (2n, 2n). Hence the Lie group SO(2n, 2n)

acts on 7, M @ T*M by isometries. It is convenient to block-decompose the Lie algebra so(2n,2n) as

A P
(5 2)

The diagonal blocks A and A* are endomorphisms of their respective (sub)fibers, A € End(7,M) and
A* € End(T}M), while the offdiagonal blocks B and /3 connect these two (sub)fibers as per

follows:

B:T,M —T'M, B:T°M— T,M (23)

Moreover, upon taking the dual we have B* = —B, * = —/[. This antisymmetry allows us to regard
the block B as a 2-form in A>T*M if we set

B(X)=ixB (24)

For illustrative purposes let us express Equation (24) in local coordinates z* around a point x € M, so
B becomes the matrix B;;. Given the vector X = X J 0; € T, M, the object ix B is defined to be the
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covector whose components are B;; X’ € T*M. We see that this is exactly the way a symplectic form w
behaves. Since w can be regarded as an element of AT M, so can B. (Contrary to w, however, B need
neither be closed nor non-degenerate).

The particular isometries of the fibre 7,,M @ T*M obtained by setting A = 0 = [ in Equation (22)

and exponentiating,
0 0 1 0
= 25
P < B 0 ) ( B 1 ) (2>

are the pseudo-orthogonal transformations
X+ —X+E+ixB (26)

The isometries (26), called B-transformations, will play an important role.
A generalized complex structure over M, denoted 7, is an endomorphism of the fibre over each
zeM,
T TMeT,M — T _Ma&T:M 27)

such that the following two conditions hold. First,
Jr= -1, Ve € M (28)

Second,
T = =T Vere M (29)

The above two conditions are formulated locally around any € M,; as usual they need not be
compatible with changes of coordinate charts on M. The Courant integrability condition, whose validity
we will henceforth assume without stating its contents explicitly, ensures this compatibility; see [14,15]
for details.

Comparing now Equations (29) and (13), we are led to the particular case when [J at x € M is

0 —w;!
Jow = ( o, 0 ) (30)

where w is a symplectic form. One says that this 7, defines a GCS of symplectic type.

given by

Similarly, the comparison of Equations (28) and (20) suggests the particular case of a GCS given by

—J, 0
T, = ( 0 ) 3D
where J is a complex structure. We say that the above 7, defines a GCS of complex type.

Furthermore, GCS succeed at interpolating between the above opposite types, the symplectic type and
the complex type; let us explain this more carefully. A point z € M is said to be regular if it possesses
a neighborhood A/, on which there exists a Poisson structure w ™' with constant rank. In a neighborhood
N, of any regular point z € M one can define a diffeomorphism and a B-transformation, the combined
action of which maps N, into the product C, x R, C C* x R?"*~2*_ Here C, is an open set within the
standard complex manifold C*, and R, is an open set within the standard symplectic manifold R?" 2,



Entropy 2015, 17 5895

The nonnegative integer k is called the rype of the GCS 7, the limiting cases of Equations (30) and (31)
respectively corresponding to £ = 0 and £ = n. As described in [14,15], the type k£ need not be constant
across M: it may vary from one point to another in M.

In plain words, any generalized complex manifold factorizes locally as the product of a complex
manifold times a symplectic manifold.

Finally assume that M is a linear space. Then any generalized complex structure of type k = 0 is the
B-transform of a symplectic structure. This means that any generalized complex structure of type £ = 0

—1 —1
B~ B —w B —w
B = 32
e " Jue <w+Bw‘1B Bw‘1> (32)

can be written as

for a certain 2-form B; use has been made of Equations (25) and (30). Similarly any generalized complex

structure of type £ = n over a linear manifold M is the B-transform of a complex structure,

_J 0
BTrel = 33
e Jse (BJ+J*B J*) 33)

after using Equations (25) and (31). When M is an arbitrary smooth manifold, not necessarily a linear
space, statements (32) and (33) remain basically true, with some minor modifications required; see
references [14,15] for details.

The consequences of the above become immediately apparent. Let us for simplicity assume that the
type k is constant across M. Then any GCS with an extremal value of k, i.e., either £ = 0 or £ = n, can
always be reduced to the corresponding canonical form (30) or (31) by means of a B-transformation.
Thus k£ = 0 corresponds to a thermal description of phenomena, while k£ = n corresponds to a quantum
description of phenomena, no interpolation existing between the two descriptions. Nonextremal values
of the type, i.e., such that 0 # k£ # n, contain both thermal and quantum descriptions simultaneously.

Average values (f) of functions f on generalized complex manifolds are defined by an obvious

modification of the product of the right-hand sides of Equations (11) and (18).

3. When “Quantum” Becomes ‘“Thermal”

Any gravitational field is locally equivalent to an accelerated frame. In an accelerated frame, quantum
becomes thermal; this is basically the content of the Unruh effect [31] (in an admittedly lax formulation
that is however precise enough for our purposes). Without using the full apparatus of relativistic
quantum field theory, let us see how quantum can become thermal in the simplified setup of the quantum
mechanics of a nonrelativistic particle. This understood, we will analyse the role played by the GCS on
phase space under the passage from an inertial frame to an accelerated frame. We will conclude that the
transformation law for the Schroedinger wavefunction under the passage to a noninertial frame (as in the
Unruh effect) is governed by a B-transformation of the GCS on phase space.

A remark is in order. The gravitational field considered here must be weak in order to rule out effects
such as, e.g., relativistic speeds, or the likely breakdown of standard quantum mechanics in the presence
of very strong gravitational fields [20]. Such phenomena lie beyond our scope.
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3.1. Inclusion of a Gravitational Field

In flat Euclidean space R?, let K denote an inertial frame with origin O and axes Ox, Oy and Oz.
Let K’ denote a uniformly accelerated frame, with origin O" and axes O'x’, Oy and O’z’ respectively
parallel to Ox, Oy and Oz. For simplicity we will assume that, at ¢ = 0, the two origins O and O’
coincide, their relative velocity also vanishing at ¢ = 0. Let the acceleration & of K’ with respect to
K be («,0,0), with « a constant. Coordinates (x,y, z) with respect to K are related to coordinates
(o', 4y, 2") with respect to K’ as per

1

x:x’+§at2, y =1, =2, t=t (34)

We consider a point particle of mass m fixed to the origin O, thus at rest with respect to K. If H denotes

the Hamiltonian of the particle as seen from the inertial frame K, then the Hamiltonian H’ in K’ reads
H = H — pyat + %oﬂﬂ (35)

with the momenta p,. and p/, related as per p/, = p, —mat. In the inertial frame K we have a Schroedinger
equation 120w /0t = H1). Our aim is to derive a transformation law for the wavefunction ¢ such that, in
the accelerated frame K, the Schroedinger equation will read ih0v)’ /0t = H'v)'. For this purpose let us
make the Ansatz

U =1bexp[f(t)] (36)

f(t) being an undetermined function of the time variable. In this way we arrive at the following
differential equation for the unknown function f:

Ldf [
ih - prat + 2ma t (37

Dropping an irrelevant integration constant and substituting the result into Equation (36) leads to

i/1 1
"—exp |—= [ =ma?t? — Zp.at? 38
(8 p [ - (6 5P (8 (38)
Clasically, the particle is at rest in the frame K’, so p/, = 0 implies p, = mat. Quantum-mechanically
we can only state that the centre of mass remains at rest at 2 = 0, the wavepacket spreading around
this average position. With this understanding we can also set (p,) = p, = mat in Equation (38). We
conclude that, taking the wavefunction in the accelerated frame to be

il
Y =exp | —=ma*t® ) ¢ (39)
h3
ensures the form invariance of the Schroedinger equation under the transformation from an inertial
frame to an accelerated frame. For time lapses that are short enough, and/or for accelerations that are

weak enough, the speeds attained will never become relativistic. Within this limited range, Newtonian
mechanics (and its quantum counterpart, the Schroedinger equation) can be trusted.
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3.2. The Unruh Effect

The next step is to invoke de Broglie [32] in order to write an inverse proportionality between time ¢

and temperature 7"

i kg
_ =227 40
il (40)
Thus substituting Equation (40) into Equation (39) we find
1 ma2h?
r_
Y =exp <_§W> Y. (41)

Moreover, from the above we can read off what power law must relate the acceleration to the temperature
of the accelerated frame: o must be proportional to 7', while dimensional analysis provides the necessary

conversion factors. Specifically,

o= QWC%BT 42)

The dimensionless normalization factor 27, that cannot be derived using our simplified treatment, comes
from a full quantum-field-theoretical analysis [31]. Finally substituting Equation (42) into Equation (41)

2 2
Y = exp (—4” e ) " (43)

we arrive at

3 kgT
Equations (43) and (39) are equivalent, the equivalence between the two being guaranteed by the de
Broglie relation Equation (40) and the Unruh relation Equation (42).

The Boltzmann-like factor present in Equation (43) bears out the fact that the effect of the gravitational
field on the Schroedinger wavefunction is of thermal nature. Due to the assumptions made in our
derivation, Equation (43) is valid only for intermediate temperatures. The limit 7" — oo is excluded
(because this would require strong gravitational fields); so is the limit 7" — 0 (because of the inverse
proportionality Equation (40) between time and temperature).

3.3. Transformation to an Accelerated Frame as a B-Transformation

Classical phase space is spanned by the coordinates z,y, z and their conjugate momenta p,., py, p.
For the rest of the discussion, the dimensions y, p,, 2, p. can be ignored, as they are unaffected by the
change of frame Equation (34). Thus, for our purposes, the manifold M of Section 2.4 can be taken to
be that subspace of classical phase space spanned by = and p,, i.e., R?.

Now the manifold R? can be endowed with a GCS. This can be done in two equivalent ways. One
can consider the GCS of complex type defined on R? = C by the complex coordinates Equation (14).
Alternatively, one can consider the GCS of symplectic type defined on R? by the standard symplectic
form w = dzAdp,/h. Since our interest lies in considering the effect of B-transformations, and R* = C
is a Kéhler manifold, the type of the CGS considered is immaterial.

We claim that the transformation law for the Schroedinger wavefunction under the passage to an
accelerated frame, Equation (39), follows from a B-transformation of the GCS on phase space R?,
Equation (26). In other words, the Schroedinger wavefunction keeps track of which frame is being used,
the bookkeeping device being the GCS on phase space. Verifying that such is indeed the case requires,

so to speak, translating the geometer’s language into the physicist’s language. This we do next.
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Tangent vectors X at the point (z, p,) € R? are objects
X =ad, + b0, € T, p,oR*,  a,beER (44)
Similarly, tangent covectors ¢ at the point (z, p,) € R? are objects
¢ = cdx + ddp, € T, \R?, c,deR (45)

As the basepoint (z,p,) € R? is moved around, we obtain a vector field X and a field of differentia
I-forms ¢ on R2. This amounts to promoting the numbers a, b, ¢, d to real-valued functions a(z, p,),
b(z,ps), c(x,p.), d(z, p,) on R% Finally, an object such as X + ¢ in Equation (26) is the direct sum of a
vector field and a field of differential 1-forms on R?—a section of the direct sum bundle TR? & T*R2.

Next we reexpress the B-transformation (26) as the variation
(X +E =0X+0=0=ixB (46)

Above we have used the fact that, under a B-transformation, X remains unchanged. The B-field is a
2-form on R?,
B = B(z,p,)dx A dp, 47)

with a certain coefficient function B(z, p,). Now
0§ = ixB = a(z,p.) B(x, ps)dps + b(x, po) B(w, pr)dx (48)

The above is a 1-form field, so it can be added to X + £ as required by Equation (26). Let us now make
the following specific choice for the vector field X:

a(x7pr) =T, b(l‘,px) = Pz (49)

In the physicist’s language, this X is just the position vector on phase space R?. Substituted into
Equation (48), this choice for X yields

0§ =ixB = xB(x,p,)dp, + p. Bz, p,)dz (50)
Along the motion of the particle located at O" we can write, using Equation (34),
dp, = madt, dz = atdt (51
Substitution of Equations (34) and (51) into (50) leads to
06 =ixB = gB@(t),px(t))maQtht (52)

The above is a 1-form, that can be integrated along the trajectory followed by the particle between 7 = 0
and 7 = t. We denote by A¢(t) the number so obtained:

AL(t) :—/0 6 = ngcZ/o B(z(7), pe(7))r2dT (53)
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When B is a constant, the integral can be evaluated explicitly:

A&(t) = %Bmoﬂt3 (54)

That the function B(x(t), p.(t)) is actually constant on R? implies that the 2-form B in Equation (47)
becomes a mere scalar multiple of the canonical symplectic form on phase space. Specifically, picking
B = 2/3 we find in Equation (54)

AE(t) = %moﬁt?’ (55)

The right-hand side of the above equals (—ih times) the argument of the exponential in the Unruh

transformation law Equation (39). Therefore the latter can be reexpressed as

o = e (1aem) v (56)

Summarising, we may say that the Unruh effect acts on the wavefunction by multiplication with the
exponential of (i/h times) the integral of a B-field along the particle’s trajectory on phase space. The
vector field X involved in this B-transformation is just the position vector on phase space, while the

B-field considered is a mere scalar multiple of the canonical symplectic form on phase space.

3.4. A Nonuniform Gravitational Field

The relation just derived between the Unruh effect and the B-transformation of the GCS on phase
space was based on the assumption that the gravitational field was static and spatially constant. In turn,
this assumption made it possible to choose a constant 5-field on phase space (actually a scalar multiple of
the symplectic form). A nonstatic and/or nonuniform gravitational field can be mimicked by a nonstatic

and/or nonuniform acceleration vector &. This lends plausibility to the following hypothesis:

Hypothesis 1. Regard classical phase space as a generalized complex manifold. In the presence of a
nonstatic and/or nonuniform, but nevertheless weak, gravitational field, the inertial-frame Schroedinger
wavefunction 1) remains form-invariant under a transformation to a locally accelerated frame, where its

value is 1)', provided that 1) and 1’ are related according to the law

o =exp (860)) v 7)

Above, .
A&(t) = / ix B(a(r), pa(r))dr (58)

is a line integral along the particle’s trajectory in phase space, while X is the position vector of
the particle along the said trajectory. Moreover, whenever the generalised complex structure on
classical phase phase is of symplectic type, the 2-form B is an appropriate scalar multiple of the

symplectic form w.

We defer analysis of the above hypothesis for further study.
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4. Conclusions

We have presented a brief review of some recent developments in differential geometry with
applications to thermodynamical fluctuation theory. Standard wisdom draws a clear frontier between
thermal fluctuations and quantum fluctuations. While this separation is perfectly consistent in the
absence of gravitational fields, this border becomes fuzzy in the presence of gravity [20-23]. A
well-known example of this mixing is the Unruh effect [31,33,34]. Another instance of a gravitational
incursion into the thermal realm is the Ehrenfest-Tolman effect [35]. One can expect an eventual theory
of quantum gravity to enhance, rather than diminish, this mixing of thermal and quantum phenomena.

In this article we have examined the thermalising effect of weak, classical gravitational fields on
the Schroedinger wavefunction from the point of view of generalised complex geometry on classical
phase space. Using the transformation law for the Schroedinger wavefunction under the passage to an
accelerated frame, we have derived the nonrelativistic Unruh effect. As expected, the latter establishes
a linear dependence law between the acceleration of the noninertial frame and the temperature thereby
generated. Within the scope of the techniques presented here lie other interesting physical systems, to
be treated in an upcoming publication. Such are quantum-classical hybrids [36,37] and the thermalising
properties of nonuniform (but still weak and classical) gravitational fields.

Altogether, we conclude that generalised complex geometry provides a powerful tool to analyse
fluctuation theory and thermal phenomena in the presence of gravity.
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ABSTRACT:

We review the present status of the different lines of research in the area of Photonics at the
Interdisciplinary Modeling Group, InterTech (www.intertech.upv.es) paying special attention to new
topics that we have recently incorporated to our research interests: temporal solitons and design of
supercontinuum generation, plasmon-soliton interaction, nonlinear effects of the quantum
electrodynamics vacuum, and, finally, cold atoms in the mean-field and quantum regimes.

Keywords: Nonlinear Optics, Plasmonics, Cold Atoms.

RESUMEN:

En este articulo presentamos el estado actual de las diferentes lineas de investigacién desarrolladas
en el drea de Fotonica del Grupo de Modelizacién Interdisciplinar, InterTech (www.intertech.upv.es)
prestando especial atenciéon a aquellas que han sido incorporadas recientemente: solitones
temporales y disefio de la generaciéon de supercontinuo, interacciéon plasmoén-solitdn, efectos no
lineales del vacio en electrodindmica cuantica y, finalmente, &tomos frios en el régimen de campo
medio y en el régimen cuantico
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1. Introduction and the present time which include
contributions in the following topics: spatial
solitons in discrete media, singular optics,
temporal  solitons and  supercontinuum
generation, non-paraxial nonlinear optics in
photonic crystals, nonlinear liquid crystals,
nonlinear plasmonics, cold atoms in the mean-
field and quantum regimes and nonlinear effects
of the QED vacuum.

Nonlinear waves are fundamental objects in
media characterized by a nonlinear response.
Their modeling and understanding is a
fascinating object of study shared by different
disciplines. This broad spectrum of topics in
which nonlinear waves play a key role makes
this subject especially suitable for the
characteristic InterTech interdisciplinary
approach based on advanced mathematical /
physical modeling, demanding computational
methods, and the development of new
technological applications. We will present here
the main lines of research developed in the area Spatial solitons are nonlinear light structures
of photonics at InterTech during the last years that are able to propagate without diffraction

2. Spatial solitons in discrete-
symmetry media
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due to an exact compensation between
diffraction and nonlinear effects. They are
mathematically  described by  Nonlinear
Schrodinger Equations (NLSE) or alike [1]. The
propagation of spatial solitons in discrete-
symmetry media such as periodic dielectric
structures provides them with special properties
absent in ordinary propagation in homogenous
media. The richness and complexity of nonlinear
solutions in discrete-symmetry media is highly
remarkable. Our group has worked intensively
in this topic in the last years. Our main
contribution has been to introduce a powerful
theoretical tool to classify this panoply of
nonlinear solutions in a systematic manner. This
mathematical tool is the generalization of
discrete group theory to nonlinear equations of
the type given by NLSE [2]. In particular, our
group showed the possibility of generating
spatial solitons solutions (of the fundamental,
vortex and dipole type) in photonic crystal fibers
[3-5] and nontrivial phenomena involving
nonlinear photonic crystals as that of vortex
transmutation [6].

Fig. 1. Vortex soliton solutions for different powers in a
photonic crystal fiber (up) as in Ref. [5] and a characteristic
example of vortex transmutation (down) as in Ref. [6].
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3. Nonlinear singular optics

The mathematical tools developed for the study
of solutions of NLS-like equations were
especially well suited for the study of phase
singularities. In general, complex scalar
solutions of wave equations can present
dislocations similar to those found in crystals.
The essential mathematical property of these
complex scalar functions in the point or line
where a dislocation is localized is that its phase
is increased or decreased in a multiple of 2n
along a closed curve around it. In these points or
lines, also known as phase singularities or, in a
wide sense, as vortices, the amplitude of the
function vanishes and its phase is undetermined.
In the case of nonlinear optics, the study of such
singularities or vortices is often enclosed in a
separated branch called nonlinear singular
optics [7]. An important category of optical
vortices is that of discrete vortices (DV), or
vortices in discrete-symmetry media. We have
developed a series of powerful theorems and
rules to predict the behaviour of phase
singularities propagating in optical media
owning discrete rotational symmetry. This
includes a vorticity cut-off theorem [8], the
demonstration of DV as angular Bloch modes [9],
the essential relation between symmetry,
winding number and topological charge of DV
[10] and the existence of selection rules for the
topological charge of DV in interfaces breaking
rotational symmetry [11].

4. Nonlinear temporal optics and
design of supercontinuum spectra

The behavior of optical pulses in optical fibers
and optical fiber devices in the nonlinear regime
is also given by an effective NLSE in the time
domain for the pulse envelope [12]. Generalized
versions of NLSEs are used to include higher
order nonlinear effects. Among them,
supercontinuum generation, the spectacular
enhancement of the spectral width of a pulse in a
PCF, is likely the most relevant phenomenon in
nonlinear fiber optics in the last years [13].
Supercontinuum generation is a complex
phenomenon that strongly depends on the
dispersion features of the fiber and the
characteristic of the input pulse. This generates

© Sociedad Espafiola de Optica
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Fig. 2. Examples of the amplitude (left column) and phase
(right column) of DV solitons with same rotational behavior
under m/2 discrete rotations: they both have identical
angular pseudo-momentum m=-1 (see [9]), but different
total topological charge: v=-3 in the upper case and v=-1 in
the lower case. White circles in phase figures indicate phase
singularities with topological charge +1 whereas red circles
correspond to charge -1. Classification and behavior of these
solutions are given in Ref. [10].
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an enormous variety of available output spectra
by suitable tuning of these parameters. However,
the computational cost to explore all the
parameter space is unaffordable. Thus, in order
to design useful PCF-based devices yielding
spectra for useful applications, a combination of
optimization techniques and large compu-
tational resources is needed. In this context, we
have developed a new computational scheme to
design supercontinuum spectra “a la carte” by
means of genetic algorithms [14]. Due to the
potentially large amount of computations
required by this strategy, the deployment of
these heuristic algorithms is performed using
distributed computing in the form of a Grid
platform. The optimization procedure is
automated within the Grid platform and permits
escalation to large computational Grids. Some
examples of designed supercontinua are given in
Fig. 3. Potential applications for the design of
future photonic devices include the fabrication
of light sources for specific targets in nonlinear
microscopy and biomedicine.
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Fig. 3. Spectral evolution examples that belong to the parameter space. Full vertical lines mark the zero GVD and dashed show the
targeted spectrum in the anomalous GVD regime. Figs. (a) and (b) correspond to far non optimized results, whereas Figs. (c) and (d)

show two optimized cases.
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5. Nonlinear liquid crystals

Nematic Liquid Crystal (NLC) devices are being
widely studied in the field of Nonlinear Optics
due to its large nonlinear response [15]. It allows
to generate nonlinear solutions with no change
of shape, the so called nematicons at very low
optical powers. Its interest range from all optical
communication devices to computation. Besides,
the nonlocality exhibited by NLC cells has been
shown as an efficient mechanism for stabilizing
optical complex structures which cannot exist in
local nonlinear homogeneous media. The aim of
this line of research is presenting a complete
realistic model for NLC devices that permits
realistic simulations of nonlinear propagation of
light in these structures. This model provides
new effects absent in ordinary simplified
nonlinear nonlocal models.

6. Nonlinear plasmonics

Plasmonics is an important and quickly
developing area of modern physics which offers
promising applications in nano-optics and
electronics. It deals with the so-called surface-
plasmon polaritons (SPP), i.e, collective
oscillations of the electromagnetic field and
electrons which propagate along a metal-
dielectric surface and decay exponentially away
from the surface [16]. SPPs are characterized by
their frequency and their propagation constant
along the interface. SPPs can only interact
resonantly with evanescent electromagnetic
waves in the dielectric medium. Accordingly,
there are two main methods for excitations of
plasmons: (i) via the evanescent wave generated
at the total internal reflection and (ii) via a
periodic structure producing evanescent modes.
In this context, we have shown the possibility of
resonant interaction between a SPP at a metal
surface and a parallel self-focusing beam, in the
form of a spatial soliton, in a nonlinear dielectric
[17]. A simple two-level model reveals
hybridized plasmon-soliton eigenmodes, we
refer to as soliplasmon excitations, and their
complex nonlinear dynamics which offers
plasmon excitation and control using spatial
solitons.

Opt. Pura Apl. 44 (3) 455-461 (2011)
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Fig. 5. Characteristic metal/dielectric/Kerr structure
supporting soliplasmon excitations (up). Two examples of
“antisymmetric” and “symmetric” soliplasmon excitations as
appearing in Ref. [17].

7. Cold atoms in the mean-field and
quantum regimes

Ultracold matter can be represented by a
coherent state, constituted by many atoms,
called a Bose-Einstein condensate (BEC). This
quantum state can be, in turn, represented by a
mean-field wave function that fulfills the so-
called Gross-Pitaevskii equation (GPE). The GPE
is a temporal equation that describes the
dynamics of the BEC wave function and is
formally identical to the NLSE in different
dimensions. In the particular case of BEC in 2D
traps the GPE is identical to NLSE describing the
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Fig. 6. Different snapshots of the evolution of a charge 2
matter wave vortex under the action of a symmetry breaking
potential of order 4. This behavior is consistent with the
discrete group theory rules developed in Ref [18].

propagation of light in 2D optical media. For this
reason, all our results based on discrete group
theory previously applied in optical systems can
be translated to the ultracold matter formalism
in a straightforward manner. In this way, the
symmetry rules governing the behavior of
optical vortices under the presence of discrete-
symmetry media also hold for matter vortices
when the full continuous rotational symmetry of
the potential is broken by the presence of an

instantaneous discrete-symmetry potential [18].
Further studies initiated in our group indicates
that our symmetry rules are also preserved in
the quantum limit, i.e., that in which the number
of atoms is so small that the usual GPE approach
start to fail because of quantum fluctuations in
the atom number. Modeling in this case is
performed using the full quantum Bose-Hubbard
model for atom traps in the form of a ring
showing discrete rotational symmetry.

8. Nonlinear effects of the QED
vacuum

This line of research is developed together with
Daniele Tommasini and Humberto Michinel from
the Optics Laboratory of the Universidad de Vigo
at Ourense [19]. This line is devoted to light
nonlinearities induced by the QED vacuum, that
is, in the absence of any form of matter.
Surprisingly, in terms of classical Nonlinear
Optics, vacuum excitations, in the form of the
quantum generation of virtual electron-positron
pairs, can induce effective nonlinearities.
However, despite it is a well-known result since
long time ago, photon-photon scattering in
vacuum has not yet been detected using
standard high-energy experiments where the
probability of this effect to occur, given by the
photon-photon cross section, is maximized. An
alternative approach is to perform experiments
using ultrahigh power optical lasers, such as

—_——

Fig. 7. Characteristic box diagram of photon-photon scattering in vacuum generating effective nonlinearity (left). Schematic
representation (right) of a proposed experiment with a high-intensity laser (green) interacting with a low-intensity one (red beam
above): nonlinearities induced by the high-intensity laser generate a nonlinear shift in the low-intensity laser that can be measured
by interferometric methods using a non-shifted reference low-intensity beam (red beam below).
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those that will be available in the near future, in
such a way that the high density of photons will
compensate the smallness of the cross section. In
this case, the small energies characteristic of
optical photons (a few eVs) and the effect of
photon-photon collisions due to the interchange
of virtual electron-positron pairs can be
expressed in terms of the effective Euler-
Heisenberg nonlinear Lagrangian. This modifies
Maxwell’s equations transforming them into a
Lorentz covariant set of nonlinear equations.
Our mixed group has proposed optical

Opt. Pura Apl. 44 (3) 455-461 (2011)
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experiments based on ultrahigh intensity lasers
in which this small effective nonlinearities can
be unveiled thus showing for the first time the
presence of photon-photon scattering in vacuum
[20-22].
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Abstract—In this work a sliding modes controller is designed
and implemented for regulate the temperature in a closed space.
The system is represented with a lumped parameter model of
18R13C, initially the model is evaluated in simulation and tuned
with experimental data, for the design of the controller is used
the Monte Carlo method to simplify, and later calculate the
equilibriums and main parameters, finally the controller is tested
in a reduced scale model.

Index Terms—sliding modes controller, lumped parameter
model, Monte Carlo, Full Scale Model.

1. INTRODUCTION

The reduction of the energy consumption in cities and
different human environments is a very important study field in
the last century [1]. Has been identified that the urban zones
concentrate close to the 50% and consume almost the 85%
of annual energy production on developed countries, and of
all these energy required in cities almost the 40% is used on
HVAC (Heating, Ventilation and Air Conditioning) systems to
achieve the thermal comfort in offices and residential spaces
(2], [3].

To decrease the energetic consumption of a thermal zone is
necessary analyse all the possible sources or lakes of heat, an
try to reduce his impact on the thermodynamic of the space,
for this is necessary the use of accurate mathematical models
and simulators, that allow to the researchers execute deeper
and different experiments [4].

The mathematical models used to analyse a thermal zone
can be classified in black, grey or white box according with
the grade of configuration and knowledge allowed to the
researcher, the commercial simulator such as TRNSYS® and
ENERGY+®usually implements black or grey models, and
are widely used in research and industry, for this reason in
any investigation is necessary take in account the response
of these simulators and realize comparision for guarantee the
good behaviour of the used models [5]-[7].

Otherwise, the use of the accurate mathematical models that
allow understand the thermodynamic of a building is just a
part of the problem of high energy consumption, is necessary
implement control actions that regulate the thermal conditions
and look for energy savings, in literature many controllers has
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been proposed and investigated in this ambit, but is necessary
continue investigating new strategies that can achieve the aims
and for his nature can be adapted to the thermal scope.

The sliding modes control is a technique used widely in power
converters and mechanical applications [8], [9], using his good
characteristics as the quick response to disturbances, stability
and easy tuning, besides can be adapted to new applications,
such as the thermal regulation, but his implementation on
real buildings is a challenge for different reasons, such as the
interruption of human activities, economic costs and aleatory
environmental conditions between others, for avoid these el-
ements in the evaluation of new control strategies is helpful
practice the use of scale reduced models.

In this work we present the process of verification in sim-
ulation and experimentally of a lumped parameter model,
described mathematically and adjusted to represent the ther-
modynamic of a wooden box used as scale reduced model with
an internal gain, later a sliding modes controller is designed
and implemented for regulate the internal temperature.

The rest of the article is organized as follow: in section II is
described the structure of the lumped parameters model. The
section III used to present the simulation and experimental
tests. In section IV the controller is designed and evaluated the-
oretical and experimentally. Finally, in section V are showed
the conclusions.

II. MATHEMATICAL MODEL

To evaluate the control sliding method is needed count with
a mathematical model accurate and tuned to the study case, in
this research we select the lumped parameter model presented
in figure II, in literature this structure is called Full Scale
Model (FSM) [10], [11], and use the subscripts ¢, j, where
1 = 1,2...6 corresponds to the wall of the thermal space,
and the subscript j = in, med, ex indicate the position of the
element, in and ex corresponds to the internal and external
surfaces, and mid is used for the conduction resistance of
the walls, the state vatiables of the models are the internal
temperature 7', and the 12 superficial internal and external
temperature T ;, ¥ T o, the environmental temperature is
represented as 7,, additionally is considered the thermal
capacity of the air in the room represented with the capacitor
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C,., the internal gains are included with the variable I; and
controlled with the binary variable u [7].

Ry in Ry mid Ri,ex
ICLm Icl,ez
Ra,in Ry mid  R2ex
Tngm TC’2,ez
R3 in R3 mid R3 ex
f Tcg,in T C3,ex
" c, Ry in ) Ry, mid Ra,ex Ta
I IC'4,m IC’4,63¢ |
Rs.in Rs mid Rs,ex
Tcs,m TC5,e:c
Rg,in  R6,mid Rg,ex

ICG,in TCG,E.’E

Fig. 1. Full scale model
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It is necessary clarify that the internal and external resistances
is considered the heat transfer process for radiation and con-
vection, meanwhile the conduction heat process is calculated
with the physical characteristics of the wall [12].

III. TUNING AND SIMULATION

For guarantee the efficiency of the mathematical model
it was planted a theoretical study case with a constant
temperature, the same situation it was model with the
commercial program TRNSYS®, the model planted was
a empty cube of edges 2m, the material in the walls is
the medium concrete, with the following thermal charac-

teristics: conduct1v1ty—4.147hm(, i specific heat—l—kgv e and
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Fig. 2. Comparison between FSM and TRNSYS

density=1800%. The simulators results were compared using
the root mean square error (RMSE), the aim of this test is
analyse the difference between the simulators changing the
thickness of the walls, the results are presented in figure 2,
where the blue green line corresponds to the TRNSYS data
and the blue is for the FSM, the black point is the time
taken for achieve the stationary state. In table I is resumed
the thickness values used and his corresponding time of the
establishment and error calculated, with this first simulation is
possible appreciate the good behaviour of the FSM especially
for thermal spaces with walls of low thickness.

TABLE I
FSM AND TRNSYS ERRORS
Espesor[m] | RMSE[C] | Muestralh] | Grafica
0.05 0.5314 117 2(a)
0.15 0.9131 157 2(b)
0.25 1.5991 175 2(c)
0.35 2.0028 243 2(d)
0.45 2.1316 383 2(e)
0.5 2.4331 397 2(f)

The next step in the investigation was tuning the model with
experimental data, for this aim was built a wooden box with



TABLE II
WOODEN BOX PARAMETERS
Material | Parameter Value
Conductivity 0.645 7=
Wood Density 700 24
o e 1
Especific heat | 1.6 lzg Z
i kg
Air Densu'y 1.2~ KJ
Especific heat | 1. 007 kg

the dimensions 70cm x 40cm x 58cm with 15.8mm of walls
thickness, the thermal characteristics are resumed on the table
II; in the interior was set a infrared lamp of 601 to stimulate
the heat flux, this experiment was executed indoor to minimise
the changes on the environmental temperature, and consisted
on consecutive periods of charge and discharge of 4h duration.
The experiment taken almost 3 days, and the internal temper-
ature experimentally recorded were used to adjust the transfer
heat coefficients between the air internal and external and the
box walls, this results are presented on figure 3, showing with
the red line the experimental data, blue line is for simulated
internal temperature and green line for environmental temper-
ature.
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IV. CONTROL DESIGN

The basic theory on the the sliding modes controller start
defining a nonlinear time-dependent system & = g(z(t)) +
¢(x(t))u(t), where = is a vector of state variables, g(.) and
¢(.) are smooth vector fields [13], and u(t) is a binary equation
depending on the next relation:

|

The variable s is the system trajectory, usually defined
as a linear arrangement with form s = Z;’il oy = Jx,
J = [, aa...quy] is a vector of constants of the controller o;
to be tuned [14].

The state variables defined for this case are the temperature
error about a reference temperature Tr.c¢ i.€. (1 = Trey —T)
and the incoming heat flux xo, but initially the FSM counts

u=0 paras>0

u=1 paras<0 @)

with 13 state variable related to the internal temperature an
superficial temperatures, and must be reduced or discarded
according with his importance on the model, for this process
was developed a Monte Carlo analysis with the coefficients
of the convection internal and external, the radiation internal
and external, and the conduction process. The analysis allow
know the impact of little variations in the nominal value of
an initial coefficient over the internal temperature and classify
the importance of the parameter and phenomenon according
to the slope of the line final, the disturbances on the input
parameters were generated with 1000 aleatory numbers with
different distributions, the range of disturbances used in each
case is from 2.5% until 12.5% [15].

In figure 4 is presented the result of this analysis, in this
picture is evident that the radiation process has low impact
on the internal temperature, and the system can be simplified
to a model that only considers the conduction and convection
process.

The next step on the controls design is the establishment of the

— Internal convection
— External convection|
0.18 H— Conduction B
| — Internal radiation
— External radiation

Fig. 4. Monte Carlo analysis results

system equilibriums, these points must be stable attractors with
fixed input and infinite time, in figure 5 is showed the theoretic
equilibriums and the sliding manifold taking the controllers
coefficients J = [« 1], the constants a, b, ¢ and d are positive
values calculated with the walls characteristics according with
the equations 5-9.

Ri me
Ris = Ricot =5 d (5)
Ri me
Rim = Rin + éd (6)
6
1 1
= — 7
Ro " LT ?
6
1 1
= - 8
R~ T ®
6
Cu = Z Ci,in + Ci,eac (9)
=1
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Fig. 6. Equilibriums in simulation
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Figure 4 shows the simulation results for the both states of
the variable wu, in these pictures the black circles represents
the initial point, and the the circle blue and red are the
equilibrium in each case. After find the equilibriums system
is necessary define the surface sliding s = ax; + z2 and
his derivative § expressed on equation 14, this equation is

expressed function of the the state variables, the reference
temperature and environmental temperature [16].
«
s$=azr;—(b+tct+d— =
L= &
Based on the equation 14 is possible determine the
critic value of «, for this case is planted of a =
Cr Rsthw + Rmicw + let CT>’ it must be selected a close
value higher o lower, the chosen value taken is oo = 48.3198.
The hysteresis bandwidth is defined with the establishment of
two lines A; and Ao, these lines corresponds to the inclusions
of one positive constants chosen arbitrary, in this case is
e=0.5,ie. \f =ax1+2o—eand \; = ax1 + 29 + €.

Va2 —bThes+ull, (b+c)+bT, (14)
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Fig. 7. Sliding modes control in simulation

In figure 8 are presented the simulations results, the black
line represents the sliding surfaces s = 0, the green line
are used for represent A\; and Ao, the red line is used for
represent the system evolution with v = 1, and the blue line
the evolution with v = 0, specifically in 7(c) is presented
the internal temperature, and after the transitory period the
temperature achieve the reference of 28°C' satisfying the 2%
criteria.

The experimental test was implemented with a electronic card
ESP32 LOLIN, and temperature sensors DS18b20, the system
was programmed to sampling temperature every thre minutes,
in this experiment the initial conditions were very close to
the sliding surface as is presented on figure 8(a), but as in
theory the system achieve the stable point in x; = 22 = 0, in
that moment the duty cycle is very stable (figure 8(b)), finally
in figure 8(c) is showed the internal temperature recorded, in
this picture is evident the good behaviour of the controller
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regulating the internal temperature even with a increasing
environmental temperature.
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Fig. 8. Sliding modes control experimental results

V. CONCLUSIONS

In this paper was designed and tested experimentally a
sliding modes control for regulate temperature in a closed
space. In first stages of the investigations the Full Scale Model
was compared with the commercial software TRNSYS®,
giving low errors values, especially on thermal zones with
low thickness walls.

The experimental tests were done with a reduced scale
models, giving a set of experimental data that allowed
adjust the simulator and minimise the difference between the
experimental and the simulation in open loop.

The Monte Carlo analysis was used to discard parameters on
the model on the beginning of transitory stages, in this period
the radiation heat transfer has low impact over the internal
temperature.

Following the theory of sliding control strategy, it was design
the operation rule, and founded the main control parameters,
in experimental and simulation tests the controller satisfied
the 2% criteria, allowing conclude that the strategy can works
without problem with the thermal variables.
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Abstract: To reduce the energy consumption in buildings is necessary to analyze individual rooms
and thermal zones, studying mathematical models and applying new control techniques. In this
paper, the design, simulation and experimental evaluation of a sliding mode controller for regulating
internal temperature in a thermal zone is presented. We propose an experiment with small physical
dimensions, consisting of a closed wooden box with heat internal sources to stimulate temperature
gradients through operating and shut down cycles.

Keywords: building modeling; lumped parameter model; sliding control mode; reduced scale model

1. Introduction

In recent decades, building modeling and energy consumption in thermal zones have become a
growing field of study for engineers and researchers [1]. These studies have been impulsed by different
countries thanks to international agreements such as the Kyoto Protocol and the implementation of the
sustainable development goals of the United Nations (UN). It has been realized that the high energetic
consumption of HVAC systems in buildings, which in developed countries can account for 40% of the
annual energy production, is a key factor in climatic change [2].

To minimize consumption in buildings, it is necessary to understand the main factors of energy
waste, such as thermal comfort and human habits. Different tools have been developed to simulate
thermodynamic processes in buildings [3,4]. For example, commercial programs such as TRNSYS
and ENERGY PLUS allow representing an entire building and analyzing the effects of specific actions.
Another important tool is mathematical modeling, which permits deeper numerical analysis and
contributes to the development of new strategies and controllers for temperature regulation. At the
same time, this allows reducing energy consumption [5].

The representation of a entire building consisting of different levels and a large number of rooms
in each level, is a complex task especially if geometrical and physical characteristics, environmental
conditions and relations with external bodies are taken into account. To simplify the problem,
only individual and closed rooms are analyzed, and in subsequent stages the results are extrapolated
to the entire building. The analysis of a single room as a thermal zone is reduced to capturing the
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thermodynamic processes in the room. This includes evaluating the different heat sources, both external
and internal. Examples of external heat sources include sun radiation and surrounding bodies at
different temperatures. Possible internal heat sources include electronic equipment and occupants.
Some factors and phenomenona are easily handled, while others require important mathematical
modeling in order to be captured. In order to meet these requirements without increasing the
complexity of the mathematical model one makes simplifications that maintain the predominant
dynamics of the problem [6].

There are many choices of a mathematical model, depending on factors such as accuracy,
computational cost and adaptability. In many cases, high accuracy needs powerful electronic
equipment for sensing and processing. If implemented, this often drives costs beyond the budget.
Additionally, the more specific a mathematical model is, the more difficult its electronic implementation
will be, including modifications and variations in a case study. Another important factor is the tuning
of parameters in the model. Tuning strategies based on large databases or combinations of modeling
strategies in order to obtain the maximum amount of information about the study case are found
in [7-9].

Some modeling options are mentioned below: Ref. [5] presents a method for modeling room
temperature based on the laws of thermodynamics resulting in an Armax model for control purposes.
Ref. [10] uses the Zokolov mathematical model, which is based on heat balance with quasi-steady-state
approximations to determine the average internal temperature. For more detailed models, it is possible
to include different thermal phenomena such as infiltration and thermal inertia, as in [11], where the
mass and energy conservation principle was used. However, in the majority of research it is acceptable
to use reduced order models. The Lumped Parameter Methods (LPM) allow a choice among a large
variety of structures and orders. Refs. [6,12] use circuits of 4th and 7th order to model single thermal
zones, while Refs. [13,14] use simplifications and apply different control techniques.

An aspect as important as the mathematical model itself is the control strategy. This is so because
some of the thermal zones inputs are constantly changing. Thus it becomes necessary to rely on a
central controller that regulates the internal variables to achieve the objectives of thermal comfort and
energy savings. Strategies such as the model predictive control (MPC) are accepted within the scientific
community as a good alternative in thermal applications [15-18]. This technique has been compared
with classic controllers such as PID [19] and been shown to perform better. Refs. [20,21] propose
cooperative work with fuzzy controllers that exhibits an energy savings of about 20%, demonstrating
that the study of other techniques cannot be disregarded.

However, the study of alternative control techniques is not a easy task, especially in experimental
investigations. To minimize problems in the evaluation of new control strategies, some researchers
have been using reduced scale models. The latter allow the creation of sensed thermal zones with
minimal resources and minimize the effect of environmental conditions. This effect is typically one of
the most common factors in the failure of new control strategies [22-25].

In this article, we show how to use the Sliding Control strategy for regulation of the temperature
in a thermal zone. This technique is normally used for commuted systems as power converters,
but it is robust enough to be implemented in different applications [26-30]. For the evaluation of the
control technique, an experiment with a scale reduced model was planned. The experiment consisted
of a wooden box equipped with an internal lamp to simulate a heater in a room, in a cold climate
environment. In the first stages of the experiment, a mathematical modeling technique was built and
tuned with an experimental database. This allowed the development of a simulator that reproduced
the experimental results with high accuracy. Subsequently we programmed an electronic card to drive
the internal lamp according to the control rule.

This article is organized as follows: Section 2 presents the mathematical models used to represent
the proposed experiment. Section 3 describes in detail the elements and places used in the tests.
In Section 4 the process for tuning parameters is shown and the experimental and simulation results
are compared. Finally, in Section 5, we present the control technique and the mathematical description
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necessary to simulate and complete the experimental test. Section 6 presents conclusions and suggests
future work.

2. Mathematical Model

The lumped parameter technique is a methodology for modeling buildings, based on an analogy
between thermal and electrical phenomena. Temperature is represented by voltage, heat flux by
electric current, and thermal resistance is defined as the resistance to heat transfer through walls,
and represented by an electrical resistance [31]. The resulting circuit must include a series of resistances
associated with the different heat transfer processes, and capacitors that represent the wall’s capacity
to accumulate energy. In the literature it is possible to find different configurations and circuits, which
allows choosing different models to solve the problem according to information quantity, physical
characteristics, internal gains and others factors [32].

In the Lumped Parameter Models the heat flux is assumed in one direction, the orientation is
defined by the difference between the environmental and internal temperature. In case of a higher
external temperature, the sequence followed for the thermal energy is as follows: first, transfer from
the external air to the exterior surface of each wall; next, conduction through the walls; finally, transfer
from the interior surface wall to the interior air in the zone. The reverse process takes place when the
internal temperature is higher than the environmental temperature.

2.1. Full Scale Model

Figure 1 shows a RC circuit equivalent to one closed room with four walls, a roof and a floor.
This configuration of the LPM is called Full Scale Model [6-33]. It is characterized by including
branches for the different surfaces, each branch incorporating resistances for the convection, radiation
and conduction processes. The nomenclature uses two subscripts i and j; the first one indicates
the surface i = 1,...6, and the second one indicates the position j = in, med, ex. The subscript “in”
corresponds to the interior elements, “mid” to conduction resistances, and “ex” represents the exterior
elements. Thus, e.g., the resistance R ;, corresponds to the heat transfer process between the interior
face and the interior air.

The conduction resistance for the corresponding wall is calculated according to Equation (1),
the interior and exterior resistances are calculated with Equation (2). Here & denotes the emissivity
coefficient of the material, and /1 denotes the convection coefficient which must be tuned experimentally.
The thermal capacity of each wall and the air contained in the zone is defined by Equation (3):

L;
Ri,med - kiAi (1)
1
Rijin—ex = 2 2 &)
A(hinfex + einfexU(Tsup + Ta )(TSHP + Tﬂ))
Ce;A;L:
Ci,in—ex = i 12 = (3)

The whole model contains 31 fixed parameters: capacitors, resistances, one single time variant
input (the environmental temperature T,(t)), and finally 13 state variables associated with the internal
and external surface temperatures together with the internal air temperature. All temperatures are
calculated as the voltage over the capacitors, connecting the temperature T;; with the capacitor C; j,
and the internal air temperature T with the capacitor C,. Applying circuit theory it is possible to
determine one set of differential equations to calculate the temperature evolution:

dTi ex Ti ( 1 1 ) Ti in
£X ~T + + " )
dt Ri,ex Ci,ex vex Ri,ex Ci,ex Ri,mid Ci,ex Ri,mid Ci,ex
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dT; T; 1 1 T
iin _ iex — Ty ( + ) + )
dt R; 1iaCiin RimiaCiin ~ RiinCiin R;inCiin
ar _ Ty —T n Toiw—T n Tyim—T n Tyjn—T n Tsin—T n Tein—T | ulp ©)
dt Rq,inCr R2,inCy R3,inCy Ry inCr Rs inCr Reg,inCr Cr

Above, I}, represents the power of the internal gains and u their state (active or inactive).

Riin  Rimid Riex

—-|__Cl,in —-|__Cl,ez

R2,in R2,mid R2,ew

—-|-_C2,in TCQ,e:L'

R3in  R3,mid R3ex
TCBV“L —-|-_ CS,ew

J: R4 in R4,mid'R4,ez Ta

Tcél,in TC47EI |

RS,mid RS,em

—-|__C5,in Tcs,ez

Rg,in  Re,mid Reé,ex

Tcﬁ,in TCG,ET,

Figure 1. Circuit for a thermal zone using the full scale model.

—]

Rs5 in

2.2. Simplified Model

Another useful structure is presented in Figure 2; this circuit provides a simplified model and,
in many cases, is enough to analyze a thermal zone with minimal parameters. This model requires 18
fixed parameters, one single input and only two state variables, corresponding to the wall temperature
and the internal temperature (T, and T respectively). In this case, the conduction resistance is denoted
with only one subscript i, and the internal and external resistances carry one additional subscript
j to indicate their positions. Important elements are the calculation of R; and Cy; in this structure,
the resistance is calculated with one half of the wall’s thickness, and the capacitor uses the entire
superfice area. The order reduction in this model is given by disregarding the radiation process that,
in transitional states, hardly contributes to the general dynamics. Thus, the internal and external
resistances are calculated with the convection coefficient.

In order to calculate the set of differential equations, the circuit must be simplified by reducing the
resistors; the external face is calculated by the parallel resistor as R%t = Zﬁ %, where R is the linear
addition of the conduction and convection resistors R;; = R; + Rl-,w; . Similarlyl the internal face resistor
Ryt is calculated using the corresponding convection coefficient for the resistor R, ; = R; 4+ R; .
The final results are shown in Equations (7) and (8):

T = — T + + 7
dt Rstcw W(Rstcw Rmtcw) Rstcw ( )

dr Ty, —-T
E B Rthr (8)
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R2,in R2 R2 R2,ez
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R3 in Rs 3 R3eq
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R5,in R5 R5 R5,ez
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VVV VVV T
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Figure 2. Circuit for a thermal zone using the simplified model.

3. Experimental Setup

Using the concept of reduced scale models for the evaluation of the controller, a closed container
was built with a chipboard working as a thermal zone. Such elements are regularly used in kitchen
furniture. The dimensions of the container are 70 cm x 40 cm X 58 cm with 15.8 mm of wall thickness;
additionally, it is lifted 10 cm from the ground with plastic legs that limit heat transmission by contact
with the ground. In Table 1 additional data associated with the materials used in the experiment
are presented.

Table 1. Parameters of the materials used in the experiment.

Material Parameter Value

Conductivity — 0.645 5

Wood . kg
Densitiy 70055

e KJ

Specific heat 1.6 FgK

‘ kg

Air Density 1.255

Specific heat 1.007,{1(%(

The box was equipped with: one 60 W incandescent internal lamp with infrared light to simulate
a heater in a closed room; one temperature and humidity sensor (Data Logger Wohler CDL 210) inside
the box, and another one outside the box for registering environmental conditions.

Figure 3 shows the wooden box with the lamp and temperature sensor ready to start the
experiment. All the tests were carried out in closed spaces (in order to minimize the effect of
environmental changes) at Polytechnic University of Valencia (Spain). The first two data recompilations
were done in open loop, with the objective of generating enough information to adjust the models and
calculate the control parameters [34].

Figure 3. Wooden box used as scale reduced model.
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4. Adjusting the Models

For the dynamical analysis of the thermal zone built, it was necessary to develop a simulator
to reproduce the experimental results. The mathematical model described in Section 2.1 needs to be
adjusted to the situation of the system. That is, the convection and radiation coefficients for internal
and external faces had to be determined as functions of the state of the lamp. The activation state is
called “charge” and the deactivation stage is called “discharge” in the rest of this work. The tuning is
based on the experimental records obtained in open loop. Our strategy uses the registered data of the
internal temperature and an optimization algorithm to minimize the error between simulation and
experimental results.

The first test was done on 15 March 2018 and lasted 24 h (only the first 6 h were on charge).
With the data compiled, the Pattern Search algorithm from the OptimTool of MATLAB was used. This
tool requires a mathematical model, one objective function, and a set of output parameters. In this
case, the mathematical model used is presented in Section 2.1. The objective function F,(T) is shown
in Equation (9). Finally, the set of output parameters defined are the internal convection coefficient #;,
the external convection h,, the internal emissivity ¢; and the external emissivity ¢,.

F,(T) = min{ E(T)} 9

t 2
- \/ftof |Tmeasured - T|
= , >

ftof |Tmeasured|

As mentioned previously, the charge and discharge phases were analyzed individually, with the
resulting coefficients presented in Table 2. With these parameters, the simulator was compared with
the experimental results. This produced the results shown in Figure 4. The model’s accuracy with the
adjusted parameters was tested by calculating the relative error shown in Equation (10). This led to an
approximate error of 2.7%.

E(T) % 100 (10)

Table 2. convection and radiation coefficients.

Phase/Parameter hi[hlnf—,,IK] hg[hlni—!K & £
Charge 44.6875 11.1250 0.9430 0.9
Discharge 0 9.7324 0.0211  0.8805
30

— Simulation

_ o5t i

e

T

g

g

£

8
20+ ~ .
%0 12 14 16 18 20 22

Time[h]

Figure 4. Simulated and experimental results in the first test.
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The second test in open loop was done on 13 April 2018 and lasted 11 days (10 days were on
charge phase). The comparison between experimental and simulation is shown in Figure 5. In this
case the relative error was about 2.3%. This figure was plotted using a total amount of 4756 data.
Among these, only in six cases does the difference between experimental and theoretical values exceed
2 degrees. It exceeds 1.5 degrees in 97 cases, while exceeding 1 degree in 461 cases. In all remaining
4295 cases the error lies below 1 degree.

34

32F

n
o0
T
I

Temperature[°C]

181 : —T.Experimental |
——T. Simulated
T. Environmental

. : ;
50 100 150 200 250 300
Time[h]

Figure 5. Simulated and experimental results in the second test.
5. Control Application

For the evaluation of the Sliding Control (SC) on the thermal zone, it was decided to use the
second order model (presented in Section 2.2) because this scheme is easier to adapt to the control
structure. In Figure 6, a reduction of the second order circuit is presented, with the internal gain I,
driven by the SC to handle the internal temperature in the thermal zone.

u TRmt Tw Rst

AN
I > % .
SC 1;;,
T Ther

Figure 6. Reduced circuit of the simplified model with sliding modes control structure.

The state variables defined by the controller are the temperature error x; and the heat flux
xy shown in Equations (11) and (12). Here the desired temperature for the closed room is called
reference temperature T,,r, and the switch u represents the internal gain state. With these variables and
differentiating with respect to time, the state-space model can then be implemented by Equations (13)
and (14):

X1 =Ty~ T (11)
Xy = iCr (12)

. —X2
= 13
X1 C, (13)

Xy = icy (14)
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To simplify the mathematical equations, the following parameters are defined:

"= R ()
b= R:Cw (16)
c= Rmicw (17)
d= let o (18)

The state variables are defined as functions of the constants previously defined (the ambient
temperature, reference temperature, and the internal power source):

X1 - 0 _Clr X1 +
| |la —(btct+d)| |x

The SC determines the switch position with a trajectory function s based on the state variables,

0

L+o|""

0
EI(TH - Tref)‘| (19)

s =ax]+x3=Jx (20)

Above, ] and x are the vectors | = [a, 1] and x = [x1, x5]7, and a is the parameter to be adjusted by
the controller designer. The objective of this constant is to divide the space state in two sectors by a line
with slope «. This line is generated by the state variables that satisfy s = 0. In each zone, one system
equilibrium (x; = ¥, = 0) must be located, corresponding to the switch position (active/inactive).

The first case analyzed is the internal active source, with u = 1 equilibrium coordinates presented
in Equations (21) and (22). In this point the trajectory function is fulfilling the condition s > 0.

b+c

X1 = ref — IL( ) - T, (21)

xp =0 (22)

For the second case, the internal source is deactivated. The u = 0 equilibrium conditions are
shown in Equations (23) and (24). This point satisfies the condition s < 0:

X1 = Lref — Ta (23)

=0 (24)

Once the equilibrium analysis is done, the control laws can be established. Equation (25) shows
the actions in the searching period. Equation (26) defines the control laws when the system is
approaching the stability (x; = x, = 0) tracking the sliding line. Here € is a positive small constant
arbitrarily determined.

u=0 ifs>0
P— 2
" {uzl ifs <0 (25)
. Jx if0<s<e
_ 2
{]x if —e<s<0 (26)

To determine the slope of the sliding line (x) the evolution of the trajectory function must be
evaluated with respect to time. Equation (28) shows that only the sliding parameter affects the incoming
heat flux. Enforcing § = 0, the critical value a can be determined as presented in Equation (29):
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S =ax|+ x> (27)
X
s':—ucg—i—axl—xz(b—kc—f—d)—uTrgf+uIL(b+c)+aTa (28)
T
1 1 1
a=C + + 29
' (Rstcw Rmtcw Rmtcr> ( )

Based on the previous analysis, the slope of the sliding line was a = 48.3192. With this constant
and the system parameters defined, it was possible to develop the simulation of the thermal zone
under the sliding control technique.

The simulation was designed with an ambient temperature of 16 °C, a reference temperature of
Trer = 28 °C, and the hysteresis band with a fixed constant of ¢ = 0.5. The results are presented in
Figure 7. Here the black line represents the sliding surface, the green lines limits the hysteresis band,
and the red and blue lines in Figure 7a correspond to the evolution of the state variables x; and x; as a
function of the switch position; blue is for the active u# = 1 and red for the inactive u = 0. This first
figure shows the search stage. Figure 7b shows the tracking stage and the oscillation of the system
around the stability point (¥; = ¥, = 0). Finally, Figure 7c presents the internal temperature that

achieves the reference temperature and maintains its value satisfying the 2% criteria.

150

100

50]

-50)

-100]

0.4

0.2

| I i I I i i i 1 I i | I i I 1
0 2 4 6 8 10 12 14 16 -0.06 -0.04 -0.02 0 002 004 006 008 01
X X
1 1

(a) (b)

Temperature[°C]

12l I I I I I I I I I

4 5 6
Timeh]

()

Figure 7. simulation results. (a) Theoretical development of the search stage. (b) Theoretical

development of the tracking stage. (c) Theoretical internal temperature with the sliding mode control.
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We performed different experimental tests by programming the electronic card ESP32 LOLIN
lite and measuring internal and external temperatures using a sensor DS18b20 with a sampling rate
of 3 min. Figure 8 presents the results obtained after 65 h of experimentation. The first two pictures
present the x; and x, variable evolution (searching and tracking stages). Figure 8c shows that the
internal temperature achieves the reference temperature of 28 °C. As in the case of the simulated
results, this reference temperature (output variable) is achieved and it maintained the 2% criterion.

za,m

>
N
o

Temperature[°C]
N

ro
i
2

26

10 20 30 4 50 60 70
Timeh]

(c)

Figure 8. Experimental results. (a) Experimental development of the search stage. (b) Experimental
development of the tracking stage. (c) Experimental internal temperature with the sliding mode control.

6. Conclusions

An appropriate mathematical model can capture the thermodynamical behavior of a closed room,
allowing analyzing its characteristics and determining the most important factors in energy consumption.
In the energetic analysis of buildings, it is important to rely on algorithms and methods to estimate
the heat transfer parameters that contribute to thermal leaks. In this work we proposed an experiment
based on a piece of kitchen furniture with one internal lamp. Using the lumped parameter technique for
modeling, it was possible to build a simulator to reproduce the internal temperature in the thermal zone.

In order to adjust the main parameters for the simulator, different tuning strategies were used.
The best results were obtained by the algorithm called Pattern Search, in MATLAB. With this tool,
and using the experimental data, we determine the transfer coefficients between the walls and the
surrounding air. The full scale model to reproduce the experimental results with a relative error of less
than 3%.



Mathematics 2019, 7, 503 11 of 13

To summarize, in this paper we tested the ability of the sliding control technique to regulate
temperature in a thermal zone. The goals were achieved through the implementation of reduced
scale models, through a set of important tools to experimentally verify the theories, and through new
techniques of simulation and control in buildings. It is even possible to avoid many error sources in
the mathematical models, such as environmental conditions and random disturbances. Furthermore,
the test can be done with a low budget and without interrupting regular conditions in a real building.

The simulation and experimental results show that the technique control can be used to regulate
the internal temperature of a thermal zone in regions with a low ambient temperature. This procedure
can be extrapolated to different and bigger zones.

Future work to be done would be the introduction of disturbances test and the random opening of
doors or windows. This could help to test the robustness of the controller. Furthermore, the evaluation
of the energetic consumption in closed loop is necessary to define the savings in comparison with
other control strategies.
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Nomeclature

« Sliding constant

o Stefan-Boltzman contant
0 Material density

€in_ex  Radiation coefficient

€ Hysteresis band amplitude
L; Thickness of the walls

k; Material’s conductivity

A; Surface area

hiy_ex ~ Convection coefficient

s Sliding trajectory

J Sliding constants vector

X State variables vector

Rij Thermal resistance

Cij Surface thermal capacity
Cr Air thermal capacity

Cuw Envelope thermal capacity
Ce; Specific heat

Ti; Surface temperature

T Zone temperature

T, Ambient temperature

Tsup Superficial temperature
Tref Reference temperature

icr Incoming heat flux

u Lamp state
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Iy

Internal gain power

Fo(T) Objective function

E(T) Temperature error

Ifll; L2 norm of function f: fub |f(x)|*dx
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Abstract

In the framework of a left-right model containing mirror fermions with gauge group
SU(3)c®SU(2),®@SU(2) p@U(1)ys, we estimate the neutrino masses, which are found to
be consistent with their experimental bounds and hierarchy. We evaluate the decay rates
of the Lepton Flavor Violation (LFV) processes u — ey, 7 — py and 7 — ey. We obtain
upper limits for the flavor-changing branching ratios in agreement with their present
experimental bounds. We also estimate the decay rates of heavy Majorana neutrinos in the
channels N — W*I¥, N — Zy; and N — Hyj, which are roughly equal for large values of
the heavy neutrino mass. Starting from the most general Majorana neutrino mass matrix,
the smallness of active neutrino masses turns out from the interplay of the hierarchy of
the involved scales and the double application of seesaw mechanism. An appropriate
parameterization on the structure of the neutrino mass matrix imposing a symmetric
mixing of electron neutrino with muon and tau neutrinos leads to Tri-bimaximal mixing
matrix for light neutrinos.
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1 Introduction

The evidences for neutrino oscillations obtained in experimental results from atmospheric, solar,
reactor and accelerator neutrinos lead to conclude that the neutrinos have a mass different from
zero. The current neutrino experimental data (SuperKamiokande, SNO, Kamland, K2K, GNO,
CHOOZ) can be described by neutrino oscillations via three neutrino mixings [I].The present
data give the solar neutrino lepton mixing angle tan? 61, = 0.45 & 0.05, the atmospheric angle
sin? 20,3 = 1.02 4 0.04 and sin?26;3 = 0 4 0.05 [2]. The complex phase has not yet been
measured.

The experimental information on neutrino masses and mixing points out new physics beyond
the Standard Model (SM) of particle physics, with a great activity on the consequences. Among
the possible mechanisms of neutrino mass generation, the most simple and attractive one is the
seesaw mechanism [3], [4], which explains the smallness of the observed light neutrino masses
through the exchange of superheavy particles; an alternative explanation is given by extra
dimensions beyond the usual three ones [5]. It has been suggested [ref.]that right-handed
(RH)neutrinos experience one or more of these extra dimensions, such that they only spend
part of their time in our world, with apparently small masses. At the present, it is not known
whether neutrinos are Dirac or Majorana fermions.

Models with heavy neutrinos of mass of order 1 TeV can give rise to significant light-
heavy mixing and deviation from unitarity of the Pontecorvo- Maki-Nakagawa-Sakata (PMNS)
matrix [6]. The nonunitarity nature of the neutrino mixing matrix due to mixing with fields
heavier than % can manifest in tree level processes like 7 — pv, Z — vv, W — v or in
charged lepton decays p — ey, 7 — vy, etc. which are flavor violating and rare and proceed
at one loop level [0, [7]. The TeV scale seesaw models are interesting because they can have
signatures in the CERN Large Hadron Collider (LHC) in the near future [§].

Neutrinos also are important in astrophysics and cosmology [9] and probably they contribute
to hot dark matter in the Universe and in its evolution.

Parity P violation was one of the greatest discoveries of particle physics [10]. Before this
observation, according to Fermi’s hypothesis it was believed that weak interactions have purely
vectorial V or axial vectorial (V-A) parity conserving Lorentz structure [I1]. The theory of Lee
and Yang in 1956 [I2] proposed a fermion current with V and A structure. It is known that in
the standard model (SM) the electroweak interactions have a V-A form, with only left-handed
(LH) (ordinary) fermions coupling to the weak gauge boson W*. But one can include also
mirror fermions [13] with a V' 4+ A coupling, such that P is conserved. In this sense, the term
"mirror fermion” is equivalent to ”vector-like fermion”, where for a theory with gauge group
G, in a representation R one has sets of LH and RH fermions.

In the literature a second meaning of that term is used. G is extended to a G x G gauge
theory, and for every multiplet (R, 1) a mirror partner (1, R) is added, such that there is no
gauge invariant mass term connecting the LH and RH multiplets [I14]. Thus it is natural to
consider the existence of mirror generations.

Masses of mirror particles arise from symmetry breaking; for mirror generation they may
lye below one T'eV, and feasible to be discovered in Fermilab Tevatron Collider and LHC.

A solution to the strong C'P problem has been proposed within a L-R symmetric context [16].
The electroweak group is extended to SU(2);,®SU(2)g®@U(1) including mirror fermions. These
fermions are conjugated to the ordinary ones with respect to the gauge symmetry group such



that a fermion representation including both of them is real and the cancellation of anomalies
is automatic [17].

In this paper we consider a L-R model with mirror fermions (LRMM) with gauge group
G=SUB)c®SU12),® SU((2)r ® U(1)yr. We discuss in section 2 the formalism of mixing
between standard and new exotic fermions In Sec. 3 we present the model and discuss the
symmetry breaking process with two scalar doublets.

In Sec. 4 we write the gauge invariant Yukawa couplings which after spontaneous symmetry
breaking give the most general Majorana neutrino mass matrix. With a double application of
the type I seesaw approximation we estimate the light neutrino masses in terms of free Yukawa
couplings assuming textures for the light and mirror matrices, obtaining consistent normal
hierarchical values for masses and a tribimaximal mixing for light neutrinos. We discuss in
section 4 the mixing between standard and mirror fermions. In Sec. 5 we include the radiative
decays p — ey, 7 — py and 7 — ey and estimate bounds for their branching ratios. Finally,
we calculate such ratios for the heavy Majorana neutrinos decays N — W*l~, N — Zy; and
N — Hyy, getting a smooth variation with the heavy neutrino mass, even when it is much
larger than any of the involved masses.

2 Fermion mixing and flavor violation

To consider the mixing of fermions, we shall follow Ref. [6], grouping all fermions of electric
charge ¢ and helicity a = L, R into n, +m, vector column of n, ordinary (o) and m, exotic (e)
gauge eigenstates, i.e. 1] = (5 _, w,‘fﬂe)z. The ordinary fermions include the SM ones, whereas
the exotics include any new fermion with sequential (mirror or singlet) properties beyond the
SM.

The relation between the gauge eigenstates and the corresponding light (1) and heavy (h)
charged mass eigenstates 1, = (¢1,¢n)L, a = L, R is given by the transformation

wgzva%, CLIL,R (1)

where

(% 5)

In the Eq. (@), A, is a matrix relating the ordinary weak states and the light-mass eigenstates,
while G, relates the exotic and heavy states. E, and F, describe the mixing between the two
sectors.
From the unitary of V'
V.Vt=1l,a=L,R (3)

it follows that the submatrix A, is not unitary. The term F.F,, which is second order in
the small light-heavy fermion mixing, will induce flavor-changing transitions in the light-light
sector.

The vacuum expectation values (VEV) of the neutral scalars produce the SM fermion mass
terms, which together with the exotic mass and mixing matrices lead to the mass matrix M
which takes the form



K p
M = - 4
( poK ) W
where K denotes the SM fermion mass matrix and K corresponds to the fermion mass matrices
associated with the exotic sector, while u, i correspond to the mixing terms between ordinary
and exotic fermions.
The diagonal mass matrix My can be obtained through a biunitary rotation acting on the
L and R sectors, namely
. _(m 0
Md_VLMVR—<O Mh) (5)
where m;, my, denote the light and heavy diagonal mass matrices, respectively. The form of
the mass matrix will depend on the type of exotic fermion considered.
The scalar-fermion couplings within some specific Higgs sector are not diagonal in general,

and one can see that the couplings are not diagonal in general; thus new phenomena associated
with flavor-changing neutral currents (FCNC) will be present in such model.

3 The Model

In this and next sections we follow closely [I5]. The LRMM formulation is based on the gauge
group SU(2);, ® SU(2)r @ U(1)y+. In order to solve different problems such as the hierarchy of
quark and lepton masses or the strong CP problem, different authors have enlarged the fermion
content to the form

0 ~0
0 — v; 0 0 . ZT) _ (¥ ~0 ~0
iL =\ 0 » &R ViR ) iR =\ 20 » Ginoy Vi
% L % R
0 ~0
0 _ [ W 0 40 : Ao [ W 0 D (6)
iL — dO ) uiR ) iR ) iR d(] ) uz‘L ) i L >
7 L 7 R

where the index ¢ runs over the three fermion families and the superscripts ° denote gauge
eigenstates. The quantum numbers of these fermions under the gauge group G defined above
are given by

l?L ~ (172717_1)iL ) V?RN (1717170)iR ) egRN (171717_2)iR
2~ (L1100, &~ (1,1,1,-2) , g~ (1,1,2,~1)g
4 2

U?RN (3717175)72}3 ) d?RN (371717§>iR
4 2

u/\?L ~ (3a171a§)ﬂ/ ) &E’)L ~ (33171a§)iL
1 ~ 1

?L ~ (372717§)iL ) ?R ~ (371727§>iR

respectively, and the last entry corresponds to the hypercharge (Y”') with the electric charge
defined as QQ = T3, + T3r + %’



A model with gauge group SU(2);, x SU(2)g x U(1)y x SU(3)y and the fermion content
(@) was originally suggested in Z. G. Berezhiani [18] as the "universal seesaw” model which
generated masses of charged fermions as well as of the neutrinos. He also worked on a SU(5) X
SU(3) g model for extension to SO(10) or Pati-Salam [19], predicting for instance m,, = O(10)
eV. At low (electroweak scale) energies the model simulates the standard SU(3)¢ x SU(2)., X
U(1)y model, and FCNC are suppressed naturally.

3.1 Symmetry breaking
The ”Spontaneous Symmetry Breaking” (SSB) is achieved following the stages:

G — Gsy — SU(3) @ U(1), (7)

where Ggyr = SU(3)c®SU(2),®@U(1)y is the ”Standard Model” group symmetry, and % = Tsp
+ %’ The Higgs sector to induce the SSB in Eq.([) involves two doublets of scalar fields:

A

®=(1,2,1,1) , d=(1,1,21) (8)

where the entries correspond to the transformation properties under the symmetries of the
group G, with the ”Vacuum Expectation Values” (VEV’s)

<<I>>:%<S) : <<i>>:%<g). (9)

The most general potential that develops)\ this pattern of VEVs is
xx:—m@®+ﬂé@y+§«¢@f+«@éﬂ+wx@¢x@é» (10)

In the last expression the terms with u, i are included so that the parity symmetry (P)is
broken softly, i. e., only through the dimension-two mass terms of Higgs potential.
The scalar Lagrangian for the model is written as

Lse = (Duq))Jr(DM(I)) + (f)uéfr(f)ué) (11)

where D, and lA?H are the covariant derivatives for the SM and the mirror parts, respectively.
The gauge interactions of quarks and leptons can be_obtained from the Lagrangian

LM = pin? Dy + iy Dy (12)

The VEV’s v and © are related to the masses of the charged gauge bosons W and W by My,
= 2grv and My, = 5gr0,where g, and gg are the coupling constants of SU(2), and SU(2)g,

and g;, = gg if we demand L-R symmetry.



4 Generic Majorana neutrino mass matrix

With the fields of fermions introduced in the model, we may write the gauge invariant Yukawa
couplings for the neutral sectonl:

~ ~

hij Uiz Vig + Aij lip @ vig + mij Lin @ D;1

—I-Mz'j L (D) + 04 Lir (D) @

~ ~

+Xij DiR (l/jR)c + 71',']' liR (l/jR)c + h.C. (13)

where i, j = 1,2, 3, = igy®*, <i>:i<72<i>*, hij, Mij, Xi; have dimensions of mass, and o0;, 1;;, Aij
and m;; are dimensionless Yukawa coupling constants. When ® and ® acquire VEV’s we get
the neutrino mass terms

= (% _ v ~ A
hij Uip, Vir + 7 Aij Vir, ViR + 7 Nij Vir VjL
Ao v o
+M;; Dy, (051)° + 75 0u e (D5r)°

~

— c v ~ c
+Xij ViR (I/jR) + ﬁ Tij ViR (I/jR) + h.c. (14)

which are written in the generic Majorana matrix form

@) (3 3 ) ()" (15)

where

0 il X 5T
ML_ ) MR_ ) (17)
v T 9 o T
EO' M ﬁﬂ- 0
%)\ 0
Mp = ) , (18)
h ol

'To simplify notation we drop the ”0” superscript



with A, M . X, 0, 1, A and m unknown matrices of 3 x 3 dimension. By assuming the natural
hierarchy [(My):;| < |(Mp)i;| < |(Mg);;| for the mass terms, the mass matrix in Eq.(I5) can
approximately be diagonalized, yielding

) (8 ) (1), "

where, neglecting O (Mp My") terms, we may write in good approximation[20] ¥/, g = U, g,
and '€, p ~ ¥y, p. The Majorana mass matrix for the left handed neutrinos may be written
in this seesaw approximation as

M, ~ M, — Mp Mz' M} . (20)

We assume a scenario where the dominant contribution for the active known neutrinos comes
from the Mj matrix having the same structure of a Type I seesaw. Then in this scenario the
eigenvalues for the light neutrinos may be obtained by applying again the seesaw approximation,
that is:

Mlisht — —(% o) M~ (-~ o) (21)

Taking advantage of the fact that all o;; and Mij entries in Eq.(21]) are free parameters, we
propose the following parameterizations for M and M"8" neutrino mass matrices:

1+b b b )
o b 1+b+ec b—ec , M = Diag (Y1,Ys,Ys) . (22)
m b b—c 1+4+b+c

2,,2
Mlight — Y=u

where Y, Y1, Ys, Y3, b, ¢ are dimensionless coupling constants and m represents the mirror
scale. This parameterization for the light neutrinos mass matrix imposes a symmetric mixing
of electron neutrino with muon and tau neutrinos in the first row and column of (M/'eht),.
and the 2 x 2 submatrix 7,7 = 2,3 generate maximal mixing for muon and tau neutrinos.
This structure for M8 makes possible the diagonalization of light neutrinos by the so called
”Tri-bimaximal mixing matrix” [26], i. e.

Ul MU Vi = ~Uly (——) M

)T Urg = Diag(my, mg, m3) , (23)

V2o

with
2 1
% v 0
Us=|~% & ~7 (24)
1 1 1
V6 V3 V2

~J



and the light neutrino mass eigenvalues

2,,2
(M1, ma, m3) = 2? (1, 14+3b, 14+2¢). (25)
m

The suppression by the mirror scale m in Eq.(25]) provides a natural explanation for the small-
ness of neutrino masses. The allowed range of values for the square neutrino mass differences
reported in PDG [22]:

ms—mi~T76x1077eV: | mi—mi~243 x 1077 eV? (26)
with the input for normal hierarchy of the neutrino masses

(m1, ma, ms) = (0.0865, 0.0870, .1) eV , (27)

fix the parameter values as b = 0.00168 and ¢ = 0.07757. These neutrino masses are consistent
with the bounds m, < 2eV [22], and set the mass differences

m3 —mi~25x107%eV?. (28)
So, from Egs. (25, 27])

Y2 2
2m

~ 8.65x 1072 eV . (29)

Therefore, assuming m = m; = 100 GeV and v = 246 GeV we obtain
Y & 5.34 x 1077 (30)

The matrix My, in Eq.(IT), may be diagonalized by using a unitary transformation

UvJr MLU:Diag(ml,mg,mg,ml,mg,mg) s (31)

where the mixing matrix U compatible with our framework is written in good approximation
as

U6><6 ~ R ) (32)
—(% O'M_I)T [3><3

The particular numerical solution congruent with the above scenario for the neutrino masses
and mixing is



—1.2001 0.6355 1.2952

Y 5~ 9304196V | 06355 —1.2702 1.3006 | | (33)
V2 12952 1.3006 0.5389
N = 100 GeV Diag ( 3.4918 , 3.2643 , 3.6043 ) , (34)

and

. —0.3437  0.1946 0.3593
— oM '~93x1077 [ 01819 —0.3891 0.3608 (35)
V2 0.3709  0.3984  0.1495

for light v - mirror mixing. Since the light-mirror mixing is very small, the mixing matrix for
light neutrinos behaves in good approximation as the Urg, Eq.(24). It is worth to mention here
that in the limit of very small light-mirror charged lepton mixing, (F zF L)ij » (EEEL)Z-]- < 1,
we may approach Urp as the usual Upy;ng lepton mixing matrix for three generations. Then,
we obtain (Uppyng)ez ™~ %, (Upmns)es = 0, and (Uppns)us = f’ which give for the solar
and the atmospheric neutrino mixing angles 615 ~ 35.2° and 0,3 ~ 45°, with 05 ~ 0 in good
agreement with current data, although recent evidences [27] show that 6;3 may have a value
different from zero.

In earlier papers on the study of neutrinos and left-right symmetry [28] appear similar
representations of the fermions and mass matrices as our in Eq.(I8]), but these authors obtain
masses for the standard and mirror neutrinos some orders of magnitude different from ours. On
the other hand, the mass generation in the LRMM here considered is achieved with the scalar
fields @ and @, Eqs.(3,4), transforming as doublets under SU(2), and SU(2)g, respectively,
with a mirror scale much lower than 10*2-10* GeV'’s.

5 Radiative decays

In this section we analyze the lepton flavor violation processes u — ey, 7 — py and 7 — ey
arising in the model by the existence of gauge invariant mixing terms between ordinary leptons
and with the mirror counterparts. The lower order contribution to theses decays mediated by
the neutral scalar fields comes from the Feynman diagrams where the photon is radiated from an
internal line. The corresponding amplitude is proportional to the operator @a’“’qyeuu(pl),
where ¢ = p; — ps and ¢, is the photon polarization [21].

In the limit m, < m, < m, the rate decay is given by

m? .M2 4
Ll =l +7) = ——(Gpm} )? Ml4 (In—- — g)@'j - le’kvL,jkVI:{kiF (36)
l k

512 4

2

where z,, = %, €;j = |AL Agli; represents the flavor-changing couplings, and the second term
W

is the very small contribution from the light neutrino propagating inside the loop.



In the limit o < 1 and My < M the branching ratios are respectively

3am? M? 4
_ 13 H + 2
Bi(p—e+y)= SN |(In m—i - g)eeu - ;kaVLkaVR,kJ (37)
3ami —~ ME 4
Bo(r = p+7) = mmn m—g B §)€#T - ;%VLWVJ{IWP (38)
and
3am?t —~ M% 4 42
By(tr = e+7) = ml(ln 2 g)GeT - zk:ifukVL,ekVR,kT| (39)

By using the constraints €;; < 1 ,i # j for the parameters in Eqs.(37BY), required by
unitarity of V', see Eqs.(28]), one gets for the above branching ratios:

By <22x107% | By<5x107? and B3 <5x107° (40)

which is congruent with the experimental bounds [22] B(p — e +7) < 1.2 x 107!*, B(t —
p+7) <44 x107% and B(t — e+7) < 3.3 x 1078 PDG [22].

6 Heavy Neutrino signals

Possible new neutrinos can be detected in various ways in colliders. If these neutrinos are heavy
they will be unstable and may be detected directly in their decay products.

Next generation of large colliders will probe Nature up to TeV scales with high precision,
probably discovering new heavy particles. Thus, it will be a window to any new physics near
the electroweak scale which couples to the SM. Such colliders can be used to produce new
heavy neutrinos at an observable level to improve present limits on their masses and mixings
[29]. These fermions with new interactions, like in the left-right models [30], can be produced
by gauge couplings suppressed by small mixing angles. For the analysis of the heavy neutrinos
signals it is necessary to know their decay modes, which are different in the Dirac and Majorana
cases.

Heavy Majorana neutrino singlets can be produced in the process [31]

q¢ - W* = I*H (41)

with [ = e, i, 7, which cross sections depend on My and the small mixing V;y. Heavy Majorana
neutrino decays in the channels N — W#*[T N — Zy, and N — Hy,. The partial widths for
the N decays are

2 3 M2 M2 M4
(N 1) = T(N 1ty = ¢ 2N o By 2w oWy
62 m3 M2 M2 M4
N = Zy)) = ——|UnP~ N1 - Z4)(1+ £ 972 43
W= ) = G g Ul (= 0 g %) (4)
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mN(GeV) BWzt BZ BH

100 034 | 0.1 0.2
390 0.3 |0.306 | 0.09
780 0.3 ]0.297 | 0.107

> My, Mz, Mg | 0293 | 0.3 | 0.111

Table 1: Branching ratios for different values of my

e? \U1N|2m?v _M?{
7

I'(N = Hy) = 1 2
(N = Hu) 64msy, MEV( m?\,>

(44)

where Upy is the light-mirror neutrino mixing 7= o M~ Bq.(35). From Eqs. (32B37) the
contributions come from terms of the order |Viy| < 1077. From these expressions we can
conclude that the total branching for each of the four channels is independent of the heavy
neutrino mixing, determined only by my and the gauge and Higgs boson masses.

Heavy neutrino signals are limited by the small mixing of the heavy neutrino required by
precision constraints [33] and masses of order 100 GeV are accessible at LHC. For this mass
range, SM backgrounds are larger and, since production cross sections are relatively small,
heavy neutrino singlets are rather difficult to observe.

The branching ratios for different values of my reads as Table [l (My = 130 GeV);
and in all these cases Y  B; ~ 1. Here

Bw+ = B,(N - W*¥) |  By=B.N— Zy) , By=DB.(N— Huy) (45)

Table [Ml shows that these decays are not so sensitive to the heavy neutrino mass, such that for
heavy neutrino signals it is not necessary to have center of mass energies much larger than a
hundred GeV'.

Among the possible final states given by Eqs.([d2H44]), only charged current decays give final
states which may in principle be detected. For my < My these two body decays are not
possible and N decays into three fermions, mediated by off-shell bosons.

Other simple production processes like

q¢ — Z* — vN (46)

g9 — H" — vN (47)

give [* and [t~ final states which are unobservable due to the huge backgrounds. For the pair
production
qq— Z*— NN (48)

the cross section is suppressed by |Vix|*, phase space and the Z propagator, and is thus negli-
gible.
Three signals are produced in the two charged current decay channels of the heavy neutrino

PN S W = T (49)
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PN — FW = (50)

and small additional contributions from 7 leptonic decays.

Heavy neutrino signals in the final state [*I* are given in the lepton number violating
neutrino decay and subsequent hadronic W decay, or leptonic decay when the lepton is missed.
LHC present energies are enough to discover heavy Majorana neutrino with very small V, v
[32].

7 Conclusions

Here the LRMM with gauge group SU(3)c®SU(2),®SU(2) g®U(1)y is applied in order to find
closer values for neutrino masses fitted to experimental data. We have worked with Majorana
neutrinos, which mass matrix was written in terms of blocks that stand for standard and mirror
mass terms. The large number of parameters involved induces to make some simplifications on
the structure of the matrix. A double seesaw approach method is used and diagonalization is
performed, and with the help of neutrino data we accommodate neutrino masses with normal
hierarchy of the order of (my, my, m3) ~ (0.0865,0.0870,0.1) eV. So, we have found a consistent
smallness hierarchy for the neutrino masses. With the LRMM we have also analyzed the
radiative decays u — e+, 7 — e+~ and 7 — pu + v for a Higgs mass of 130 GeV, obtaining
bounds for the branching ratios congruent with the experimental ones. Decay rates for heavy
neutrinos N were calculated for different channels, and we found that their BR are nearly equal
for My > My, Mz, Mg and also that they do not change too much for other values of My. To
find heavy Majorana neutrinos one has only a few parameter dependence (for neutrino singlets,

the heavy neutrino mass and its mixing angle)and also the mass scale could be accessible at
the LHC.
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Abstract

In this contribution, a design of a synthetic calibration genetic circuit to char-
acterize the relative strength of different sensing promoters is proposed and
its specifications and performance are analyzed via an effective mathematical
model. Our calibrator device possesses certain novel and useful features like
modularity (and thus the possibility of being used in many different biolog-
ical contexts), simplicity, being based on a single cell, high sensitivity and
fast response. To uncover the critical model parameters and the correspond-
ing parameter domain at which the calibrator performance will be optimal,
a sensitivity analysis of the model parameters was carried out over a given
range of sensing protein concentrations (acting as input). Our analysis sug-
gests that the half saturation constants for repression, sensing and difference
in binding cooperativity (Hill coefficients) for repression are the key to the
performance of the proposed device. They furthermore are determinant for
the sensing speed of the device, showing that it is possible to produce de-
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tectable differences in the repression protein concentrations and in turn in
the corresponding fluorescence in less than two hours. This analysis paves
the way for the design, experimental construction and validation of a new
family of functional genetic circuits for the purpose of calibrating promoters.

Keywords: synthetic genetic circuits, synthetic biology, calibration, gene
promoter, effective modeling of gene circuits, parameter analysis

1. Introduction

One of the fundamental principles of synthetic biology is the construction
of biological standardized parts and devices which are interchangeables. A
proper characterization of these parts and devices appears as a key issue in
order to make them reusable in a predictive way. In the recent past scien-
tists have witnessed several initiatives towards the design and fabrication of
synthetic biological components and systems as a promising way to explore,
understand and obtain beneficial applications from nature. For instance, in
the post genomic era one of the most fascinating challenges scientists are
facing is to understand how the phenotypic behaviour of living cells arise out
of the properties of their complex network of signalling proteins. While the
interacting biomolecules perform many essential functions in these systems,
the underlying design principles behind the functioning of such intracellu-
lar networks still remain poorly understood [3, [13]. Several initiatives have
been reported in this line of thought to uncover some key working principles
of such genetic regulatory networks via quantitative analysis of some rel-
atively simple, experimentally well characterized, artificial genetic circuits.
It has been shown that custom made gene-regulatory circuits with any de-
sired property can be constructed from simple regulatory elements [4]. These
properties include bistability, multistability or oscillatiory behaviour of ge-
netic circuits in various microorganisms such as bacteriophage switch [5] or
the cyanobacterium circadian oscillator [6]. As one example, the genetic tog-
gle switch, a synthetic, bi-stable gene-regulatory network in Escherichia coli,
was shown to provide a simple theory that uncovers the conditions necessary
for bi-stability [11, [12]. Further, artificial positive feedback loops (PFLs)
have been used as genetic amplifiers in order to enhance the responses of
weak promoters and in the creation of eukaryotic gene switches [14]. Sayut
et al. demonstrated the construction and directed evolution of two PFLs
based on the LuxR transcriptional activator and its cognate promoter, Pluxl



[8]. These circuits may have application in metabolic engineering or gene
therapy that requires inducible gene expressions [9, [10].

The desired performance of these synthetic networks and in turn the
resultant phenotype is strongly dependent on the expression level of the cor-
responding genes, which is further controlled by several factors such as pro-
moter strength, cis- and trans-acting factors, cell growth stage, the expression
level of various RNA polymerase-associated factors and other gene-level reg-
ulation characteristics |11, [13]. Thus, one important ingredient to elucidate
gene function and genetic control on phenotype would be to have access to
well-characterized promoter libraries. These promoter libraries would be in
turn useful for the design and construction of novel biological systems. There
have been several initiatives to control gene expression through the creation
of promoter libraries [2,[7]. Alper et al., [1] have reported a methodology to
develop a completely characterized, homogeneous, broad-range, functional
promoter library with the demonstration of its applicability to analysis of
genetic control.

Since Miller published [16] a proposal for a measurement standard for
[-galactosidase assays, yet much work has been done with no conclusive
standard being established [17, 18, [19]. The main goal in calibration is mea-
suring a query value up to an established standard. A good device should
be unique, reliable and easy to use; additionally it should circumvent, to
all possible extent, any noise that could alter the measurement. Recently a
methodology [20] has been reported to characterize the activity of promoters
by using two different cell strains. In the present study we propose the use
of a synthetic gene regulatory network as a framework to characterize dif-
ferent promoter specifications by using a single-cell strategy. In this context
characterization stands for evaluating the parameters of a query promoter as
compared to a standard promoter acting as a scale. The proposed device,
the promoter calibrator, works on the principle of comparing a specific input
signal which will be sensed by promoters of different sensing strengths and,
as an output, produces fluorescence of specific colours which allows quanti-
fying the relative strength of the promoters. Analyses were carried out in
order to find out relevant model parameters and the corresponding range of
model parameter values which are compatible with the performance of this
calibrating biological design over a spectrum of given input .

This contribution is organized as follows: in the first part, “Design”, the
structure and working principle are explained and the mathematical model
resulting from the construction is established. In section Bl “Numerical Anal-
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Figure 1: Design of the proposed promoter calibrator. It is composed of two promoters
(with two parts each: a sensing and a repressed domain) one of the sensing promoters
is the device promoter and the other is the query promoter. The repressed domains are
controled by the two repressors proteins (z and y). Each promoter is inhibited by the
repressor which is transcribed from the opposing promoter. Fluorescence proteins levels
will be proportional to repressor protein levels, which, in turn, will be promoted by the
sensing promoters.

ysis of the System”, we analyze the dynamics of the model equations in regard
to its stability, functional parameter regions and sensitivity or robustness vs.
the change in certain key parameter values. In the following section, a proof
of concept design is proposed in order to choose the right parameters to actu-
ally perform the experimental validation of our concepts and have a system
that gives a clear and stable signal that can be interpreted. Finally, the
conclusions resulting from our paper are exposed.

2. Design

2.1. Biological principles

Our promoter calibrator is composed of two promoters (each with two
parts: a sensing and a repressed domain), two repressors proteins and two
fluorescent protein outputs (see Fig. [). Each promoter is inhibited by
the repressor, transcription of which is promoted by the opposing promoter.
Fluorescence protein levels will be directly related to repressor protein lev-
els, activated in turn by their sensing promoters. Hence, different sensing
strengths will cause a difference in the expression of the fluorescence pro-
teins, detectable by means of single cell fluorescence as changes in the color
patterns of the individual cell or cell sample.

In our scheme, one of the sensing promoters acts as the device promoter
to which the strength of a given query promoter is quantitatively compared.
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The main use of this device is to characterize different promoter specifications
(sensing affinities and cooperativities) compared to some standard. One of
the main usefulness of this design lies in the potential modularity of the sys-
tem: by changing the sensing part of the promoters, other sensing promoters
could be calibrated; this change can be carried out by a simple, straight-
forward cloning step. Modularity also boasts the potential of this device as
it can be implemented in a potentially unlimited set of systems.

2.2. Mathematical model

The behaviour of the proposed promoter calibrator can be understood
via an effective mathematical model. The model is considered to be effective
as transcription and translation have been modeled as a lumped reaction.
The separation of transcription and translation otherwise involves a response
delay. We seek to classify dynamic behaviors depending upon the change in
model parameters and determine which experimental parameters should be
fine-tuned in order to obtain a satisfactory performance of our device.

The time dependent changes in repressor and sensing protein (input) con-
centrations is shown in equations (IHJ). Subsequent to the biological design,
reporter protein concentrations are directly related to repressor protein con-
centrations.

n1
Ds
dz (H) 1
E = o » n1 ” Ny _6xz+7x> (]-)
1+ (k—l 14 (k—>
. n2
dy (k_é 1
dt - ™ : ) mr — ByY + Yy (2)
1+ (2)" 1+ ()
2 T
dps
dt - /Bpsps- (3)

The device and query promoters activate the production of repressor pro-
tein x and y, respectively, and their concentration is related directly to the
concentration of fluorescence proteins. Thus these variables will be treated as
equivalent from the modelling point of view. Parameters a; and ay represent
the effective rate of synthesis of repressor proteins = and y, respectively; « is
a lumped parameter that takes into account the net effect of various activ-
ities such as RNA polymerase binding, RNA elongation and termination of



transcript, ribosome binding and polypeptide elongation and will be modi-
fied by repression and sensing effects. The (3., 3, and 3,, are the degradation
constants of repressor protein z, repressor protein y and sensing protein py,
respectively. The sensing protein concentration ps will depend on the sensed
input, will be easy to change in a given experiment and is used as the main
input variable in our calibrator experiments. It is important to note that a
slow rate of degradation is assumed for the sensing protein, implying a nearly
constant level over a reasonable experimental time interval. Basal level rates
of synthesis of proteins x and y are denoted by 7, and ~,, respectively.

Repressor and sensing responses are assumed to follow Hill equation dy-
namics: promoter-binding monomers form multimers by positive allosterism
and attach to its cognate promoter with saturating behaviour. Binding coop-
erativities are described by Hill coefficients n, and n, for repressor domains
corresponding to x and y respectively, and n; and ny for sensing domains
corresponding to device and query promoter respectively. The extent of the
saturation rate is described by half saturation constants or Michaelis con-
stants, denoted by parameter k, and &, for repressor domains corresponding
to x and y respectively and k; and ks for sensing domains corresponding to
device and query promoter respectively. The total number of promoter sites
is assumed to be conserved and the total concentration of both promoters is
chosen to be identical.

In our construction, the crossrepressing part will be kept unchanged while
different sensing domains may be attached to it. The aim is to establish
a protocol to accurately quantify differences between the sensing promoter
parameters (a2, k12). Crossrepression parameters (k;,, £, and n,,) are
structural parameters that must be chosen in such a way that the fluorescence
response of the system gives us stable, sensitive and robust indication about
the quantitative relations between the sensing promoter parameters. The
dynamic analysis of the system will help us to take the right decisions on
which are the most appropriate values for these structural parameters. The
next sections are devoted to the dynamical analysis in order to determine the
sensitivity and robustness of the system for different ranges of the structural
parameters.

The commercial software package Mathematica (Wolfram), was used for
model development and simulation. In the numerical calculations we have
used the following dimensionless variables:



X o= (4)
- (5)
r o= 1B (6)
e = Gk ")
oy = ;—y (8)

therefore, the units in the plots of the figures in this work are given in units
of k, or k, for the x and y repressor proteins concentrations and time in units
of B% For the adimensional variables, Equations (IH2)) take the form:

Oil—): - E (2)" ] +1Y"y — At e ©)
% = JEPZZ)M T RY +7,, (10)

where R is the ratio g—z

3. Numerical analysis of the system

The simplifying assumption of considering sensing proteins for which the
degradation constant (3, is much smaller than the rest (8,, < (;,(,) was
made in order to classify the possible dynamic scenarios of our model. Given
this assumption, in a first order of approximation we have,

dp
dt

= —fB,.ps = 0. (11)

In such approach, the concentration of sensing protein p, is constant
during the evolution time of the rest of the internal variables of the system.
This assumption leads to a system of two autonomous coupled non-linear
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ordinary differential equations dependent on the variables z and y, eqs. (O
M0), in which p; is fixed although it can be easily changed within a given
experiment. This is not true for the rest of parameters which are more
difficult to modify in a given experiment. This approximation transforms
the system into:

dx 1
= = & — X+, 12
dr N Ty 7 (12)
dy o1
— = Qp——— — RY +7#,. 13
dr Y21 X % (13)

where the new parameters @, (effective transcription factors) are given by
the following expression:

Ps
.y
a = a—=*

(14)

’
(5]

In the limit in which the constants k. ,, 35,4, V2, are equal, this equations
describe the biological equivalent of an electronic comparator, that is, a device
which compares two voltages or currents and switches its output to the larger
signal. In the biological equivalent, our comparator would select for the larger
of the two a’s, as exemplified in Fig. 2| which represent the evolution of the
system for the cases in which the query promoter has a higher and lower
effective transcription factor compared to the device promoter, respectively.

In any case, our aim is to construct a device, termed a calibrator, which
not only selects the stronger affinity but also allows quantifying the rela-
tive strength of both promoters. Although the comparator is a fundamental
part of this device, a deeper understanding of the dynamics of the system is
required for its application as a calibrator device in real biological environ-
ments.

3.1. Dynamic analysis of the calibrator

The dynamical analysis of the system given by Eqs. (I2HI3) requires the
determination of its steady state solutions and their linear stability. The
steady states (s, Yss) are given by the intersection of the null clines:

1

RX)Y) = af)—— —
1(X,Y) all—}—Y"y

X +7: =0, (15)
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Figure 2: Typical response of the proposed promoter calibrator. In the upper figure the
concentration of the x protein (solid line) in the steady state is higher while in the figure
below the concentration of the y protein (dashed line) is higher.

and

B(XY) = — RY 47, =0. (16)

_/
Y2 X

The analytical solution of Eqs. (IBHIG) cannot be obtained, hence nu-
merical methods must be used. The linear stability of the steady states is
determined by the sign of the eigenvalues of the Jacobian matrix,

oF, 9
M = <% %) (17)
0X 5)4 X=Xs5,Y=Yss

which are given by

1+ R 1
A = —+Tj:§\/(R—1)2+4A, (18)
A = nl‘ny(Xss - 7796)(@/1 + Yz — XSS)(YSSR - ﬁy)(@/z + 7@/ — YSSR) _(19>

7~
OélangsY;s
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From the analysis of the previous equations (IGHIO), we deduce that, for
the positive steady state solutions (Xs > 0 and Yy, > 0), the following
mathematical constraints hold: &} > Xy, — %, > 0 and &, > Y, R — 7, > 0,
respectively. Thus, taking into account (I8HIJ), we observe that A > 0 and
A_ is always negative. However, A\, can be either negative, for A > R,
or positive, for A < R, resulting in either stable nodes (sinks) or unstable
saddles, respectively. The condition A = R is satisfied at certain critical
values of the parameters at which precisely one of the steady state solutions
of the system changes its stability.

In order to highlight the specific aspects of the calibrator dynamics, we
will in the following sections consider a number of special cases. Specifically
we will examine the (fully) symmetrical calibrator, &) = &, = &', n, =n, =
n, ky =k, =k B =8, = R=1and 7, = 9, = 7, and the partially
symmetrical calibrator, with the same specifications except that &) and &
may differ. At the end of the section some general considerations about
dynamics of the system in the most general case will made.

3.2. The fully symmetrical calibrator (&) = &y = a')

From the analysis of Eqs. (IBHIO) it is shown that there is always a fixed
point with Y, = X, and that there exists a minimum value of X, such that
for parameters resulting in X, > X,,, three steady states exist, otherwise
only one.

Using @ as free parameter and taking fixed values for the rest, i.e., n, R
and 7, the condition A = R = 1, together with Eq. (IH]), allows to obtain the
critical values &/, and X, that characterize the appearance of the bifurcation,
namely:

23 — Xn)?( — X + al,)?
X2 a2

whose values can be obtained by numerical methods. For example, for n = 2,
k =80, f = 0.069 and ¥ = 0.1, yields &/, = 11.24 and x,, = 81.46 or, in
the dimensionless variables: X = 1.018 and &' = 2.036. Figure 3, shows the
bifurcation diagram for X, as function of & showing that for & > @&, there
are three steady states.

This analysis shows that the (fully) symmetrical calibrator possesses three
fixed points for &) > a/,: a saddle (z3;) with X, = Y, and two sinks, one
with X s > Y,, and another one with X,, < Y, referred to as ¥ and 7y,

10
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Figure 3: Bifurcation diagram for Xg;.

respectively. This behaviour is typical of the occurrence of a (supercritical)
pitchfork bifurcation and bistable behaviour.

Regarding the possible trajectories of the dynamic variables, Figure @l
illustrates the phase plane of Eqs. ([2HI3]), where the steady states are located
at the intersection of the null clines eqs.([IBHI6) represented by dashed lines.
The solid lines are the stable (W°) and unstable (W) manifolds of the
saddle fixed point ;. The stable manifold W* divides the phase plane
in two regions, the first and second octants corresponding to the attraction
basins of the sinks ¥r and ', respectively. Different possible trajectories in
the phase plane are depicted for a given number of initial conditions, where
the arrows indicate the flow direction.

In a calibrator experiment the initial value of the repressor protein con-
centrations x and y would be zero and hence the phase plane trajectories
would depart from the origin in Figure 4. For values of & larger than &/,
the system becomes unpredictable, as small perturbations in the trajectories
would potentially push the system into any of the attraction basins of the
sinks 2p and 27.

3.8. The partially symmetrical calibrator

We consider now the more general scenario in which @} and &}, may differ
being the rest of variables equal (n, =n, =n, k, =k, =k, 8, =8, =0
and 7, =7, = 7). The condition A = R which characterizes the occurrence
of the pitchfork bifurcations now reads:
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Figure 4: Phase plane, showing the unstable equilibrium point (the point where the two
dashed lines touch in the center) and the two steady state solutions (points where the
dashed lines touch close to each axis). The arrows show the path the system would do
starting from any point in the phase space.

712(’7 - XSS)(’? - Yiss)(’? - Xss + 07'1)(7 - Y;’S + d/2)
1 = s (21)
Xssy;sa,za;

that shall be solved together with Eqs. (IGHIG) for the fixed points of the
system.

Fig. Blshows the result of the numerical simulation of the resulting system
of equations (with initial conditions X = Y = 0) by slightly changing the
value of &} with respect to @). The figure shows the results of different
simulations for &) =3.0, n = 3 and &;, = ea with € =0.5, 0.6, 0.7, ..., 1.0, ...,
1.5. The results for € < 1 are the points in the right down corner of the plot.
One can see that these points positions are very insensitive to the value of
a4. There is only one point in the center of the plot, which corresponds to
& = aj, it is the unstable saddle, and small perturbations in the system will
drive the system away from this solution to either of the other two steady
state solutions. Once € > 1, the system goes to the solutions where Yy, > X,
which are represented by the points in the upper left corner. For these points
the maximum value of @ is growing and one can observe that the solution
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Figure 5: Results for the simulation of the partially symmetric calibrator. On the right,
close to the x-axis (@) < @) for these points), there are many points at the same posi-
tion, showing that, for the parameter region where a bifurcation happens, the solution is
insensitive to the value of the weakest between the two @'s.

is sensitive to this value. So the steady state solution into which the system
falls is only sensitive to the bigger value between &) and &}, and changes in
the smaller among these two parameters has no sensible effect in the final
solution.

For the case in which the calibrator falls within the region of bistability,
if af, < @) the orbits departing from the origin of Fig. Bl would fall within the
attraction basin of solution xx. It is nevertheless observed that xx is quite
insensitive to the actual a}/aj ratio. In consequence, the system would show
a stable but rather insensitive response to different query promoters. On the
other hand, if @] < a4, the orbits departing from the origin would fall within
the attraction basin of solution x7, which changes appreciably as a function
of the @}, /& ratio. Thus the system would not only be stable, but also rather
sensitive to changes in the effective query promoter affinity. It should be kept
in mind that the sensing protein concentration, ps, can be used to modify
a4, &, which changes from unity to &, as ps changes from zero to infinity
and therefore the ratio a,/a) changes with ps.

We can also define the fluorescence ratio as the ratio of X/Y if X <Y
and Y/X if Y > X. This will be the intensity ratio of the two fluorescences
once the system reaches stability. In Fig. [6] we show a plot of this ratio for
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different values of aj,/a@]. This ratio grows until it reaches its maximum when
a4y = &) and then it decreases. Another observation about this parameter
is that the bigger @] is, the less sensible to the ratio a4 /@ the fluorescence
ratio will be.

3.4. The calibrator dynamics in the general case

The theorem of Andronov and Pontryagin [21] states that Eqs. (I2HI3])
in the symmetrical case are structurally stable, since every fixed point is hy-
perbolic (its eigenvalues have a non-null real part) and there are no orbits
connecting two saddles (since there is only one). Structural stability im-
plies that the phase plane topology is preserved under small perturbations
of the parameters. Hence, the phase plane of Eqgs. (I2HI3]) in the case that
al ~ 54;, Ny = Ny, ky = ky, By = By and 7, ~ 7, is topologically equiv-
alent to that shown in Fig. 4, meaning that there is a continuous function
(homeomorphism) between both phase planes.

Changing the ratio of other structural parameters of the calibrator has
similar results as in the partially symmetrical case. For a given range close
to the value 1 for the ratio of each parameter ratio (ng,, Bi/y, ...) the
bifurcation appears while far from the value 1 the bifurcation cannot be
seen. The range is usually bigger, the bigger the values for & , are. In Fig. [
we show, as an example, the range where the bifurcation appears for different
values of 3, /0,.

If R < 1 the orbits departing from the origin (X =Y = 0) would fall
within the attraction basin of solution #y, on the other hand if R > 1 the
orbits departing from the origin would fall within the attraction basin of

solution Z'p.

3.5. Calibrator performance analysis: robustness and response time

In order to use this system to measure the relative strength between two
promoters, one should keep in mind two factors. The first important factor
is the right choice for the parameters of the repressor proteins and device
promoter in order to have a robust system, that gives a stable response that
can be easily interpreted. Second, is the time response of the device, that
means, how long does the system needs to reach its steady state solution.

When the equations are written in the dimensionless form, the parameters
k, and k, do not appear explicitly, see egs. (QHI0). These parameters appear
implicit in the definition of the variables X and Y and in the 4 parameters
(which have small influence in the dynamics of the system). By choosing
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Figure 7: (Color online) Position of X, for different values of 8,/8,. In the black curve
&, = &, =2, in the blue curve &, = a; =3 and in the red one &, = &; =4.

k; = k, the results will be easier to interpret since the fluorescence is directly
related to the concentrations of the proteins z and y and, by setting k, =
k,, the fluorescence intensity ratio (X/Y and Y/X) and the fluorescence
intensity difference (| X —Y|) will be directly proportional to these parameter
calculated with the real protein concentrations.

An experiment made with the calibrator would consist of cloning a plas-
mid with the calibrator genetic circuit assembled with the device promoter
(whose parameters one have to choose) among known ones and with a query
promoter whose parameters are unknown. The plasmid should be inserted
in cells in solutions of the signaling protein at different concentrations p;.
Each promoter is modeled through two parameters, &/ and ki, 1/2 stand
for device/query promoter. While at low pg concentrations both promoters
are weak and give a weak fluorescence response, at high p, concentrations,
both promoters are saturated and their strength is maximal. From the flu-
orescence intensities at these high concentrations of the signaling protein it
is possible to establish the relative strength of the two promoters as/a;. In
figures B and [@ we show plots of the fluorescence difference defined as | X —Y/|
and the fluorescence ratio X/Y for three different values of a; and varying
ap at high signaling protein concentrations (the effective strength of both
promoters is maximum).
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Figure 8: (Color online) The fluorescence difference for different values of @; as a function
of . Note that for values of @y sufficiently higher than a; the fluorescence difference
increases linearly with the value of @s.

The first thing to note from figures § and [ is that, if the query pro-
moter is stronger than the device one, the device fluorescence (X) will be
strongly suppressed, and the fluorescence intensity coming from the query
promoter is proportional to its strength (the response of the system is lin-
ear). That means, choosing a weak device promoter, one can establish the
relative strength of other promoters by a simple proportionality law given by
the linear response plotted in figure

At each different p, concentration, the effective strength of the device and
query promoters is different, see eq. (I4]). The parameter that distinguishes
two promoters, with respect to the p, concentration, is their Michaelis con-
stants, k12. The parameters k;, mark the rhythm at which the effective
strength of each promoter grows. If a promoter has a small value of k, at low
ps concentrations of the signaling protein, the promoter is already acting at
full strength, while for high values of k the promoter saturates only at high
values of p,. We have already established to choose a small value for the
device promoter &y, so we expect the query promoters to have ay > ;. If
ky < ky, the effective strength of the query promoter is always bigger than
the relative strength of the device one, and in the experiment one observes
that the luminosity associated with the query promoter is stronger for any
value of the signaling protein concentration ps. On the other hand, if one
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Figure 9: (Color online) Upper plot: the fluorescence ratio X/Y as a function of as/a;
for different values of @;. One can clearly see that for similar values of &; and @3, when
the bifurcation occurs, the system goes to a state where the repressor protein of the

stronger promoter completely dominates the system. Lower plot: Detail of the region
where as > ag.
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chooses a small value for k1, already at low ps concentrations the strength of
the device promoter saturates, and if k; is small enough it saturates before
the effective strength of the query promoter reaches a value bigger than a;.
In this situation one would observe at low concentrations of p, the lumi-
nosity of the device promoter stronger than the one coming from the query
promoter. Then, at some critical value of p, = ps. both strength are equal
and for ps > ps. the stronger fluorescence is the one from the query promoter.
For n; = ng, the value of ks given in units of k; as a function of p,. (also in
units of ky) is given by:

ky = 7{/&(?—1)—?, (22)
(07] (03]
Qo a1
sc — { kn—_— PE——— I 2
) \/( ) () (23)

In figure we show a few examples of results one might expect for
different values of ks.

So, the construction of the calibrator device, as we present it, would be
the following: first one chooses a very weak promoter which has a small
Michaelis constant to act as the device promoter in the calibrator. Second
step is to define a standard, to choose a known promoter, clone the calibrator
device with it as query promoter and perform a measurement of the fluores-
cence intensity of this standard promoter at high p, concentrations. This
fluorescence intensity is the standard one, to which we can compare other
promoters. Now performing the experiment with another promoter acting
as query promoter one obtains another value for the luminosity that we can
compare with the standard one. The higher or lower this luminosity is with
respect to the standard, the stronger or weaker the promoter is compared
with the standard, so one can establish the value of as. Knowing as one can
perform the same measurement for different p, concentrations in order to
establish the critical value of p, where the query fluorescence becomes higher
than the device one. Knowing the value of p,. it is possible to establish the
value of k5 by means of eq. (assuming both promoters have the same n).

Now that we have established the ideal parameters for the device promoter
(weak strength and small Michaelis constant) and set k, = k, and 3, = 3,
the last important factor is the time response of the system.
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In figure [[Il we show plots for the t¢;, the time the systems needs to
reach its steady statdl for different values of a@1. One observes that the time
response of the system has a peak with the maximum around 303, ! when
the effective strength of both promoters is equal and then it goes to a rather
stable value close to 73, 1. For a realistic value of 3, like 0.069 min~! the peak
value for ¢; is 7 hours, while for most of the measurements (the calibrator at
different p, concentrations) this time should be around two hours.

4. Conclusions

In the present study we have proposed a biological device that works as a
promoter calibrator in which the strength of a collection of gquery promoters
can be measured against the strength of a device promoter. Some of the key
features of the proposed design are its single cell character, high modular-
ity and handy construction: a unique molecular cloning permits the change
of the promoter ready to be calibrated. The designed performance of the
proposed biological device has been demonstrated by means of an effective
mathematical model. The sensitivity analysis of the model shows that there
is a sensible relation between the relative promoter strengths and the final
steady fluorescences measured by the system.

Furthermore, a response time analysis shows that the device can produce
a large difference in the repression protein concentrations and in turn in the
corresponding fluorescence in approximately two hours.

Finally our promoter calibrator principle may lead to an improvement in
the modeling and characterizations of systems in Synthetic Biology, which
frequently rely on arbitrarily characterized, or even non-characterized, pro-
moters.
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ABSTRACT

A wide range of applications and research has been done with genome-scale metabolic
models. In this work, we describe an innovative methodology for comparing metabolic
networks constructed from genome-scale metabolic models and how to apply this com-
parison in order to infer evolutionary distances between different organisms. Our meth-
odology allows a quantification of the metabolic differences between different species from a
broad range of families and even kingdoms. This quantification is then applied in order to
reconstruct phylogenetic trees for sets of various organisms.

Key words: connectivity, genome-scale metabolic models, networks, phylogeny.

1. INTRODUCTION

M ETABOLIC MODELS AT THE GENOME SCALE ARE one of the prerequisites for obtaining insight into the
operation and regulation of metabolism as a whole (Barrett et al., 2006; Morange, 2009; Patil et al.,
2004; Stephanopoulos et al., 1998). Uses of metabolic models embrace all aspects of biotechnology, from food
(Nielsen, 2001) to pharmaceutical (Boghigian et al., 2010) and biofuels (Montagud et al., 2010, 2011a).
Genome-scale metabolic network reconstruction is, in essence, a systematic assembly and organization of all
reactions that build up the metabolism of a given organism. It usually starts with genome sequences to
identify reactions and network topology. This methodology also offers an opportunity to systematically
analyze omics datasets in the context of cellular metabolic phenotype.

Reconstructions have now been built for a wide variety of organisms and have been used toward five
major ends (Oberhardt et al., 2009): contextualization of high-throughput data (Stephanopoulos et al., 1998;
Montagud et al., 2010; Edwards et al., 1999), guidance of metabolic engineering (Angermayr et al., 2009),
directing hypothesis-driven discovery (Nevoigt, 2008), interrogation of multi-species relationships (Stolyar
et al., 2007), and network property discovery (Guimera and Nunes Amaral, 2005).

Nowadays, phylogeny has become so popular that it’s being used in almost every branch of biology
(Yang and Rannala, 2012). Beyond representing the relationships among species in the tree of life, phy-
logeny is used to describe relationships between paralogues in a gene family (Maser et al., 2001), histories
of populations (Edwards, 2009), the evolutionary and epidemiological dynamics of pathogens (Marra et al.,

!Catedra Energesis de Tecnologia Interdisciplinar, Universidad Catdlica de Valencia San Vicente Martir, Valencia,
Spain.
’Instituto Universitario de Matemética Pura y Aplicada, Universidad Politécnica de Valencia, Valencia, Spain.
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2003; Grenfell et al., 2004), the genealogical relationship of somatic cells during differentiation and cancer
development (Salipante and Horwitz, 2006), and even the evolution of language (Gray et al., 2009). More
recently, molecular phylogenetics has become an indispensable tool for genome comparisons (Brady and
Salzberg, 2011; Kellis et al., 2003; Green et al., 2010).

A phylogeny is a tree containing vertices that are connected by branches. Each branch represents the
persistence of a genetic lineage through time, and each vertex represents the birth of a new lineage. If the
tree represents the relationships among a group of species, then the vertices represent speciation events.
Phylogenetic trees are not directly observed and are instead inferred from sequence or other data. Phy-
logeny reconstruction methods are either distance-based or character-based. In distance matrix methods, the
distance between every pair of sequences is calculated, and the resulting distance matrix is used for tree
reconstruction. For a very instructive review, please refer to Yang and Rannala (2012).

This work is organized as follows. In the next section, we explain the genome-scale models with which
we work, how we define a parameter for comparing two models, and how we recover the phylogenetic tree
from the comparison matrix obtained for many metabolic models. Additionally, we will account for the
minimum spanning tree of a nondirected, connected, weighted network associated with these metabolic
models. In the subsequent section, we present the results, a brief study of the sensibility of the comparison
parameter, and a summary and overview.

2. COMPARISON BETWEEN METABOLIC MODELS

In a recent article (Reyes et al.,, 2012), a method has been presented for automatically generating
genome-scale metabolic models from data contained in the KEGG database (Kanehisa and Goto, 2000).
The method consists of searching the database for genes and pathways present in an organism and
downloading the corresponding set of chemical reactions. The algorithm filters isosenzymes, or other
repeated reactions, and may add missing reactions to a given pathway using a probabilistic criterion based
on the comparison of the organism’s pathway with the same pathway in other organisms. In this work, we
use data obtained from this platform, but the method described can, in principle, be used with any set of
metabolic models given that the compound names in the models follow the same standard (the same
compound has the same name in all models).

The methodology we are about to describe will make use of two fundamentally different networks. One
is the metabolic network build-up from the chemical reactions contained in an organism’s metabolism. In
this network, each metabolite represents a node (or vertex), and each link (or edge) is associated with a pair
of nodes if their respective metabolites are connected as a substrate and product by some reaction. The
second kind of network is the complete weighted network where each vertex represents an organism and
each edge connecting two nodes is weighted by the parameter measuring the metabolic distance between
the organisms’ metabolism (note that this will be a complete network, where all vertices are connected to
all others). In order to distinguish clearly the two networks in the text, we will talk about nodes and links for
the metabolic network while for the organisms’ network we will use the terms vertices and edges. As for
the notation, we use capital letters (N, V, E) for the network, nodes, and links in the metabolic networks and
curly letters (N, V, £) for the network, vertices, and edges in the organisms’ network. In the metabolic
network we will use roman lowercase letters for indices representing single metabolites in sums, while for
the organisms network we use Greek letters for the indices representing single organisms.

The first step in our work is to construct for every metabolic model A a nondirected connected network
Ny = (Vy4, E4) from the information contained in it. Here, V4 stands for the set of nodes of A, and E, stands
for its set of links. A metabolic model comprises a set of chemical reactions. Each chemical reaction
associates a set of substrates with a set of products. For constructing the network, first we define the set of
nodes V4 as the set of compounds in A (metabolites present in the model), assigning a node to each
metabolite. The chemical reactions in the model will define the links of the network. If two metabolites
appear as a substrate and as a product, respectively, in a chemical reaction, a link connecting the corre-
spondent nodes is added to the network. A typical metabolic model of a prokaryote, with around 1000
metabolites and the same number of chemical reactions, becomes through this process a nondirected
connected network with 1000 nodes and approximately 3000 links.

The problem at hand is to elaborate a method to systematically compare and quantify the differences
between two metabolic networks. For this purpose, we define a parameter that scales between zero and
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infinity, zero meaning identical networks and infinity for networks that either share no node or no link in
common. The definition of this parameter is based on the identity of the nodes (the compounds) but not
directly on the chemical reactions of the metabolic models, only indirectly through the links of the network.

Here we start with the metabolic networks of two organisms A = (V,, E,) and B = (Vj, Ep). The set of
all metabolites in between the two organisms A U B=(V4 U Vp, E4 U Eg) can be divided into a partition of
three disjoint sets: the set of metabolites only present in A, the set of metabolites only present in B, and the
set of metabolites common to both organisms:

Vaug= (Va\Vp) U (Va N V) U(VE\Vy) (1)
——— e N —
Only in A Common Only in B

where \ stands for the difference of sets. A representation of this situation is shown in Figure 1. As it is
represented there, each metabolite may have connections to metabolites within its set and connections to
metabolites in the other sets.

Suppose that V4 U Vg={vy,...,v,}. Fix an arbitrary node v;, 1 <i < n. We can consider its degree in
A U B, that is, the total number of connections of v; to the rest of the metabolites of V4 U Vj, that we denote
by deg(v;). We can also consider the degree of v; when we restrict ourselves to the subnetwork generated by
the node in (V4,\Vp), which we will call deg, « g(v;). Similarly, we can also define deg, 5 (v;) and degg~ 4(v;).
With these degrees we can define, for each metabolite v; € V4 U Vp, the rate ps s, of connections of v; to
metabolites inside A and not in B with respect to the total number of connections of v;, that is:

P _ degy 5 (vi)
PR deg(v)
Analogously, we can define
degp 4 (vi) degsnp (Vi)
s d i
PB\A, deg (v7) and  pans, deg (v))

The following weighted sum of the rates ps« p; provides a parameter of the differentiation of A U B with
respect to A:

1 PANB, i
o=\ == deg (v :
<|VA\VB| V/E;\VB el J)> v;;/m deg (vi)
On the one hand, the rates pa\ p,; are multiplied by the inverse of the total number of connections of v; to
give more importance to the metabolites with fewer connections. The reason to do this is that metabolic
networks of all organisms usually share their hubs (metabolites with many connections), so in order to
establish differences and similitude for different networks, one should focus on specific metabolites par-
ticular to only some organisms sharing common features. This weighting of p\; with the inverse of
deg(v;) will reduce the importance of very connected metabolites (hubs) that are common to most or-
ganisms and adds weight to specific metabolites that might be particular for a branch in the tree of life,
helping in this way to differentiate the branches. Removing this inverse weighting results in a very mild
difference between the organisms, which makes the second step in the reconstruction very hard, because the
differences will appear as a small noise in the parameters.
On the other hand, the factor m Zv/_ cv, deg (v;) gives an average of the number of connections of
the metabolites only present in A with respect to the whole network. This is done in order to rescale the size

AUB

FIG. 1. Representation of the sets of metabolites between two organisms.

AMB AMB
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of the network and normalize (balance) the parameter after the inverse weighting done by the factor deg(v;)

for each metabolite in the set.
Analogously, we can define ff and y from the metabolites in the other two sets.

— 1 i PB\A,i
p= <|v3\vA 3 deg<v,>> D deg o)

Vi€EVE\Va vi€Vp\a
1 PANB. i
== deg (W)) :
(e, 3, 42) 3

For illustrating the process, let’s consider three organisms, the Synechocystis sp. PCC 6803 (which we
refer to as syn), Synechococcus elongatus PCCT7942 (referred to as syf), and the Escherichia coli K-12
MG1655 (referred to as eco). In Table 1, you can see the number of metabolites and links in the networks
of these organisms, and in Table 2, we show the number of elements in each one of the three sets of the
partition in which we split the set of nodes of the network obtained from each pair of these three
organisms.

Now let’s focus on a few metabolites to see their contribution to the differentiation parameters (i.e.,
to the parameters o, f3, and 7). For this, we chose pyruvate (PYR), glyoxylate (GXL), and 2-dehydro-3-
deoxy-6-phospho-D-gluconate (6PDG), which are respectively very, medium, and poorly connected
metabolites present in these three organisms. In Table 3, we show the contribution of these metabo-
lites to the parameters o, 5, and y. Column ¢; of Table 3 shows, for each one of these metabolites, the

value of
1
51': deg (vi) : , (2)
ZV,'EVAF]VB deg (v/-)

which is the weight proportion associated with the metabolite (with respect to all others) discussed above in the
text. Note that this weight for PYR is very small, since pyruvate has many connections and is a very common
metabolite in the metabolism of virtually any organism, and therefore is not a good candidate to help differ-
entiate branches in the tree of life. On the other hand, 6PDG has few connections and they are different in
cyanobacteria than in the E. Coli, potentially helping, in this way, to differentiate these two branches.
Finally, the comparison between the networks A and B, namely (4 5, is defined as:
v v,
{ap= —LO‘ . IV_/;} ’
, 2
The parameters o and 5 are balanced since some organisms have much smaller metabolic networks than
others. If this is not corrected, it results in a disproportionate size between subnetworks generated by Vap

and V4. In order to weaken this difference, the parameter factors Vel and % are introduced. For two

. . Vil .
identical networks, o and f are zero, and so that { = 0. For two networks that do not have a single

metabolite in common we have y =0 and so { = .

3. CONSTRUCTION OF THE PHYLOGENETIC TREE

Given a set of n organisms {Aj, A,,...,A,}, we will see how to construct their phylogenetic tree taking
into account the degrees of similarity between every pair of metabolic models.

TABLE 1. SETS OF NODES AND LINKS

Organism No. nodes No. links
syn 1001 2891
syf 979 2810
eco 1227 3801

Nodes and links in the networks of syn, syf, and eco.
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TABLE 2. METABOLITES IN THE PARTITIONS

syf eco
syn VANV g =911 [V ANV 4 =778
|VA\VB‘:9O |VA\VB|:223
|VB\VA‘=68 |VB\VA|=449
Syf - |VAnVB|:775
- |VA\VB|=204
- |VB\VA|:452

Metabolites in the three sets of the partition when comparing three
organisms.

Firstly, let N'=(V,& w) be a nondirected, connected, complete weighted network, where
V={A,A,,...,A,} is the set of vertices that represent the metabolic models of the aforementioned
organisms, £ is the set of edges (A,,A,), 1 < u,v <n, u#v,andw :£ — R s a function that assigns to
every edge (4,,A,), the amount w,, , ={ A Ay Looking at the definition of {, we observe that this network
N must be symmetric. In particular, all the weights in our study are strictly positive.

Secondly, we will compute a minimum spanning tree of A/, that is, a tree that has V as the set of vertices,
and such that the sum of the weights associated with the edges of this tree is minimum. In these trees, every
vertex A, € V is connected with at least one of the other vertex of V\{A,} by an edge that has minimum
weight among all the edges incident to A,. The well-known Kruskal algorithm gives us a procedure for
finding these trees (see, for instance, Gross and Yellen, 2005). We just have to follow the trace of the
Kruskal algorithm in order to recover the phylogenetic tree of the organisms represented by the models
A, .. A,

In order to compute the phylogenetic tree of the models {A;, A,,...,A,}, consider the minimum
spanning tree of A/, namely 7 =(V, £, w|), where £ C € and w|. denotes the restriction of the function w
to the elements in &£. Let us take all the elements of &£ in decreasing order of weights, that is,
E={e, e, ....e_} withw(e]) > w(e)... > w(e,_,). We are going to remove edges from 7 following
this order. Every time an edge is removed, the number of connected components of the resulting graph is
increased in one respect to the previous one. We can represent this division of connected components by a
binary tree. The phylogenetic tree is generated taking into account how we divide 7.

There are two different situations depending on the size of the (new) connected components (if any of
them consists on a single vertex or not). Let us start with the edge with maximum weight in 7 which we
have denoted as ¢';. Suppose that ¢'; is adjacent to two vertices A wand Ao, with 1 < g, vo <n, p#uv.
Then two possibilities can occur:

(a) One of these vertices, for instance A, is a leaf (vertex of degree 1),

TABLE 3. METABOLITE WEIGHTING

Metabolite Organisms in comparison DPANB.i 0; Contribution (%)
PYR syn and syf 0.98 0.127 0.0064

syn and eco 0.73 0.117 0.0044

syf and eco 0.75 0.113 0.0044
GXL syn and syf 0.86 0.454 0.020

syn and eco 0.87 0.550 0.024

syf and eco 0.80 0.439 0.018
6PDG syn and syf 1.00 3.176 0.16

syn and eco 0.80 1.762 0.072

syf and eco 0.80 1.757 0.072

Contributions of different metabolites to the differentiation parameter ({) between two networks. The column d;
shows the weight of the metabolite in the calculation of psnp,;, Which is the inverse of the degree of the metabolite
divided by the sum of the inverses of the degrees of all metabolites contributing to the parameter.
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TABLE 4. COMPARISON MATRIX

org syf syn syc mge Ipl cbe bcj eco tma ypk

syf 0.0 0.019 0.0061 0.1628 0.1493 0.1239 0.1083 0.106 0.1567 0.1155
syn 0.019 0.0 0.0177 0.1821 0.1524 0.1269 0.1079 0.1116 0.161 0.1213
syc 0.0061 0.0177 0.0 0.1779 0.1616 0.1318 0.1067 0.1032 0.1572 0.112

mge 0.1628 0.1821 0.1779 0.0 0.1179 0.1351 0.1257 0.1252 0.1159 0.1266
Ipl 0.1493 0.1524 0.1616 0.1179 0.0 0.0711 0.1098 0.1194 0.0668 0.111

cbe 0.1239 0.1269 0.1318 0.1351 0.0711 0.0 0.0979 0.0926 0.0674 0.1049
bej 0.1083 0.1079 0.1067 0.1257 0.1098 0.0979 0.0 0.0592 0.1167 0.0557
eco 0.106 0.1116 0.1032 0.1252 0.1194 0.0926 0.0592 0.0 0.102 0.0294
tma 0.1567 0.161 0.1572 0.1159 0.0668 0.0674 0.1167 0.102 0.0 0.1044

ypk 0.1155 0.1213 0.112 0.1266 0.111 0.1049 0.0557 0.0294 0.1044 0.0

Comparison matrix for 10 organisms.

(b) Neither of these two vertices is a leaf (each vertex is still connected with the other vertex). This
happens only if the former connected component has three or more vertices.

We point out that our phylogenetic tree will have two types of vertices: the leaves, which represent
metabolic models, and the inner vertices, which represent two branches that each have more than one vertex.

We start our phylogenetic tree with a vertex v, that will be its root. Then two vertices vy, v, are hanged
from vo. Each one of these vertices represents one of the two connected components of the network
7\{e}}. Let us see what to do with v, and v, according to the case.

* If we are in case (a), one of these two vertices, for instance v, represents the vertex Ay, and v,
represents the other connected component of 7 which is a subgraph of 7 generated by the vertex of
V{4, }-

e If we are in case (b), one of the vertices, for instance v, represents the connected component of
7 \{e}} that contains A, and the other vertex, v,, represents the connected component of 7 \{e} }
that contains A,.

This procedure is repeated again with v; and v, and by removing e from 7 \{e| }. When we remove 3,
then either the connected component that represents v; or v, is split into two smaller ones, and the vertex
associated with this component plays again the role of vq. This process is repeated until we remove all the
edges.

Let us see with two examples how it works:

1. In Table 4, we have the weights associated with a set of 10 organisms. We can represent them
by a complete weighted network in which every organism is connected with the others. This is
a weighted network, so that we can apply the Kruskal algorithm in order to get a minimum
spanning tree of this network, which is represented in Figure 2. Following the aforementioned

0.0061 . .06 0.0557

tm?| bcj

0.1159 0.0668

FIG. 2. A minimum spanning tree associated with 10
organisms.

o] (o]
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FIG. 3. A phylogenetic tree with 10
organisms.

a & : m

syf syc syn Ipl tma cbe bej eco ypk mge

notation, e{ corresponds to the edge that connects mge with tma, weighting 0.1159. We can see
in Figure 3 that two vertices are hanging from the root of the tree. The one on the left
represents the mge; the one on the right represents the subgraph associated with the rest of
vertices, where tma can be found.

2. In the case of 38 organisms, when we remove from the minimum spanning tree the edge with
maximum weight, we split this tree into two connected components: the one associated with the pair
mge and mpm, and the one associated to the other vertices.

Finally, the vertices in the phylogenetic tree can keep more information concerning the aforemen-
tioned minimum spanning tree. Suppose that the height of our phylogenic tree is w(e';), which rep-
resents the maximum weight in the minimum spanning tree (i.e., the weight associated with ¢’1). We
place the root of our phylogenetic tree at height y = w(e’,). Now, two vertex are hanged from the root.
If one is associated with a single vertex, for instance, v, in case (a), then we place this vertex at height
vy = 0. We remember that this vertex represents the organism A . If not, for instance, v, in case (a) and
either v, or v, in case (b), each one of these vertices represents a connected component with more than
one vertex in which the minimum spanning tree is split. In order to know at which height we should put
these vertices, we have to continue removing edges from the former tree. After removing e’,, one of
these connected components, for instance, the one represented by v,, is split again into two smaller
connected components. So we place the vertex v, at height w(e’,). We repeat this process recursively
until the initial tree is just reduced to isolated vertices.

4. RESULTS AND DISCUSSION

We have reconstructed two phylogenetic trees, one with 10 bacteria and another one with both pro-
karyotes and eukaryotes. In Table 4 we show the parameter { for the pairwise comparison of the 10
prokaryotes in the first tree. The data for the comparison of the 33 organisms in the second tree is given in
the Supplementary Material (available online at www.liebertonline.com/cmb).

The organisms in each comparison are:

* 10 organisms tree — Mycoplasma genitalium (mge), Lactobacillus plantarum WCFS1 (Ipl), Sy-
nechocystis sp. PCC 6803 (syn), Synechococcus elongatus PCC7942 (syf), Synechococcus elongatus
PCC6301 (syc), Clostridium beijerinckii (cbe), Burkhoderia cenocepacia J2315 (bcj), Escherichia coli
K-12 MG1655 (eco), Thermotoga maritima (tma), and Yersinia pestis KIM10 (ypk).
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TABLE 5. SENSIBILITY STUDY 1
org~\org syn syf eco mge
syn 0.0002 £ 0.0003 0.0184 £ 0.0005 0.0893 £ 0.0005 0.1600 = 0.0014
syf 0.0184 £ 0.0004 0.0002 £ 0.0003 0.0857 £ 0.0006 0.1527 £ 0.0014
eco 0.0892 £ 0.0005 0.0856 + 0.0005 0.0001 £ 0.0002 0.1278 £+ 0.0009
mge 0.1597 £ 0.0025 0.1527 £ 0.0026 0.1283 £ 0.0015 0.0014 £ 0.0016

Sensibility calculation for N, = 500 and ng = 5. Each element in the table is the average of the parameter { in an
ensemble plus (minus) its standard deviation ({ + o).

e 38 organisms tree — Mycoplasma genitalium (mge), Mycoplasma pneumoniae 309 (mpm), Sy-
nechocystis sp. PCC 6803 (syn), Synechococcus elongatus PCC7942 (syf), Synechococcus elongatus
PCC6301 (syc), Clostridium beijerinckii (cbe), Salmonella bongori (sbg), Escherichia coli K-12
MG1655 (eco), Aquifex aeolicus (aae), Yersinia pestis KIM 10 (ypk), Cyanobacterium UCYN-A
(cyu), Thermosynechococcus elongatus (tel), Microcystis aeruginosa (mar), Cyanothece sp. ATCC
51142 (cyt), Cyanothece sp. PCC 8801 (cyp), Gloeobacter violaceus (gvi), Anabaena sp. PCC7120
(ana), Anabaena azollae 0708 (naz), Prochlorococcus marinus SS120 (pma), Trichodesmium ery-
thraeum (ter), Acaryochloris marina (amr), Halophilic archaeon (hah), Polymorphum gilvum (pgv),
Micavibrio aeruginosavorus (mai), Agrobacterium radiobacter K84 (ara), Clostridiales genomosp.
BVABS3 (clo), Gamma proteobacterium HAN1 (gpb), Vibrio fischeri ES114 (vfi), Vibrio fischeri MJ11
(vfm), Haemophilus influenzae F3031 (hif), Coprinopsis cinerea (cci), Sus scrofa (ssc) and Leish-
mania braziliensis (1bz), Mus musculus (mmu), Apis mellifera (ame), Methanotorris igneus (mig),
Halalkalicoccus jeotgali (hje), and Thermoplasma acidophilum (tac).

In Figures 3 and 4 we present the two phylogenetic trees that we have constructed. In the first tree, the
only organism displaced in relation to what is expected from standard methods of phylogenetic tree
reconstruction is the tma. In both trees mge (and mpm in the second one) diverges from other organisms at
the beginning of the tree. This happens because of their minimalistic genomes, with only a couple hundred
metabolites in their metabolomes. As a result, when compared with an organism without a reduced genome
with almost a thousand metabolites, several hundred metabolites will not have a correspondent one,
increasing hugely the value of o in the calculation of the parameter {, and therefore distancing these
organisms from the rest. The problem with these parasitic organisms has been noticed elsewhere (Fukami-
Kobayashi et al., 2007), but unfortunately the solution found in this article did not yield better results in our
present study. One should keep in mind that the present approach only considers genes (and proteins)
associated with metabolic reactions and moreover, considers only the existence/absence of the enzymes
(reactions). Our work yields results that are very close to the tree of life, in spite of using only a subset of all
genome’s information. It was not our intention to build trees that would address properly minimal or-
ganisms’ phylogenies, but to prove the feasibility of building those trees using only reactome data. In any
case, for the second study we used organisms from very different origins in the evolutionary history, and we
found that the method is able to separate bacteria, archea, and eukaryotes. Different strains of the same
species also appear closely related and share branches with organisms from the same family and order.

We have also studied the sensibility of the parameter (. For this we performed a Monte Carlo analysis of
{. The procedure for this analysis is explained as follows. Given two organisms, one of them remains the
wild type while, with the other, one builds an ensemble with N, elements, where each element is the result

TABLE 6. SENSIBILITY STUDY 2

org™~0rg syn syf eco mge

syn 0.0005 £ 0.0005 0.0186 % 0.0006 0.0896 £ 0.0007 0.1604 + 0.0018
syf 0.0187 £ 0.0006 0.0005 £ 0.0005 0.0860 £ 0.0007 0.1532 + 0.0019
eco 0.0893 = 0.0008 0.0857 = 0.0007 0.0003 = 0.0003 0.1281 + 0.0011
mge 0.1602 £+ 0.0035 0.1531 £ 0.0032 0.1288 + 0.0023 0.0028 + 0.0023

Sensibility calculation for N, = 500 and ng = 10. Each element in the table is the average of the parameter { in an
ensemble plus (minus) its standard deviation ({ + o).
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TABLE 7. SENSIBILITY STUDY 3

org~\org syn syf eco mge

syn 0.0028 + 0.0011 0.0209 + 0.0014 0.0915 + 0.0017 0.1652 + 0.0045
syf 0.0207 £ 0.0013 0.0029 + 0.0011 0.0879 + 0.0016 0.1575 + 0.0044
eco 0.0903 % 0.0017 0.0868 + 0.0016 0.0016 + 0.0007 0.1301 £+ 0.0029
mge 0.1638 = 0.0080 0.1577 £ 0.0077 0.1343 + 0.0055 0.0170 £ 0.0053
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Sensibility calculation for N, = 500 and ng = 50. Each element in the table is the average of the parameter { in an
ensemble plus (minus) its standard deviation ({ + a;).

of ng knock-outs (removal of ng randomly selected reactions from the metabolic model) in the organism.
Then the calculation of { is performed between the wild-type organism and each organism in the knock-out
ensemble. From this process one obtains an ensemble of N, values of { for the comparison (one from each
version of the organism in the knock-out ensemble), from which one calculates its average and standard
deviation. This standard deviation is treated as an indicator of the sensibility of the parameter (as a function
of the number of knock-outs).

We performed this sensibility analysis for four organisms (syn, syf, eco, and mge) with ensembles of
sizes N, =500 for ng =5, 10, 50, and 100. The results are shown in Tables 5 through 8. These four
organisms have been chosen to observe the sensibility in the comparison between very similar organisms
(syn and syf), more distant ones (syn and eco), and very different ones (syn and mge).

This sensibility analysis mainly reflects the uncertainties in the calculation of the metabolic distances.
Since the distance parameter is based on metabolic models, one relies in the genome annotations for each
organism and any annotation is usually faulty. One may miss enzymes or wrongly annotate existing ones.
The models used in this study have been automatically generated from a database constructed from
information downloaded from the KEGG database (Kanehisa and Goto, 2000), and since the beginning of
this study the databases have been updated and most models have to be changed as well. The ‘knocked-
out”” models used for the sensibility parameter analysis simulate such imperfect annotations: one might
consider the situation with ng = 5 as the model constructed from a well-annotated genome, while the case
with ng = 100 is the model resulting from a very poor annotation. One can see that when only a few
enzymes might be missing from the annotation, the error in the parameter can be expected to be less than
1%, except for the case of the minimalistic genomes like the parasitic mge, that has an error more than five
times bigger than the other organisms. This error increases as the number of knock-outs increase, but it
keeps below 5% even for 100 knockouts (or missing enzymes), except again in the case of the mge, but
even for the mge it is below 10%. This shows that the methodology is robust and that one works here with
an uncertainty of less than 5% in most of the cases.

5. CONCLUSIONS AND OVERVIEW

In this work, we have developed a methodology for comparing organisms based on their metabolic
networks. This methodology has been successfully applied for the reconstruction of phylogenic trees for
several organisms from a broad range of families and kingdoms. Resulting trees stand up well to their
comparison with the so-called “‘tree of life.”” The great majority of the branches in the tree fit their expected

TABLE 8. SENSIBILITY STUDY 4
org™~org syn syf eco mge
syn 0.0058 = 0.0016 0.0239 + 0.0020 0.0942 + 0.0024 0.1715 = 0.0062
syf 0.0238 £ 0.0018 0.0061 = 0.0017 0.0907 = 0.0023 0.1630 = 0.0066
eco 0.0919 £+ 0.0024 0.0883 + 0.0022 0.0033 + 0.0011 0.1329 + 0.0040
mge 0.1694 = 0.0120 0.1648 = 0.0131 0.1433 = 0.0092 0.0460 = 0.0076

Sensibility calculation for N; = 500 and ng = 100. Each element in the table is the average of the parameter ( in
an ensemble plus (minus) its standard deviation ({ % o¢).
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positions well and their distance is in good correlation with evolutionary distances. The discrepancies found
can be explained by particularities in these very few organisms not fitting the tree, such as tremendous
genome reductions that caused reduced metabolisms.

Our methodology is innovative for it is not directly based on the structure and evolution of proteins or
DNA but on the metabolism and the organisms’ components and metabolic capabilities, allowing one to
compare organisms very distant from the evolutionary point of view or organisms for which orthologs’
comparison is difficult. In order to accomplish this, we make use of the correlation between evolutionary
distances and metabolic network likelihood and propose our methodology as a starting point to study it.

Metabolism information is retrieved as a subset of the whole genome information. We hereby show that
metabolic network connectivity can be used to build phylogenetic trees that are in accordance with gene-
directed trees. It can be argued whether the selected construction parameter ({) is the optimal one for this
purpose (or even if there is an optimal one), but it stands clear that this is an innovative application for
metabolic models, their curation, and cross-species evolutionary studies.

We have also performed a sensibility study in which we show that the methodology is robust even if the
annotation information used to construct the metabolic models is faulty. This study also suggests an upper-
bound for the uncertainty in the distance parameter of approximately 5%.
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