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Abstract. We propose a holographic correspondence between the action integral I describing
the mechanics of a finite number of degrees of freedom in the bulk, and the entropy S of the
boundary (a holographic screen) enclosing that same volume. The action integral must be
measured in units of (i times) Planck’s constant, while the entropy must be measured in units
of Boltzmann’s constant. In this way we are led to an intriguing relation between the second
law of thermodynamics and the uncertainty principle of quantum mechanics.

1. Introduction
There are compelling reasons to believe that quantum mechanics must be an emergent
phenomenon [2, 10, 11, 14, 15, 18, 19, 20, 21, 23, 24]. Actually not just quantum mechanics, but
also gravity and spacetime appear to be emergent phenomenona as well (for a comprehensive
review see [31] and refs. therein). The guiding principle in all emergent theories is the fact
that they provide a coarse–grained description of some underlying theory [9]. Due to our
ignorance of a full microscopic description, emergent phenomena are in principle amenable to a
thermodynamical description.

It is the purpose of this contribution to develop an approach to emergent quantum mechanics
from the entropic point of view presented in ref. [1]. We take the view that, apart from other
important reasons [3, 16, 25, 26, 28, 29, 32], quantum theory must be an emergent phenomenon
also because the spacetime it is defined on is an emergent concept. There exist in the literature
a number of different approaches to account for the emergent nature of spacetime, too numerous
to quote here in detail. Here we will follow the holographic [22, 34] proposal presented in
ref. [35]. Thus gravity and quantum mechanics share the common feature of being effective,
thermodynamical descriptions of their respective underlying theories.

We should point out that quantum mechanics can be recast in thermodynamical terms
[30], although without making use of the properties of emergence and holography used here.
On the contrary, our approach hinges crucially on the notions of emergence and holography.
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Altogether, our approach will provide us with a holographic, entropic picture of emergent
quantum mechanics.

2. The correspondence
2.1. The main result
Our main result can be summarised in the holographic correspondence

(bulk)
iI

h̄
↔ S

kB
(boundary). (1)

This correspondence can be explained as follows. Let a finite 3–dimensional volume V be given,
such that it is bounded by a closed 2–dimensional surface S (a holographic screen, see [35]). Let
a finite number of quantum–mechanical degrees of freedom be defined within V, described by
the action integral I. The screen S is assumed to carry N information bits. These bits encode
the holographic projection, onto S, of the degrees of freedom within V. Since we do not know
the specific mechanism whereby the holographic principle projects the mechanics within V onto
its boundary S = ∂V, we assign the screen an entropy S, which measures our ignorance about
the specific nature of the degrees of freedom on the surface. Thus I describes a mechanical
system in the bulk, while S describes its corresponding thermodynamics on the boundary. In
this setup, space merely plays the role of a storage device for information; space has already
emerged within S, while it does not yet exist outside S [35]. It will be observed that each side
of the dimensionless correspondence (1) is measured in units of the corresponding quantum—
the quantum of action (Planck’s constant h̄) on the mechanical side, the quantum of entropy
(Boltzmann’s constant kB) on the thermodynamical side. Finally, there is a relative factor of i,
whose origin will be elucidated presently. For the moment we note that the semiclassical limit
h̄ → 0 in the bulk corresponds to letting kB → 0 on the boundary. Last but not least, the two
quantities I and S separately obey a corresponding extremum principle. Eqn. (1) differs from
an ana! logous correspondence, presented in [1], by a factor of 2, to be explained later.

2.2. A quantum of entropy
The starting point in ref. [35] is a classical point particle of mass M approaching a holographic
screen S, from that side of the latter on which spacetime has already emerged. At a distance
from S equal to 1 Compton length, the particle causes the entropy S of the screen to increase
by the amount

∆S = 2πkB, (2)

where kB is Boltzmann’s constant. The above can also be understood as meaning that 2πkB is
the quantum by which the entropy of the screen increases, whenever a particle crosses S. The
factor 2π on the right–hand side is conventional. Relevant is only the fact that the entropy
increase of the screen appears quantised in units of kB.

2.3. Two thermodynamical languages
Thermodynamics can be conveniently expressed in either of two equivalent languages,
respectively called the energy representation and the entropy representation [8]. Any given
thermodynamical system can be completely described if one knows its fundamental equation.
The latter contains all the thermodynamical information one can obtain about the system. The
fundamental equation can be expressed in either of two equivalent ways, respectively called the
energy representation and the entropy representation. In the energy representation one has a
fundamental equation E = E(S, . . .), where the energy E is a function of the entropy S, plus of
whatever additional variables may be required. In the entropy representation one solves for the
entropy in terms of the energy to obtain a fundamental equation S = S(E, . . .).
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Here we will argue that quantum mechanics as we know it (i.e., on spacetime) corresponds
to the energy representation, while quantum mechanics on a holographic screen (i.e., in the
absence of spacetime) will correspond to the entropy representation. Our goal is to describe the
laws of entropic quantum mechanics, that is, the thermodynamical laws on the boundary S that
correspond to the quantum mechanics within S = ∂V.

One must bear in mind, however, that standard thermodynamical systems admit both
representations (energy and entropy) simultaneously, which representation one uses being just
a matter of choice. In our case this choice is dictated, for each fixed observer, by that side of
the screen on which the observer wants to study quantum mechanics. For example there is no
energy variable beyond the screen, as there is no time variable, but an observer can assign the
screen an entropy, measuring the observer’s ignorance of what happens beyond the screen. This
notwithstanding, the analogy with thermodynamical systems we have just sketched can be quite
useful.

2.4. A (classical) holographic dictionary
Assume that we are give a foliation of 3–space by 2–dimensional holographic screens Sj :
R3 = ∪j∈JSj , where the index j runs over some (continuous) set J . For reasons to be explained
presently we will restrict our attention to potentials such that the Sj are all closed surfaces; we
denote the finite volume they enclose by Vj , so ∂Vj = Sj .

One can formulate a holographic dictionary between gravitation, on the one hand, and
thermodynamics, on the other [35]. Let VG denote the gravitational potential created by a total
mass M =

∫
V d3V ρM within the volume V. Then the following two statements are equivalent:

i) there exists a gravitational potential VG satisfying Poisson’s equation ∇2VG = 4πGρM , such
that a test mass m in the background field created by the mass distribution ρM experiences a
force F = −m∇VG;
ii) given a foliation of 3–space by holographic screens, R3 = ∪j∈JSj , there are two scalar
quantities, called entropy S and temperature T , such that the force acting on a test mass m is
given by Fδx =

∫
S TδdS. The latter integral is taken over a screen that does not enclose m.

Moreover, the thermodynamical equivalent of the gravitational theory includes the following
dictionary entries [35]:

1

kB
S(x) =

−1

4h̄cL2
P

VG(x)A(VG(x)), (3)

2πkBT (x) =
dVG
dn

, (4)

kB
2

∫
S

d2a T = L2
PMc2. (5)

In (3), (4) and (5) we have placed all thermodynamical quantities on the left, while their
mechanical analogues are on the right. As in ref. [35], the area element d2a on S is related
to the infinitesimal number of bits dN on it through d2a = L2

PdN . We denote the area of
the equipotential surface passing through the point x by A(VG(x)), while dVG/dn denotes the
derivative of VG along the normal direction to the same equipotential. The above expressions
tell us how, given a gravitational potential VG(x) and its normal derivative dVG/dn, the entropy
S and the temperature T can be defined as functions of space.

Specifically, eqn. (3) expresses the proportionality between the area A of the screen S and
the entropy S it contains. This porportionality implies that gravitational equipotential surfaces
get translated, by the holographic dictionary, as isoentropic surfaces, above called holographic
screens S.
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Equation (4) expresses the Unruh effect: an accelerated observer experiences the vacuum of
an inertial observer as a thermal bath at a temperature T that is proportional to the observer’s
acceleration dVG/dn.

Finally, eqn. (5) expresses the first law of thermodynamics and the equipartition theorem.
The right–hand side of (5) equals the total rest energy of the mass enclosed by the volume V,
while the left–hand side expresses the same energy content as spread over the bits of the screen
S = ∂V, each one of them carrying an energy kBT/2. It is worthwhile noting that equipartition
need not be postulated. Starting from (4) one can in fact prove the following form of the
equipartition theorem [1]:

kB
2

∫
S

d2a T =
A(S)

4π
U(S), A(S) =

∫
S

d2a. (6)

Above, U can be an arbitrary potential energy, subject only to the requirement that its
equipotential surfaces are closed. We will henceforth mean eqn. (6) when referring to the first
law and the equipartition theorem. In all the above we are treating the area as a continuous
variable, but in fact it is quantised [35]. If N(S) denotes the number of bits of the screen S,
then

A(S) = N(S)L2
P . (7)

However, in the limitN →∞, when ∆N/N << 1, this approximation of the area by a continuous
variable is accurate enough. We will see later on that letting N → ∞ is equivalent to the
semiclassical limit in quantum mechanics.

3. The emergence of quantum mechanics
We intend to write a holographic dictionary between quantum mechanics, on the one hand, and
thermodynamics, on the other. This implies that we will need to generalise eqns. (3), (4) and
(6) so as to adapt them to our quantum–mechanical setup. Thus we will replace the classical
particle of [35] with a quantum particle, subject to some potential energy U of nongravitational
origin, but we will take (2) to hold for a quantum particle as well. We will assume U to be
such that its equipotential surfaces Sj are closed, in agreement with our assumptions about the
foliation. Let H = K +U be the classical Hamiltonian function on R3 whose quantisation leads
to the quantum Hamiltonian operator Ĥ = K̂ + Û that governs our quantum particle.

3.1. A (quantum) holographic dictionary
Inside the screen, spacetime has already emerged. This gives us the energy representation of
quantum mechanics—the one we are used to: a time variable with a conserved Noether charge,
the energy, and wavefunctions depending on the spacetime coordinates. We have the uncertainty
relation

∆Q̂∆P̂ ≥ h̄

2
. (8)

Expectation values are computed as functional integrals, with a density function dI given by

dI = exp

(
i

h̄
I

)
. (9)

Above, I =
∫

dtL is the action integral satisfying the Hamilton–Jacobi equation.
We can now posit the quantum–mechanical analogues of eqns. (3), (4) and (6). In the energy

representation these analogues read, respectively,

1

kB
Ŝ(x) =

1

4h̄cLP
A(U(x))|Û(x)|, (10)
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2πkBT̂ (x) = LP
dÛ

dn
, (11)

kB
2

∫
S

d2a T̂ =
A(S)

4π
Û(S). (12)

3.2. Emergence of the holographic correspondence
It is well known, in the theory of thermodynamical fluctuations, that the probability density
function dS required to compute expectation values of thermodynamical quantities is given by
the exponential of the entropy [8]:

dS = exp

(
S

kB

)
. (13)

Comparing (13) with (9) we arrive at the holographic correspondence (1)

iI

h̄
↔ S

kB
(14)

between the energy representation and the entropy representation.
We would like to point out that an analogous correspondence has been given in [1], the

only difference being a factor of 2 in the denominator on the right–hand side. This factor of
2 is easy to account for. In [1], one compares the semiclassical wavefunction in the energy
representation, given by ψ = exp (iI/h̄), with the square root of the probability density function
dS in the entropy representation, given by

√
dS = exp (S/2kB). Instead, here we are equating

the probability densities dI and dS rather than the wavefunctions. See refs. [4, 5] for specific
instances of the correspondence (14).

3.3. Emergence of the wavefunction
The equation U(x1, x2, x3) = U0, where U0 is a constant, defines an equipotential surface in R3.
As U0 runs over all its possible values, we obtain a foliation of R3 by equipotential surfaces.
Following [35], we will identify equipotential surfaces with holographic screens. Hence forces will
arise as entropy gradients.

Assume that ψ is nonvanishing at a certain point in space. Consider an infinitesimal cylinder
around this point, with height LP and base area equal to the area element d2a. Motivated by
the proportionality between area and entropy, already mentioned, we postulate that there is an
infinitesimal entropy flow dS from the particle to the area element d2a:

dS = C 2πkBLP |ψ|2d2a. (15)

Here C is a dimensionless numerical constant, to be determined presently. A closed surface Σ
receives an entropy flux S(Σ):

S(Σ) = C(Σ)2πkBLP

∫
Σ

d2a |ψ|2. (16)

The constant C(Σ) will in general depend on the particular surface chosen; the latter may, but
need not, be a holographic screen. The key notion here is that the integral of the scalar field
|ψ|2 over any surface carries an entropy flow associated. When the surface Σ actually coincides
with a holographic screen S, and when the latter is not a nodal surface of ψ, the constant C(S)
may be determined by the requirement that the entropy flux from the particle to the screen
equal the quantum of entropy (2). Thus

1

C(S)
= LP

∫
S

d2a |ψ|2. (17)
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Let us now read eqn. (17) in reverse, under the assumption that one knows the proportionality
constants C(Sj) for a given foliation R3 = ∪j∈JSj . This amounts to a knowledge of the
integrands, i.e., of the probability density |ψ|2 within the surface integral (17) on each and
every Sj . From these tomographic sections of all probability densities there emerges the complete
wavefunction ψ on all of R3, at least up to a (possibly point–dependent) phase eiα.

Thus the integrand of (17) gives the surface density of entropy flow into the holographic screen
Sj , and the wavefunction ψ becomes (proportional to) the square root of this flow. The collection
of all these tomographic sections of ψ along all possible screens amounts to a knowledge of the
complete wavefunction. Hence a knowledge of the different surface densities of entropy flux
across all possible screens is equivalent to a knowledge of the quantum–mechanical wavefunction
ψ. This is how the quantum–mechanical wavefunction ψ emerges from the holographic screens.

4. The Unruh equation of state
In this section we will rewrite the dictionary entries (10), (11) and (12), postulated to hold in the
energy representation of quantum mechanics, in the entropy representation. For this purpose
we first need to solve the eigenvalue equation Ŝφ = Sφ on the screen, so the latter will be kept
fixed. That is, we will not consider a variable surface Sj of the foliation, but rather a specific
surface corresponding to a fixed value of the index j. Observe also a difference in notation: φ
instead of ψ. This is to stress the fact that, by (10), entropy eigenstates φ cannot be eigenstates

of the complete Hamiltonian Ĥ, but only of the potential energy Û . Once we have solved the
eigenvalue equation

Ûφ = Uφ, (18)

then the same φ diagonalise Ŝ:

Ŝφ = Sφ, S =
kB

4h̄cLP
A(S)|U(S)|. (19)

Thermodynamical quantities will now arise as expectation values of operators in the entropic
eigenstates φ(S).

We first deal with (10). Clearly its reexpression in the entropy representation will be the
thermodynamical fundamental equation S = S(A), since the extensive parameter corresponding
to the holographic screen is the area A. Then we have

〈Ŝ〉 =
kB

4h̄cLP
A(S)|U(S)|. (20)

Availing ourselves of the freedom to pick the origin of potentials at will, let us set |U(S)| =
h̄c/LP . Thus

〈Ŝ〉 =
kB

4L2
P

A, (21)

which is the celebrated Bekenstein–Hawking law. It arises as a thermodynamical fundamental
equation in the entropy representation.

Our holographic screen is treated thermodynamically as a stretched membrane, so the
generalised force conjugate to the extensive parameter A is the surface tension σ. Then the
equation of state corresponding to (21) is

σ =
kB〈T̂ 〉
4L2

P

. (22)

Rewrite the above as 2πkB〈T̂ 〉 = 8πL2
Pσ and recall that σ is the normal component of force

per unit length on the screen. Since force is proportional to acceleration, the above equation of
state turns out to be equivalent to the Unruh law.
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Finally we turn to the first law of thermodynamics and the equipartition theorem. Taking
the expectation value, in the entropic eigenstates φ, of the operator equation (12), produces the
thermodynamical expression for the equipartition theorem:

kB
2

∫
S

d2a 〈T̂ 〉 =
A(S)

4π
〈Û(S)〉. (23)

5. The second law of thermodynamics, revisited
The second law of thermodynamics,

∆S ≥ 0, (24)

has been related to the Heisenberg uncertainty principle in ref. [30]. In ref. [13] it has been
argued that the second law of thermodynamics has a quantum–mechanical reexpression in the
Bell inequalities. In ref. [1] we have established a link between (24) and the Hilbert space of
entropic quantum mechanics. Here we would like to propose yet another quantum–mechanical
interpretation of the second law, one that combines the uncertainty principle with the notion of
emergence.

From eqn. (2) one derives the obvious inequality

∆S ≥ πkB (25)

which looks like some refinement of the second law (24)—the latter would be recovered in the
semiclassical limit kB → 0. Therefore let us, for the sake of the argument, consider eqn. (25)
as a more precise statement of the second law than (24). As such (25) is reminiscent the
uncertainty principle (8) of quantum mechanics. However the left–hand side of (25) contains
just one uncertainty, instead of a product of two uncertainties as usual. This reflects the fact
that the variable on the left, S, is selfconjugate—its dimension equals that of the quantum kB
on the right–hand side1. We can include a dimensionless formal parameter! τ in the left–hand
side that will make (25) resemble the uncertainty principle in its standard form. This can be
done as follows.

Let N denote the total number of bits on S. Whenever a quantum particle hits the screen
we have ∆N = 1, and the ratio ∆N/N will be small if N is large enough. In this limit we can
treat N as a continuous variable, that we re-denote by τ in order to interpret it as a continuous,
dimensionless parameter:

τ := N, when
∆N

N
<< 1. (26)

This is the limit N →∞ referred to in (7). Compatibility with all the above requires this limit
to correspond to kB → 0 or, equivalently, to h̄ → 0. In other words, the large area limit for a
holographic screen corresponds to the semiclassical approximation in quantum mechanics.

We have ∆τ ≥ 1, the inequality allowing for the possibility of more than just one particle
hitting S. Thus multiplying the two inequalities ∆τ ≥ 1 and ∆S ≥ πkB together we arrive at
the following uncertainty principle on the holographic screen:

∆S∆τ ≥ πkB. (27)

The fact that kB, though small, is nonvanishing, leads to the impossibility of having strictly
reversible processes; reversibility is possible only in the limiting case of a vanishing value for

1 Compare this situation with (q, p) and (H, t), which are conjugate pairs: the product of the two components of
each pair has the dimension of h̄. Angular momentum L is selfconjugate, in the sense that it carries the dimension
of h̄, but one writes the corresponding uncertainty principle as ∆L∆ϕ ≥ h̄/2, where the dimensionless variable ϕ
is an angle.
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the quantum kB. We conclude that quantisation appears as dissipative mechanism. The notion
that information loss leads to a quantum behaviour lies at the heart of the notion of emergence
[6, 7, 14, 15, 18, 19, 20, 21, 23, 24, 33].

We have derived the uncertainty principle (27) starting from the second law of
thermodynamics (24). Let us now prove that the reverse path is also possible: from the
uncertainty principle to the second law of thermodynamics. We start from (8) in the bulk
rewritten as ∆I/h̄ ≥ 1, where I =

∫
pdq is the action. On the boundary, the correspondence (1)

allows to reexpress the above inequality as in (25). Along the way we have dropped irrelevant
numerical factors.

Altogether, we have an equivalence between the uncertainty principle of quantum mechanics
(either in the bulk (8) or on the boundary (27)), and a refined version of the second law of
thermodynamics, one that includes a small but nonvanishing value of the corresponding quantum
(h̄ or kB) on the right–hand side. This is in agreement with the results of [30]—now with the
added bonus that our equivalence has the properties of emergence and holography.

6. Discussion
The entropy representation of quantum mechanics, as presented here, is a holographic projection
of the energy representation of the same theory, as defined on spacetime. Our central claim,
summarised by eqn. (1), expresses this holographic property.

There is, however, one additional property of quantum mechanics that is deeply encoded in
eqn. (1); as such it is not immediately recognised. Namely, quantum mechanics is an emergent
phenomenon also because quantum mechanics is defined on spacetime, and spacetime itself is
an emergent phenomenon. Let us analyse this latter point in more detail.

Any model of emergent gravity must ultimately account for the laws governing the motion
of material bodies. Thus, e.g., the proposal made in [35] allows for a (somewhat heuristic)
derivation of Newton’s law of motion, F = ma, and of the relativistic generalisations thereof, as
emergent, thermodynamical laws. Moreover, the intriguing presence of Planck’s constant h̄ [12]
in the purely classical setup of ref. [35] makes one suspect that quantum mechanics also has a
role to play in that setup. On the other hand, it is well known that Newton’s law F = ma can be
recovered in the semiclassical limit of quantum mechanics, as being satisfied by the expectation
values of certain operators (Ehrenfest’s theorem). Last but not least, thermodynamics is the
paradigm of emergent phenomena.

All these different pieces of evidence point toward one and the same conclusion—viz., that if
classical mechanics follows from the emergence property of spacetime, then the same should be
true of quantum mechanics. Here and in ref. [1] we have exploited this point of view. We would
like to stress that this conclusion is ultimately independent of the precise mechanism whereby
spacetime emerges. Thus, although the holographic dictionary presented in previous sections
hinges crucially on the emergence mechanism being precisely that of ref. [35], the holographic
correspondence (1) is independent of that mechanism. As such, the holographic correspondence
(1) should hold just as well in any other specific model for the emergence of spacetime (say, loop
quantum gravity or any alternative thereto such as [17, 27]).
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3Cátedra Energesis de Tecnologı́a Interdisciplinar, Universidad Católica de Valencia,
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Abstract Quantum mechanics emergesà la Verlinde from a foliation ofR3 by holo-
graphic screens, when regarding the latter as entropy reservoirs that a particle can ex-
change entropy with. This entropy is quantised in units of Boltzmann’s constantkB.
The holographic screens can be treated thermodynamically as stretched membranes.
On that side of a holographic screen where spacetime has already emerged, theen-
ergy representationof thermodynamics gives rise to the usual quantum mechanics.
A knowledge of the different surface densities of entropy flow across all screens is
equivalent to a knowledge of the quantum–mechanical wavefunction onR3. Theen-
tropy representationof thermodynamics, as applied to a screen, can be used to describe
quantum mechanics in the absence of spacetime, that is, quantum mechanics beyond
a holographic screen, where spacetime has not yet emerged. Our approach can be
regarded as a formal derivation of Planck’s constant~ from Boltzmann’s constantkB .
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1 Introduction

Groundbreaking advances in our understanding of gravity have led to profound new
insights into its nature (see [50, 51, 52, 53, 54, 69] and refs. therein). Perhaps the
most relevant insight is the recognition that gravity cannot a fundamental force, but
rather must be an effective description of some underlying degrees of freedom. As
such, gravity is amenable to a thermodynamical description. Although this fact had
already been suspected for some time [4, 5, 33, 67, 41, 34], itis only more recently
that it has been given due attention. The derivation of Newton’s laws of motion and of
Einstein’s gravity, presented in ref. [69] from an entropicperspective, has triggered off
an avalanche of research into the subject, ensueing papers being too numerous to quote
here in detail; see however [47, 8, 65, 18, 46, 25, 26]. A feature of these developments
is that, while offering insights into the quantum structureof spacetime, the treatment
is largely classical, in that no specific microscopic model of spacetime is assumed. In
other words, these developments refer not to the (microscopic) statistical mechanics
of gravity and spacetime, but to its (macroscopic) thermodynamics instead. In this
sense, notions usually considered to bea priori, such as inertia, force and spacetime,
appear as phenomena arising from some underlying theory whose minutiæ are largely
unknown—but fortunately also irrelevant for a thermodynamical description. Such
emergentphenomena are no longera priori, but derived. We refer readers to the com-
prehensive overview of emergent physics presented in the nice book [11]. Spacetime
itself appears as an emergent phenomenon, with the holographic principle playing a
key role [35, 63]. Developments in string theory also point in this direction [6, 57].

It has also been conjectured that quantum mechanics itself must be an emergent
theory [49, 1, 62, 36, 37, 19, 20, 21, 22, 42]; see also [45, 23,9, 10, 12, 13, 14, 43]
for its close link with gravity theories, and [29, 30, 31, 32]for an interpretation in
thermodynamical terms. The guiding principle at work in many of these approaches
is the notion that quantum mechanics provides some coarse–grained description of an
underlying deterministic theory. In some of these models [36], quantum states arise as
equivalence classes of classical, deterministic states, the latter being grouped together
into equivalence classes, or quantum states, due to our ignorance of the full microscopic
description. Quantisation thus appears to be some kind of dissipation mechanism for
information. In the presence of dissipation, entropy immediately comes to mind [15,
16, 17].

Thus the two research lines mentioned above, gravity and quantum mechanics,
share the common feature of being effective, thermodynamical descriptions of their re-
spective underlying theories. It is the purpose of this paper to develop an approach to
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emergent quantum mechanics from theentropicpoint of view pioneered in ref. [69],
with a quantum–mechanical particle replacing the classical particle considered in ref.
[69]. Additionally, this will contribute towards clarifying the role played by Planck’s
constant~ in the entropic derivation of classical gravity (Newton’s and Einstein’s) pre-
sented in [69]. Indeed, our results can be regarded as an entropic derivation of Planck’s
constant~ from Boltzmann’s constantkB—at least conceptually if not numerically.
Altogether, our approach will provide us witha holographic, entropic picture of emer-
gent quantum mechanics.

Finally let us say a word on notation. Awkward though the presence of~, c, G, kB
in our equations may seem, our purpose of exhibiting how~ emerges fromkB renders
natural units inconvenient. Quantum operators will be denoted asf̂ , with f being the
corresponding classical function.

2 Holographic screens as entropy reservoirs

2.1 A quantum of entropy

The starting point in ref. [69] is a classical point particleof massM approaching
a holographic screenS, from that side of the latter on which spacetime has already
emerged. At a distance fromS equal to 1 Compton length, the particle causes the
entropyS of the screen to increase by the amount

∆S = 2πkB, (1)

wherekB is Boltzmann’s constant. The above can also be understood asmeaning that
2πkB is thequantumby which the entropy of the screen increases, whenever a particle
crossesS. The factor2π on the right–hand side is conventional. Relevant is only the
fact that the entropy increase of the screen appears quantised in units ofkB.

We callbright that side of the holographic screen on which spacetime has already
emerged, whereas the other side might well be termeddark. One can also think of the
holographic screen as being the horizon of some suitably picked observerO in space-
time. For example, in the relativistic case, one can think ofthis observer as being a
Rindler observer. The dark side might well be identified withthe screen itself, as there
is literally no spacetime beyond the bright side—this assertion is to be understood as
relative to the corresponding observer, since different observers might perceive differ-
ent horizons. In this way, for each fixed value of the time variable, a collection of
observersOj , with the indexj running over some (continuous) setJ , gives rise to
a foliation of 3–space by 2–dimensional holographic screensSj : R3 = ∪j∈J Sj . For
reasons to be explained presently we will mostly restrict our attention to potentials such
that theSj are all closed surfaces; we denote the finite volume they enclose byVj , so
∂Vj = Sj .
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2.2 Two thermodynamical representations

We will take (1) to hold for a quantum particle as well. A quantum particle hitting
the holographic screen1 exchanges entropy with the latter,i.e., the wavefunctionψ
exchanges information withS. Just as information is quantised in terms of bits, so is
entropy quantised, as per eqn. (1). The only requirement on this exchange is that the
holographic screen act as an entropy reservoir. (See refs. [44, 48] for related proposals,
with the mechanical action integral replacing the entropy).

Describing the quantum particle on the bright side of the screen we have the stan-
dard wavefunctionψ+, depending on the spacetime coordinates and obeying the usual
laws of quantum mechanics. On the other hand, theentropicwavefunctionψ− de-
scribes the same quantum particle, as seen by an observer on the dark side of the holo-
graphic screen. If imagining an observer on the dark side ofS, where spacetime has
not yet emerged, raises some concern, one can also think ofψ− as being related, in a
way to be made precise below, to the flow of entropy across the horizonS, as measured
by an observer on the bright side of the same horizon.

Our goal is to describe the laws ofentropic quantum mechanics, that is, the laws
satisfied by the entropic wavefunctionψ−, and to place them in correspondence with
those satisfied by the standard wavefunctionψ+ on spacetime. The relevant thermody-
namical formalism needed here can be found,e.g., in the classic textbook [7]. However,
for later use, let us briefly summarise a few basics. Any giventhermodynamical system
can be completely described if one knows itsfundamental equation. The latter contains
all the thermodynamical information one can obtain about the system. The fundamen-
tal equation can be expressed in either of two equivalent ways, respectively called the
energy representationand theentropy representation. In the energy representation one
has a fundamental equationE = E(S, . . .), where the energyE is a function of the
entropyS, plus of whatever additional variables may be required. In the entropy rep-
resentation one solves for the entropy in terms of the energyto obtain a fundamental
equationS = S(E, . . .).

As an example, let there be just one extensive parameter, thevolumeV . Then the
fundamental equation in the entropy representation will bean expression of the form
S = S(E, V ), hencedS = (∂S/∂E) dE + (∂S/∂V ) dV . We know thatδQ = TdS,
while the first law of thermodynamics reads, in this case,δQ = dE + pdV , with
p the pressure. It follows thatT−1 = ∂S/∂E and p = T (∂S/∂V ). This latter
equation is the equation of state. For example, in the case ofan ideal gas we have
S(E, V ) = kB ln (V/V0) + f(E), with f(E) a certain function of the energy and
V0 a reference volume (that can be regarded as a constant contribution toS and thus
neglected). It follows from∂S/∂V = kBV

−1 thatpV is proportional toT , as expected
of an ideal gas.

In a sense to be made more precise presently, the bright side of the holographic
screen corresponds to the energy representation, while thedark side corresponds to the
entropy representation. Thus the energy representation will give us quantum mechanics
on spacetime as we know it. One must bear in mind, however, that standard thermo-

1Due to quantum delocalisation, statements such asa quantum particle hitting the holographic screen
must be understood as meaninga quantum–mechanical wavepacket, a substantial part of which has nonzero
overlap with the screen.
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dynamical systems admit both representations (energy and entropy) simultaneously,
which representation one uses being just a matter of choice.In our case this choice
is dictated, for each fixed observer, by that side of the screen on which the observer
wants to study quantum mechanics. For example there is no energy variable on the
dark side, as there is no time variable, but an observer can assign the screen an entropy,
measuring the observer’s ignorance of what happens beyond the screen. By the same
token, on the bright side we have an energy but there is no entropy2. In this case these
two representations cannot be simultaneous.

The situation just described changes somewhat as soon as oneconsiders two or
more observers, each one of them perceiving a different horizon or holographic screen.
Consider, for simplicity, two observersO1,O2 with their respective screensS1,S2, and
assume the latter to be such thatS2 gets beyondS1, in the sense thatS2 encloses more
emerged volume thanS1. That is, the portion of emerged spacetime perceived byO2

includes all that perceived byO1, plus some volume that remains on the dark side of
S1. CallV12 this portion of spacetime that appears dark toO1 but bright toO2. Clearly,
quantum mechanics onV12 will be described in the energy representation byO2 and
in the entropy representation byO1. In this case the two representations can coexist
simultaneously—not as corresponding to one observer, as instandard thermodynamics,
but each one of them aspertaining to a different observer.

The differences just mentioned, as well as some more that will arise along the way,
set us somewhat apart from the standard thermodynamical formalism. Nevertheless,
the thermodynamical analogy can be quite useful if one bearsthese differences in mind.

2.3 A holographic dictionary

Let us recall that one can formulate aholographic dictionarybetween gravitation, on
the one hand, and thermodynamics, on the other [50, 51, 52, 53, 54]. LetVG denote
the gravitational potential created by a total massM =

∫

V
d3V ρM within the volume

V enclosed by the holographic screenS = ∂V . Then the following two statements are
equivalent [69, 38]:
i) there exists a gravitational potentialVG satisfying Poisson’s equation∇2VG =
4πGρM , such that a test massm in the background field created by the mass distri-
butionρM experiences a forceF = −m∇VG;
ii) given a foliation of 3–space by holographic screens,R

3 = ∪j∈J Sj , there are two
scalar quantities, called entropyS and temperatureT , such that the force acting on a
test massm is given byFδx =

∫

S
TδdS. The latter integral is taken over a screen that

does not enclosem.
Moreover, the thermodynamical equivalent of the gravitational theory includes the fol-
lowing dictionary entries[69]:

1

kB
S(x) =

−1

4~cL2
P

VG(x)A(VG(x)), (2)

2πkBT (x) =
dVG
dn

, (3)

2We are considering the simplified case of a pure quantum state. Were our quantum state to be described
by a density matrix, there would of course be an entropy associated.
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kB
2

∫

S

d2a T = L2
PMc2. (4)

In (2), (3) and (4) we have placed all thermodynamical quantities on the left, while
their mechanical analogues are on the right. As in ref. [69],the area elementd2a on
S is related to the infinitesimal number of bitsdN on it throughd2a = L2

PdN . We
denote the area of the equipotential surface passing through the pointx byA(VG(x)),
while dVG/dn denotes the derivative ofVG along the normal direction to the same
equipotential. The above expressions tell us how, given a gravitational potentialVG(x)
and its normal derivativedVG/dn, the entropyS and the temperatureT can be defined
as functions of space.

Specifically, eqn. (2) expresses the proportionality between the areaA of the screen
S and the entropyS it contains. This porportionality implies that gravitational equipo-
tential surfaces get translated, by the holographic dictionary, asisoentropic surfaces,
above called holographic screensS.

Equation (3) expresses the Unruh effect: an accelerated observer experiences the
vacuum of an inertial observer as a thermal bath at a temperatureT that is proportional
to the observer’s accelerationdVG/dn.

Finally, eqn. (4) expresses the first law of thermodynamics and the equipartition
theorem. The right–hand side of (4) equals the total rest energy of the mass enclosed
by the volumeV , while the left–hand side expresses the same energy contentas spread
over the bits of the screenS = ∂V , each one of them carrying an energykBT/2. It is
worthwhile noting that equipartition need not be postulated. Starting from (3) one can
in fact prove the following form of the equipartition theorem:

kB
2

∫

S

d2a T =
A(S)

4π
U(S), A(S) =

∫

S

d2a. (5)

The details leading up to (5) from (3) will be given in section4.5. Above,U can be
an arbitrary potential energy3. We will henceforth mean eqn. (5) when referring to the
first law and the equipartition theorem. In all the above we are treating the area as a
continuous variable, but in fact it is quantised [69]. IfN(S) denotes the number of bits
of the screenS, then

A(S) = N(S)L2
P . (6)

However, in the limitN → ∞, when∆N/N << 1, this approximation of the area by
a continuous variable is accurate enough. We will see later on that lettingN → ∞ is
equivalent to the semiclassical limit in quantum mechanics.

We intend to write a holographic dictionary between quantummechanics, on the
one hand, and thermodynamics, on the other. This implies that we will need to gener-
alise eqns. (2), (3) and (5) so as to adapt them to our quantum–mechanical setup. Thus
we will replace the classical particle of [69] with a quantumparticle, subject to some
potential energyU of nongravitational origin.

3The gravitational potentialVG appearing above is the gravitational energyUG per unit test massm.
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3 The energy representation

LetH = K +U be the classical Hamiltonian function onR3 whose quantisation leads
to the quantum Hamiltonian operator̂H = K̂ + Û that governs our quantum particle.
The HamiltonianĤ will be assumed to possess normalisable states. This condition
on the potential was already reflected in the gravitational case of eqn. (2), where the
negative sign of the gravitational potential led to a positive definite entropy.

On the bright side of the screen, spacetime has already emerged. This gives us the
energy representation of quantum mechanics—the one we are used to: a time variable
with a conserved Noether charge, the energy, and wavefunctions depending on the
spacetime coordinates. We have the uncertainty relation

∆Q̂∆P̂ ≥
~

2
. (7)

In the semiclassical limit we have a wavefunction

ψ+ = exp

(

i

~
I

)

, (8)

whereI =
∫

dtL is the action integral satisfying the Hamilton–Jacobi equation.
LetV denote the finite portion of 3–space bounded by the closed holographic screen

S = ∂V . We can now posit the quantum–mechanical analogues of eqns.(2), (3) and
(5). In the energy representation these analogues read, respectively,

1

kB
Ŝ(x) =

1

4~cLP

A(U(x))|Û (x)|, (9)

2πkBT̂ (x) = LP

dÛ

dn
, (10)

kB
2

∫

S

d2a T̂ =
A(S)

4π
Û(S). (11)

Some comments are in order. We are considering the nonrelativistic limit, in which the
rest energy of the particle can be ignored. We also neglect all gravitational effects, rel-
ativistic or not; we will limit ourselves to the external potentialÛ . Quantum operators
such asÛ , initially defined to act on wavefunctions inL2(R3), must now be restricted
to act on wavefunctions inL2(V). Denote this restriction bŷUV . By definition, its
matrix elements〈f+|ÛV |g+〉 are

〈f+|ÛV |g+〉 :=

∫

V

d3V f∗
+Ûg+, (12)

the integral extending over the finite volumeV instead of allR3. For simplicity we
have suppressed the subindexV in (9), (10) and (11), but it must be understood that all
operators are to be restricted as specified.

The right–hand side of (9) deserves more attention.|Û | denotes the operator whose
matrix elements are the absolute values of those ofÛ . Taking the absolute value ensures
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that the entropy is positive definite, given that the potentialU need not have a constant
sign, contrary to the gravitational case of (2).

It will also be observed that no carets stand aboveA(U(x)), A(S), because they
are c–numbers. They denote the area of the equipotential surface passing through the
pointx and the are of the screenS, respectively. Also, the integral on the left–hand side
of (11) is a standard surface integral, even if the integrandis the operator̂T , because
the latter depends on the c–number–valued coordinate functionsx.

As a final remark, let us point out that the above equations (9), (10) and (11), as
well as their classical counterparts (2), (3) and (5), are correctly understood as being
expressed in the energy representation of thermodynamics.This is so despite the fact
that one writes the entropy as an explicit function of the potential energy—would this
not be the defining property of the entropy representation? The answer is negative for
two reasons. First, one would need to express the entropy as afunction of the total
energyH , rather than as a function of just the potential energyU . Second, all the
above expressions are functions defined on the emerged portion of space, where there
exists a conserved Noether charge, the energyH , and its conjugate variable, the timet.
The entropy representation will be introduced later on, when the absence of spacetime
will make it necessary to eliminate the space dependence of quantities such as entropy
and temperature. Such will be the case beyond the holographic screen.

4 The entropy representation

The entropy representation can also be thought of as quantummechanics in the absence
of spacetime, as we will come to recognise presently.

4.1 Action vs. entropy

It is well known, in the theory of thermodynamical fluctuations [7], that the proba-
bility density functiond required to compute expectation values of thermodynamical
quantities is given by the exponential of the entropy:

d = exp

(

S

kB

)

. (13)

Its square root, that one may call the amplitude for the probability densityd, can there-
fore be identified with an entropic wavefunctionψ(d)

− :

ψ
(d)
− = exp

(

S

2kB

)

. (14)

This identification is made up to a (possibly point–dependent) phaseeiα, plus a nor-
malisation. Comparing (14) with (8) we arrive at the correspondence

iI

~
↔

S

2kB
(15)
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between the energy representation and the entropy representation,both of them taken
in the semiclassical limit. This amounts to the statement that quantum–mechanical
fluctuations can be understood thermodynamically, at leastin the semiclassical limit.

We should note that the correspondence (15) is holographic in nature, because the
action integralI is defined on space, while the entropyS is defined on the screen
bounding it. Moreover, the above correspondence also implies that, in the entropic
representation, the semiclassical limit (the one considered in (8)) corresponds to letting
kB → 0.

The wavefunction (14) describes anincomingwave, from the point of view of the
screen. Anoutgoingwave, from the point of view of the screen, would be describedby
exp (−S/2kB).

It is reassuring to observe that the same correspondence (15) has been found in the
context of gravity and black–hole thermodynamics [2, 3].

4.2 Quantum statesvs. holographic screens

The equationU(x1, x2, x3) = U0, whereU0 is a constant, defines an equipotential
surface inR3. As U0 runs over all its possible values, we obtain a foliation ofR

3

by equipotential surfaces. Following [69], we will identify equipotential surfaces with
holographic screens. Hence forces will arise as entropy gradients.

Assume thatψ+ is nonvanishing at a certain point in space. Consider an infinitesi-
mal cylinder around this point, with heightLP and base area equal to the area element
d2a. Motivated by the proportionality between area and entropy, already mentioned,
we postulate that there is an infinitesimal entropy flowdS from the particle to the area
elementd2a:

dS = C 2πkBLP |ψ+|
2d2a. (16)

HereC is a dimensionless numerical constant, to be determined presently. A closed
surfaceΣ receives an entropy fluxS(Σ):

S(Σ) = C(Σ)2πkBLP

∫

Σ

d2a |ψ+|
2. (17)

The constantC(Σ) will in general depend on the particular surface chosen; thelatter
may, but need not, be a holographic screen. The key notion here is that the integral of
the scalar field|ψ+|

2 over any surface carries an entropy flow associated. When the
surfaceΣ actually coincides with a holographic screenS, and when the latter is not a
nodal surface ofψ+, the constantC(S) may be determined by the requirement that the
entropy flux from the particle to the screen equal the quantumof entropy (1). Thus

1

C(S)
= LP

∫

S

d2a |ψ+|
2. (18)

We should point out the following. Given a wavefunctionψ+, the probability density
|ψ|2 onR3 gives rise to a natural definition of entropy, namely,

− kB

∫

d3V |ψ+|
2 log |ψ+|

2. (19)
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However, (19) is the entropy associated with our uncertainty in the position of the
particle in 3–space. As such it should not be confused with the entropy (17) associated
with the particle traversing the surfaceΣ. It is this latter entropy that we are interested
in.

Let us now read eqn. (18) in reverse, under the assumption that one knows the
proportionality constantsC(Sj) for a given foliationR3 = ∪j∈J Sj . This amounts to
a knowledge of the integrands,i.e., of the probability density|ψ+|

2 within the surface
integral (18) on each and everySj . From these tomographic sections of all probability
densitiesthere emerges the complete wavefunctionψ+ on all of R3, at least up to a
(possibly point–dependent) phaseeiα.

Thus the integrand of (18) gives the surface density of entropy flow into the holo-
graphic screenSj , and the wavefunctionψ+ becomes (proportional to) the square root
of this flow. The collection of all these tomographic sections ofψ+ along all possible
screens amounts to a knowledge of the complete wavefunction. Hencea knowledge
of the different surface densities of entropy flux across allpossible screens is equiv-
alent to a knowledge of the quantum–mechanical wavefunction ψ+. This is how the
quantum–mechanical wavefunctionψ+ emerges from the holographic screens. Close
ideas concerning the wavefunction in relation to foliations of space have been put for-
ward in ref. [9].

4.3 The entropic uncertainty principle

Let us define the dimensionless variable

s :=
S

2πkB
, (20)

that we will call thereduced entropy. It is nonnegative:s ≥ 0. For example, the
semiclassical entropic wavefunction (14) can be expressedin terms ofs asψ(d)

− (s) =
eπs. We can consider arbitrary functionsf(s) on which we let the following operators
Q̂S, P̂S act:

Q̂Sf(s) := sf(s), P̂Sf(s) := 2πkB
df(s)

ds
. (21)

For reasons that will become clear presently,Q̂S will also be called thenormal, or
entropic, position operator, while P̂S will be called thenormal, or entropic, momen-
tum4. One finds thatiP̂S andQ̂S are Hermitian onL2 [0,∞). Unlike the usual case
onL2(R), the Hermitian property of position and momentum on the semiaxis involves
some nontrivial mathematical subtleties that will not be touched upon here; see [64].
Now the above operators satisfy the Heisenberg algebra

[Q̂S , P̂S ] = 2πkB1. (22)

Therefore the followingentropic uncertainty principleholds:

∆Q̂S ∆P̂S ≥ πkB . (23)

The above uncertainty principle has been derived rather than postulated; this is in the
spirit of refs. [27, 28].

4The missing factor ofi in the definition ofP̂S is due to the correspondence (15).
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4.4 The entropic Schroedinger equation

Since the screensSj are isoentropic surfaces, the reduced entropys can be regarded
as a dimensionless coordinate orthogonal to all theSj . Multiplication byLP gives a
dimensionful coordinateρ:

ρ := LP s. (24)

Modulo multiplication by a dimensionless numerical factor, and the possible addition
of a constant, the above is an equivalent reexpression of theequation [69]

∆S = 2πkB
Mc

~
∆x, (25)

wherex is the distance measured normally to the screen—in turn, (25) is the same
as (1). We can exploit this fact if we assume that the time–independent Schroedinger
equation

−
~
2

2M
∇2ψ+ + Uψ+ = Eψ+ (26)

is separable in a coordinate system that includesρ as one of its coordinate functions.
So let us supplementρ with two additional coordinatesξ, χ such that the tripleρ, ξ, χ
provides an orthogonal set of curvilinear coordinates5 in which (26) separates as per
(28) below. Then the Euclidean line element onR

3 will be given by

ds2 = h2ρdρ
2 + h2ξdξ

2 + h2χdχ
2, (27)

where the metric coefficientshρ, hξ, hχ are functions of all three coordinatesρ, ξ, χ.
We will call ρ thenormal coordinateto the foliation, whileξ, χwill be calledtangential
coordinatesto the foliation. A more physical terminology, based on (24)and (10),
could beentropic coordinatefor ρ andisothermal coordinatesfor ξ, χ.

We recall thatU depends only on the normal coordinateρ, so equipotential surfaces
are defined byU(ρ) = U0, for any constantU0. The tangential dimensionsξ, χ are
purely spatial constructs: they encode the geometry of the equipotential surfaces. For
example, in the particular case of a Coulomb potential, or also of an isotropic harmonic
oscillator, theSj are a family of concentric spheres of increasing radii. Thenρ can be
identified with the usual radial coordinater onR3, while ξ, χ can be taken as the usual
polar anglesθ, ϕ. In the general caseρ, ξ, χ need not coincide with any of the standard
coordinate functions onR3. However, each screenSj can be univocally identified
by the equationρ = ρj . The uncertainty principle (23) holds on the phase space
corresponding toρ, and the operator̂QS defined in (21) is nothing butthe position
operator along the normal, or entropic, coordinate.

Thus separating variables as per

ψ+(ρ, ξ, χ) = R(ρ)Y (ξ, χ), (28)

5In general,ρ, ξ, χ are only local coordinates, and need not cover all ofR
3. In particular,ξ, χ need not

cover a complete screenSj , nor need they be simultaneously defined on different screensSj , Sk. However,
to simplify our notation, we omit all the indices that would be necessary in order to take all these possibilities
into account.
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and substituting into (26) leads to

1

hρhξhχ

[

1

R

∂

∂ρ

(

hξhχ
hρ

∂R

∂ρ

)

+
1

Y

∂

∂ξ

(

hρhχ
hξ

∂Y

∂ξ

)

+
1

Y

∂

∂χ

(

hρhξ
hχ

∂Y

∂χ

)]

+
2M

~2
(E − U) = 0. (29)

The precise way in which (29) separates into aρ–dependent piece and aξ, χ–dependent
piece cannot be written down in all generality, as it varies according to the particular
choice made forρ, ξ, χ. This is due to our ignorance of the specific way in which the
metric coefficientshρ, hξ, hχ depend on all three variablesρ, ξ, χ. One can, however,
outline some general features of the final outcome. Terms involving the Laplacian∇2

will decompose as a sum∇2
ρ + ∇2

ξ,χ, where subindices indicate the variables being
differentiated in the corresponding operators. Calling the separation constantλ, there
will be two separate equations. The first equation will involve the normal Laplacian
∇2

ρ, the potential energyU(ρ), the energy eigenvalueE, the massM and the separation
constantλ. All these elements (with the exception of∇2

ρ) appear as a certain function
F of ρ:

∇2
ρR(ρ) + F (ρ, U(ρ), E,M, λ)R(ρ) = 0. (30)

The unknown functionF is explicitly computable once a specific choice has been made
for the coordinatesξ, χ. The second equation involves only the tangential Laplacian
∇2

ξ,χ and the separation constantλ:

∇2
ξ,χY (ξ, χ) + λY (ξ, χ) = 0. (31)

It is important to note that (31) can be solved independentlyof (30)6. The eigen-
functionsY (ξ, χ) constitute a complete orthonormal system of eigenfunctions of the
tangential Laplacian within thetangential Hilbert spaceL2(Sj). Moreover, since we
have assumed the screens to be closed surfaces, the eigenvaluesλ will be quantised.
Once these eigenvalues have been determined, substitutioninto (30) allows the latter
to be completely solved.

We are finally in a position to define the entropic wavefunctionψ− in terms of its
partnerψ+. We take the entropic wavefunction to be theρ–dependent piece in the
factorisation (28),

ψ−(ρ) := R(ρ). (32)

Clearly theentropic, or normal, Hilbert spacecorresponding to the screenSj will be
L2[0, ρj). The latter is considered with respect to an integration measure that includes a
certain Jacobian factorJ(ρ). In order to compute this Jacobian we proceed as follows.
Apply the factorisation (28) to the normalisation condition forψ+ onVj :

∫

Vj

d3V |ψ+|
2 =

∫ ρj

0

dρ

∫

Sj

dξdχhρhξhχ|R(ρ)|
2|Y (ξ, χ)|2. (33)

6Needless to say, in the case of a Coulomb field, (30) becomes the standard radial wave equation, while
(31) becomes that satisfied by the usual spherical harmonics, with λ = l(l + 1).
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In general, the producthρhξhχ depends on all three coordinatesρ, ξ, χ. The sought–
for JacobianJ(ρ) equals theρ–dependent factor in the integration measure after the
integral overξ, χ has been carried out. Asρj becomes larger and larger, we obtain
the entropic Hilbert spaceL2[0,∞). The latter would correspond to an observer who
perceives no horizon at all, thus extending his normalisation integral (33) over all of
R

3. We will come back to the issue of the different realisationsof the entropic Hilbert
space (L2[0, ρj) vs.L2[0,∞)) in section 5.2.

In the passage form the energy representation to the entropyrepresentation we ap-
pear to have lost the information corresponding to the holographic screens one inte-
grates over. However the screens carry no dynamics, becausethe force at pointx is
orthogonal to the screen passing throughx. Thus a knowledge of the entropic wave-
functionψ−, plus of the foliation itself, is equivalent to a knowledge of the wave-
functionψ+ in the energy representation. That the foliation is a piece of information
belonging to the entropy representation, was stated in assertion ii) of our section 2.3
following [69, 38].

It remains to identify the wave equation satisfied by the entropic wavefunction
ψ−. Obviously this equation is (30), which may thus be regardedas the entropy–
representation analogue of the time–independent Schroedinger equationĤψ+ = Eψ+

on space. Recalling (9) and (24), this entropic Schroedinger equation reads

∇2
sψ−(s) +G(s, A(s), E,M, λ)ψ−(s) = 0. (34)

We have calledG(s, A(s), E,M, λ) the function that results from expressing the po-
tentialU as a function of the entropyS and the areaA, and writing everything in terms
of the reduced entropys. As was the case withF in (30), the unknown functionG is
explicitly computable once a specific choice has been made for the coordinatesξ, χ.

4.5 The fundamental equation, the equation of state, and equipar-
tition

In this section we will rewrite the dictionary entries (9), (10) and (11), found to hold in
the energy representation, in the entropy representation.For this purpose we first need
to solve the eigenvalue equation̂Sφ− = Sφ− on the screen, so the latter will be kept
fixed. That is, we will not consider a variable surfaceSj of the foliation, but rather a
specific surface corresponding to a fixed value of the indexj. Observe also a difference
in notation:φ instead ofψ. This is to stress the fact that, by (9), entropy eigenstatesφ
cannot be eigenstates of the complete HamiltonianĤ , but only of the potential energy
Û . OnceÛ is diagonalised by a set ofφ+ defined on the bright side,i.e., once we have
solved the eigenvalue equation7

Ûφ+ = Uφ+, (35)

7Obviously theφ+ are the well–known eigenfunctions of the position operatoron the bright side, but this
property is immaterial for our purposes.
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then the correspondingφ− on the screen are defined per continuity:φ−(S) = φ+(S).
By (9), the sameφ− then diagonalisêS:

Ŝφ− = Sφ−, S =
kB

4~cLP

A(S)|U(S)|. (36)

Thermodynamical quantities will now arise as expectation values of operators in the
entropic eigenstatesφ−(S).

We first deal with (9). Clearly its reexpression in the entropy representation will be
the thermodynamical fundamental equationS = S(A) in the sense of ref. [7], since
the extensive parameter corresponding to the holographic screen is the areaA. Then
we have

〈Ŝ〉 =
kB

4~cLP

A(S)|U(S)|. (37)

Availing ourselves of the freedom to pick the origin of potentials at will, let us set
|U(S)| = ~c/LP . Thus

〈Ŝ〉 =
kB
4L2

P

A, (38)

which is the celebrated Bekenstein–Hawking law. It arises as a thermodynamical fun-
damental equation in the entropy representation.

Our holographic screen is treated thermodynamically as a stretched membrane, so
the generalised force conjugate to the extensive parameterA is the surface tensionσ.
Then the equation of state corresponding to (38) is

σ =
kB〈T̂ 〉

4L2
P

. (39)

Rewrite the above as2πkB〈T̂ 〉 = 8πL2
Pσ and recall thatσ is the normal component

of force per unit length on the screen. Since force is proportional to acceleration, the
above equation of state turns out to be equivalent to the Unruh law.

Finally we turn to the first law of thermodynamics and the equipartition theorem.
As already mentioned in section 2.3, it turns out that the equipartition theorem can be
derived from the Unruh law. Since this fact is valid both in the classical case (5) and
in its quantum counterpart (11), the derivation being exactly the same whatever the
case, we will provide the details pertaining to the derivation of (11) from (10). Inte-
grate the latter over a thin 3–dimensional slice of widthdn bounded by two equipo-
tentialsS1 andS2. Now the Planck lengthLP is extremely small, so we can safely
setdn = LP , while the two screensS1 andS2 will not differ appreciably in their sur-
face area. Then the volume integral of the left–hand side of (10) very approximately
equals2πkBLP

∫

S
d2a T̂ . On the right–hand side, let us first integratedÛ/dn along

the normal direction, to obtainLP Û(S2) − LP Û(S1). We can take the origin for the
potential function such that it will vanish onS1. The remaining term is the surface in-
tegralLP

∫

S
d2a Û(S). The integrand can be pulled past the integration sign because

S is an equipotential surface, thus yieldingLP Û(S)
∫

S
d2a. This latter integral equals

the surface areaA(S) of the screen, and (11) follows as claimed.
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Taking the expectation value, in the entropic eigenstatesφ−, of the operator equa-
tion (11), produces the thermodynamical expression for theequipartition theorem:

kB
2

∫

S

d2a 〈T̂ 〉 =
A(S)

4π
〈Û(S)〉. (40)

4.6 Planckvs. Boltzmann, or ~ vs. kB
Planck’s quantum of action~ gets replaced, in the entropic picture, with Boltzmann’s
constantkB. This explains the presence of~ in the entropic derivation of classical
gravity (Newton’s and Einstein’s) given in ref. [69]: by thecorrespondence (15),
the presence of~ is an unavoidable consequence of the presence ofkB, and vicev-
ersa. We find this dichotomy between the energy and the entropy representations very
suggestive—it appears to be a sort of complementarity principle, in Bohr’s sense of
the word. For example, this dichotomy allows one to write a quantum of energy in the
form E = ~ω, or else in the alternative formE = CkBT (C being a dimensionless
number). It also allows one to express a quantum of entropy inthe formS = ~ω/T , or
else asS = 2πkB. This dichotomy exchanges frequencyω with temperatureT , thus
timetmaps to inverse temperatureT−1, which is reminiscent of the Tolman–Ehrenfest
relation [66] and also of thermal time [56].

4.7 The second law of thermodynamics, revisited

As a minor technical point, we have restricted our analysis to closed holographic
screens enclosing a finite 3–dimensional volume. Quantum–mechanically this cor-
responds to normalisable states in the energy representation. Nonnormalisable states
correspond to open holographic screens without a boundary (thus having an infinite
surface area and enclosing an infinite volume). Our analysiscan be extended to the
latter by replacing absolute quantities with densities (per unit surface or unit volume
as the case may be). The connection with the second law of thermodynamics comes
about as follows. The second law of thermodynamics,∆S ≥ 0, lies hidden within
the quantum theory. Of course, one can derive it from statistical mechanics, but our
purpose here is the opposite. We have seen that the domain of the reduced entropys is
the half axiss ≥ 0, and that this fact led to the entropic Hilbert spaceL2[0,∞) (instead
of L2(R)) for the wavefunctionsψ−(s). All this is a quantum–mechanical rewriting of
the second law. One could ask, under what conditions will theentropic coordinateρ
be nonnegative? This is certainly the case when the holographic screens are all closed,
but what happens in case they are open? The geometry of the screens is dictated by
the potentialU . If the latter has flat directions, then its equipotentials will no longer be
closed surfaces—instead they will have an infinite surface area and will enclose an in-
finite volume. As mentioned above, one appropriately replaces quantities like entropy
and energy with the corresponding densities. However, the corresponding screens must
be such that the normal coordinate to their bright side,ρ, runs over the half axisρ ≥ 0.
This latter condition will be satisfied whenever the potential is such that it possesses a
centre of force, or an axis, or a plane, or possibly a more general surface of symmetry,
with respect to which one can define a nonnegative normal coordinate. This appears to
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be the case in all physically interesting situations, thus staying in agreement with the
second law of thermodynamics. Only the free particle lacks acanonicaldefinition of
a normal coordinate—but then again the second principle holds in the form∆S = 0,
due to the absence of forces.

5 Discussion

5.1 Quantum mechanics as a holographic, emergent phenomenon

Classical thermodynamics can be conveniently expressed ineither of two equivalent
languages, respectively called the energy representationand the entropy representation
[7]. Here we have argued that quantum mechanics as we know it (i.e., on spacetime)
corresponds to the energy representation, while quantum mechanics beyond a holo-
graphic screen (i.e., in the absence of spacetime) corresponds to the entropy represen-
tation. In this paper we have developed the formalism of entropic quantum mechanics
and placed it in correspondence with that of standard quantum mechanics on spacetime.

In particular, we have formulated the entropic uncertaintyprinciple (23) for the
(reduced) entropy variables that the entropic wavefunctionψ−(s) (sometimes also
denotedR(ρ)) depends on; see (24). The latter arises as the result of factoring out the
part of the wavefunction that depends on the tangential coordinates to the screen, the
normal coordinate being proportional to the entropy itself. We have also written down
a differential equation satisfied by the entropic wavefunction, that one may well call
the entropic Schroedinger equation; see (34).

Moreover, we have identified the explicit expression (14) ascorresponding to the
entropic wavefunction in the semiclassical limitkB → 0. There is a nice map, given
by (15), between the semiclassical wavefunction in the energy representation and the
corresponding semiclassical wavefunction in the entropy representation. This map ex-
changes the classical action integral with the entropy of the screen, while at the same
time introducing a relative factor ofi. It also exchanges Planck’s constant~ with
Boltzmann’s constantkB. In so doing, this map succeeds in explaining why Planck’s
constant~ had to appear in the derivation of classical gravity (Newton’s and Einstein’s)
given in ref. [69]. Namely, the presence of~ is an inescapable consequence of the pres-
ence ofkB, and viceversa, since~ is required by the energy representation, whilekB
is required by the entropy representation.

If spacetime is an emergent phenomenon, then everything built on it necessarily
becomes emergent [24]. This applies to quantum mechanics inparticular. However,
in the entropy representation developed here, the emergence property of quantum me-
chanics becomes a much sharper feature. Indeed, one usuallyassociates entropy with
lack of information, while energy (e.g., a sharp energy eigenvalue) is thought of as pro-
viding definite information. Now the correspondence (15) implies that, if the entropy
representation is emergent, then so is the energy representation, and viceversa. In this
sense, the information content carried by entropy is no morediffuse than that carried
by energy, nor is the information encoded by energy more sharply defined than that
encoded in entropy. In other words, the correspondence (15)confirms what we already
knew from other sources—namely, that quantum mechanics is definitely an emergent
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phenomenon.
We have also succeeded in writing a holographic dictionary between quantum me-

chanics, on the one hand, and thermodynamics, on the other. An analogous holo-
graphic dictionary was presented, in the gravitational case, in ref. [69]. Some key
entries in this gravitational/thermodynamical dictionary are summarised in eqns. (2),
(3) and (5), preceded by the equivalence between statementsi) and ii) of section
2.3. As a novelty, here we have presented the corresponding entries in our quantum–
mechanical/thermodynamical dictionary. These entries include the equivalence be-
tween the analogues of statementsi) andii) of section 2.3. In our setup, this is expressed
in the assertion that the energy representation of quantum mechanics (statementi)) is
equivalent to the entropy representation of quantum mechanics (statementii) ). Further
entries in this dictionary of equivalences are the analogues of eqns. (2), (3) and (5),
respectively given by our eqns. (9), (10) and (11) when working in the energy repre-
sentation. Our eqns. (9), (10) allow one to define an entropy field and a temperature
field as (operator–valued) functions onR3, whereas (11) is a reexpression of the first
law of thermodynamics and of the equipartition theorem. Their respective vacuum ex-
pectation values give rise to the corresponding equations in the entropy representation,
(38), (39) and (40), where the space dependence disappears.Their respective inter-
pretations are the proportionality between the area and theentropy of the screen (the
Bekenstein–Hawking law), the thermodynamical equation ofstate of the screen (the
Unruh law), and the equipartition theorem.

5.2 Quantum mechanics in the absence of spacetime

Entropic quantum mechanics can be thought of as describing quantum mechanicsin
the absence of spacetime. This latter statement must be understood as meaning that
the tangential coordinates to the holographic screens, as well as functions thereof, have
been factored out, while the normal coordinate and functions thereof remain—though
no longer as aspatial coordinate, but rather as ameasure of entropy. This viewpoint is
motivated in eqn. (25), that we have borrowed directly from [69]. Now in the absence
of time there is no Hamiltonian. In the absence of space thereare also no paths to sum
overà la Feynman. One might thus conclude that there can be no quantummechanics
in the absence of spacetime. This is however not true, as shown here and as shown also
by independent analyses. For example, quantum mechanics without spacetime has
been proposed as a case for noncommutative geometry [58, 59,40]. Without resorting
to noncommutative geometry, one can also argue as follows.

We have seen that the Hilbert space of entropic quantum states isL2[0, ρj) for an
observer who perceives space terminating at the screenSj , andL2[0,∞) for an ob-
server who perceives no screen at all, or horizon. Given the two screensSj andSk,
respectively located atρ = ρj andρ = ρk with ρj < ρk, it holds that the two spaces
L2[0, ρj) andL2[0, ρk) are unitarily isomorphic because both are infinite–dimensional
and separable [64]. Now letρk → ∞. The isomorphism betweenL2[0, ρj) and
L2[0,∞), plus the identification (24) between entropy and normal coordinate, allows
the observer who perceives the screenSj to extend his wavefunctionsR(ρ) beyond his
boundary atρj . His wavefunctions are now understood asψ−(s), i.e., as functions of
the reduced entropys—indeed the latter is not bounded from above. It is in this sense
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that this second observer can be said to be doingquantum mechanics in the absence of
spacetime.

It is right to observe that the unitary isomorphism between the two different reali-
sations of the entropic Hilbert space,L2[0,∞) andL2[0, ρj), need not map the semi-
classical regime of the one into the semiclassical regime ofthe other, nor the strong–
quantum regime of the one into the corresponding regime of the other. An analogous
statement applies to the spacesL2[0, ρj) andL2[0, ρk) corresponding to the screens
Sj , Sk. The observation just made will become relevant in section 5.3.

5.3 Open questions

We can summarise our conclusions so far with the assertion that entropic quantum
mechanics is a holographic phenomenon, as emergent as spacetime itself. To round up
our discussion we would like to present some thoughts of a more speculative nature.

As a first thought we would like to state thatentropic quantum mechanics is an
observer–dependent phenomenon. That measurement disturbs any quantum system
is, of course, a basic tenet of quantum mechanics. The statement just made, how-
ever, refers to something different. The concept that quantum mechanics is observer–
dependent has also appeared, in different guises, in [68, 60, 61] under the name of
duality. Under duality one understands thatthe notion of classical vs. quantum is rel-
ative to which theory one measures from(see section 6 of ref. [68]). This is also the
interpretation advocated in refs. [39] by one of the presentauthors.

An idea that lies close to the above notions is the statement that the entropy of a
horizon is an observer–dependent quantity(see section 3 of ref. [52]). In view of our
correspondence (15), this latter assertion turns out to be equivalent to the one above
defining duality.

Thus the statement that quantum mechanics is observer–dependent, is an equivalent
reexpression of duality,i.e., of the relativity of the notion of a quantum. In the entropic
picture developed here, this relativity presents itself asthe different realisations of the
entropic Hilbert space, explained in section 5.2. Equivalently, this relativity of the
notion of a quantum arises here as the relativity of the entropy.

The previous statements may at first sound surprising. Classic treatises such as,e.g.,
ref. [66], teach that the Lorentz transformation laws for the heat energy and the temper-
ature are such that their ratio (the entropy) is a scalar. Moreover, in principle one ex-
pects physical constants such askB and~ to be observer–independent. However, let us
note that a totally analogous phenomenon has been reported in refs. [50, 51, 52, 53, 54],
where the entropy of the screen has been argued to be an observer–dependent quan-
tity. That the entropy of a thermodynamical system becomes an observer–dependent
quantity has also been concluded in an information–theoretical context [55]. Upon
transforming back to the energy representation, the dependence just described can be
recast as the dependence of Planck’s constant~ upon the observer. Exactly this latter
conclusion concerning~ has been reported in [70].

Given that the equations of motion for Einstein’s gravity can be recast as thermo-
dynamical equations of state, it has been claimed that the canonical quantisation of
gravity makes as little sense asquantising sound waves in air[41]. This remark makes
it clear that quantising Einstein’s gravity may be attempting to quantise the wrong
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classical theory, but it casts no doubt yet on the validity ofquantum theory. However,
doubts concerning the microscopic fundamentality of the latter arise once one realises
thatquantum theory, too, is a thermodynamics in disguise...
AcknowledgementsJ.M.I. thanks Max–Planck–Institut für Gravitationsphysik,
Albert–Einstein–Institut (Golm, Germany), for hospitality extended a number of times
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Dich sẗore nichts, wie es auch weiter klinge,
schon l̈angst gewohnt der wunderbarsten Dinge.
—Goethe.
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Abstract We present an explicit correspondence between quantum mechanics and the
classical theory of irreversible thermodynamics as developed by Onsager, Prigogineet
al. Our correspondence maps irreversible Gaussian Markov processes into the semi-
classical approximation of quantum mechanics. Quantum–mechanical propagators are
mapped into thermodynamical probability distributions. The Feynman path integral
also arises naturally in this setup. The fact that quantum mechanics can be trans-
lated into thermodynamical language provides additional support for the conjecture that
quantum mechanics is not a fundamental theory but rather an emergent phenomenon,
i.e., an effective description of some underlying degrees of freedom.
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1 Introduction

Emergent physics as a research topic has drawn a lot of attention recently [10, 25]. The
very spacetime we live in, as well as the gravitational forcethat governs it, both appear
to be emergent phenomena [24, 39, 49]. Quantum mechanics hasalso been conjectured
to be the emergent theory of some underlying deterministic model, in part because of
its long–standing conflict with general relativity. There exists a large body of literature
on emergent quantum mechanics, some basic references being[2, 21, 33]; see also
[3, 11, 12, 14, 19, 22, 29, 30, 34, 43, 44, 45] for more recent work. The hypothesis of
emergence and the holographic principle [20, 46] have been hailed as landmarks in the
endeavour to arrive at a consistent a theory of quantum gravity.

Without touching on the difficulties facing quantum gravity, a number of interpre-
tational questions and foundational issues arise and remain within a purely quantum–
mechanical setup (or, eventually, within a quantum field theory setup, see [23]). In this
article, following earlier work [1], we will focus onthe emergent aspects of quantum
mechanics applying a thermodynamical approach. In fact the classical thermodynam-
ics of irreversible processes and fluctuation theory will turn out to share many com-
mon features with quantum mechanics—surprisingly, with Feynman’s path integral
approach to quantum mechanics. Some basic references on thesubject of fluctuations
and irreversible thermodynamics are [28, 37, 38, 40, 48]; intriguing questions such as
the emergence of macroscopic irreversibility from microscopic reversibility, the arrow
of time, and other related puzzles are analysed in [31, 41]. Amore complete list of
references can be found in [36].

Specifically, the purpose of this article is twofold:
i) to establish an explicit correspondence between quantum mechanics on the one hand,
and the classical thermodynamics of irreversible processes on the other. We claim
validity for this correspondence at least in the Gaussian approximation (which cor-
responds to the linear response regime in thermodynamics, and to the semiclassical
approximation in quantum mechanics);
ii) to use the correspondence just mentioned in order to providean independent proof
of the statement thatquantum mechanics is an emergent phenomenon, at least in the
semiclassical limit.

With hindsight, once one has realised that quantum mechanics in the Gaussian ap-
proximation is a classical thermodynamics in disguise, theemergent nature of quantum
theory becomes selfevident—after all, thermodynamics is aparadigm of emergent the-
ories.

2 The Chapman–Kolmogorov equation in quantum me-
chanics

To begin with we present a collection ofpurelyquantum–mechanical expressions, for
which there will bepurely thermodynamical reexpressions using the correspondence
we are about to develop. Although the material of this section is standard, a good gen-
eral reference is [50]. For simplicity we will restrict to a 1–dimensional configuration
spaceX coordinatised byx.
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The quantum–mechanical propagatorK (x2, t2|x1, t1) is defined as the amplitude
for the conditional probability that a particle starting at(x1, t1) end at(x2, t2):

K (x2, t2|x1, t1) = 〈x2|U(t2 − t1)|x1〉, U(t) = exp

(

− i

~
tH

)

. (1)

Above,U(t) is the unitary time–evolution operator, andH is the quantum Hamiltonian
operator. The time–evolution operators satisfythe group property,

U(t1)U(t2) = U(t1 + t2), (2)

an equation known in statistics already since the 1930’s asthe Chapman–Kolmogorov
equation[13]. Its solutions satisfy the differential equation

i~
dU

dt
= HU(t), H = i~

dU

dt

∣

∣

∣

t=0
. (3)

Using (1) we obtain an alternative reexpression of the Chapman–Kolmogorovequation:

K (x3, t3|x1, t1) =
∫

dx2K (x3, t3|x2, t2)K (x2, t2|x1, t1) . (4)

Since wavefunctionsψ areunconditionalprobability amplitudes, they are related to
propagatorsK (which areconditionalprobability amplitudes) as follows:

ψ(x2, t2) =

∫

dx1K (x2, t2|x1, t1)ψ(x1, t1). (5)

Propagators can be computed via path integrals over configuration spaceX ,

K (x2, t2|x1, t1) =
∫ x(t2)=x2

x(t1)=x1

Dx(t) exp

{

i

~

∫ t2

t1

dt L [x(t), ẋ(t)]

}

, (6)

whereL is the classical Lagrangian function. Two simple examples in which the path
integral (6) can be evaluated exactly are the free particle and the harmonic potential.
For a free particle we have

K(free) (x2, t2|x1, t1) =
√

m

2πi~ (t2 − t1)
exp

[

im

2~

(x2 − x1)
2

t2 − t1

]

, (7)

while for a harmonic potential we have, ignoring the caustics,

K(harmonic) (x2, t2|x1, t1) =
√

mω

2πi~ sin (ω(t2 − t1))
(8)

× exp

{

im

2~

ω

sin (ω(t2 − t1))

[

(x22 + x21) cos (ω(t2 − t1))− 2x1x2
]

}

.

When the path integral (6) cannot be computed exactly, an approximate evaluation can
still be helpful. For~ → 0 we have the semiclassical approximation to the propagator,
denoted byKcl:

Kcl (x2, t2|x1, t1) = Z−1 exp

{

i

~

∫ t2

t1

dt L [xcl(t), ẋcl(t)]

}

, (9)
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wherexcl(t) stands for the classical trajectory between(x1, t1) and(x2, t2), andZ−1

is some normalisation factor.1

3 Fluctuations and irreversible processes

For the benefit of the reader, with an eye on later applications, we include below a
summary of ref. [38].

3.1 Thermodynamic forces

Let a thermodynamical system be given. If we are interested in only a single instant,
the probabilityP of a given state is given by Boltzmann’s principle,

kB lnP = S + const, (10)

whereS is the entropy of that state. If we are interested in two instants widely separated
in time, the probability of given states at each instant is equal to the product of the
individual probabilities. A long time lapse makes the states statistically independent.
Hence the joint probability of the succession is related to the sum of the two entropies.
But if the time lapse is not long, the states will be statistically correlated. It is precisely
the laws for irreversible behaviour which tell us the correlations.

Let the thermodynamical state of our system be defined by a setof extensive vari-
ablesy1, . . . , yN . The entropyS = S(y1, . . . , yN ) will be a function of all theyk. Its
maximum (equilibrium) value will be denoted byS0, and theyk will be redefined to
vanish for the equilibrium state:S0 = S(0, . . . , 0). The tendency of the system to seek
equilibrium is measured by thethermodynamic forcesYk defined as

Yk =
∂S

∂yk
, k = 1, . . . , N. (11)

TheYk arerestoring forcesthat vanish with theyk.
Fluxes are measured by the time derivatives of theyk. The essential physical as-

sumption made here is thatirreversible processes are linear, i.e., they depend linearly
on the forces that cause them. Therefore we have2

ẏi =
dyi

dτ
=

N
∑

j=1

Lij Yj , i = 1, . . . , N. (12)

Onsager’s reciprocity theorem states thatL is a symmetric matrix [37],

Lij = Lji. (13)

1We will henceforth use the collective notationZ−1 to denote all the different normalisation factors that
we will not keep track of.

2We useτ to denote time in the theory of irreversible thermodynamics, and t to denote time in the
quantum theory. As will be seen in (44),τ andt are related by a Wick rotation.
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Further assuming thatL is nonsingular one can solve for the forces in terms of the
fluxes:

Yi =

N
∑

j=1

Rij ẏ
j , i = 1, . . . , N. (14)

Thus the rate of production of entropy,

Ṡ =

N
∑

j=1

∂S

∂yj
ẏj =

N
∑

j=1

Yj ẏ
j , (15)

can be expressed in either of two equivalent ways:

Ṡ =

N
∑

i,j=1

Rij ẏ
iẏj =

N
∑

i,j=1

LijYiYj . (16)

One defines thedissipation functionΦ as the following quadratic form in the fluxes:3

Φ :=
1

2

N
∑

i,j=1

Rij ẏ
iẏj . (17)

This function is a potential for theYk, because∂Φ/∂ẏj = RjkYk. The corresponding
quadratic form of the forces,

Ψ :=
1

2

N
∑

i,j=1

LijYiYj , (18)

has a similar property, but it should be noticed that it is a function of thestate(since
theYk depend only on theyj), whereas the numerically equalΦ is a function of itsrate
of change.

If we expand the entropy in a Taylor series around equilibrium we have

S = S0 −
1

2

N
∑

i,j=1

sijy
iyj + . . . (19)

The matrixsij is symmetric and positive definite. Neglect of the higher terms in yk

means the assumption that fluctuations are Gaussian: for Boltzmann’s principle (10)
states that the logarithm of the probability of a given fluctuation is proportional to its
entropy, or

P (y1, . . . , yN) = Z−1 exp

(

S

kB

)

= Z−1 exp



− 1

2kB

N
∑

i,j=1

sijy
iyj



 . (20)

3We assumeRij to be positive definite. This ensures thatṠ > 0 as expected of a dissipative process.
Indeed, the dissipation functionΦ can be identified with a kinetic energy,T =

∑N
i,j=1

gij ẋiẋj/2, where

gij is a certain Riemannian metric on the space spanned by the velocities ẋj . Identifying ẋj with ẏj we
havegij = Rij .
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The assumption of Gaussianity (19) then implies that theYi are linear in theyj :

Yi = −
N
∑

j=1

sijy
j . (21)

Thus the phenomenological laws (14) become

N
∑

j=1

(

Rij ẏ
j + sijy

j
)

= 0. (22)

3.2 Fluctuations

Let us now modify the deterministic equations (14) to include fluctuations by the addi-
tion of a random forceξi,

N
∑

j=1

Rij ẏ
j = Yi + ξi, (23)

which turns (14) into the set of stochastic equations (23). We require that theξi have
zero means, which implies that the right–hand side of (23) isa random force with
meansYi. For simplicity, as in the quantum–mechanical case, let us setN = 1, so we
have a single variabley obeying the stochastic equation

Rẏ + sy = ξ. (24)

We will be concerned with the path ofy in time under the influence of these random
forces. Our aim is to calculate the probability of any path. For n instants of time
τ1 < τ2 < . . . < τn we denote thecumulative distribution functionbyFn:

Fn

(

y1
τ1

. . .

. . .

yn
τn

)

= P (y(τk) ≤ yk, k = 1, . . . , n) . (25)

The functionFn tells the probability that the thermodynamical pathy(τ) lie below the
barriersy1, . . . , yn at the corresponding instantsτ1, . . . , τn. A stationaryprocess is
defined as one whose cumulative distribution functionFn is invariant under arbitrary
time shiftsδτ :

Fn

(

y1
τ1

. . .

. . .

yn
τn

)

= Fn

(

y1
τ1 + δτ

. . .

. . .

yn
τn + δτ

)

, ∀ δτ ∈ R. (26)

Physically this describes anagedsystem, one that has been left alone long enough
that any initial conditions have worn off, or been forgotten. Thus we consider entropy
creation as a loss of information: a dissipative system forgets its past.

AlongsideFn, theprobability density functionfn is defined such that the product

fn

(

y1 . . . yn
τ1 . . . τn

)

dy1 · · · dyn (27)

gives the probability that a thermodynamical path pass through gates of widthdyk.
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We will also be interested in conditional probabilities. Theconditional probability
functionfor the(n+ 1)th event given the previousn,

F1

(

yn+1

τn+1

∣

∣

∣

y1
τ1

. . .

. . .

yn
τn

)

= P
(

y(τn+1) = yn+1

∣

∣

∣ y(τk) = yk, k = 1, . . . , n
)

, (28)

is defined implicitly as follows:

Fn+1

(

y1
τ1

. . .

. . .

yn+1

τn+1

)

(29)

=

∫ y1

−∞

dỹ1 · · ·
∫ yn

−∞

dỹn F1

(

yn+1

τn+1

∣

∣

∣

ỹ1
τ1

. . .

. . .

ỹn
τn

)

dFn

(

ỹ1
τ1

. . .

. . .

ỹn
τn

)

.

Correspondingly, theconditional probability density functionf1 is defined such that

f1

(

yk
τk

∣

∣

∣

yk−1

τk−1

)

dyk dyk−1 (30)

equals the probability that a thermodynamical path pass through a gate of widthdyk at
time τk, giventhat it passed through a gate of widthdyk−1 at timeτk−1.

3.3 Markov processes

A Markov process is defined as one whose conditional probabilities are independent of
all but the immediately preceding instant [13]:

F1

(

yn+1

τn+1

∣

∣

∣

y1
τ1

. . .

. . .

yn
τn

)

= F1

(

yn+1

τn+1

∣

∣

∣

yn
τn

)

. (31)

Intuitively: a Markov system has a short memory. For a Markovprocess (29) and (31)
imply

fn

(

y1 . . . yn
τ1 . . . τn

)

= f1

(

yn
τn

∣

∣

∣

yn−1

τn−1

)

· · · f1
(

y2
τ2

∣

∣

∣

y1
τ1

)

f1

(

y1
τ1

)

. (32)

Now f1

(

y1

τ1

)

is known from Boltzmann’s principle (10). Hence, by stationarity, all

that is needed in order to obtain the distribution function for an arbitrary number of
gates is to evaluate the conditional probability density function

f1

(

y2
τ + δτ

∣

∣

∣

y1
τ

)

, (33)

which depends only onδτ , being independent ofτ . Thus then–gate problem reduces
to the 2–gate problem.
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3.4 Gaussian processes

A Gaussian stochastic process is one whose probability density function is a Gaussian
distribution. Let us set, in (24),

γ :=
s

R
. (34)

Then the conditional probability function for a Gaussian process is given by [38]

f1

(

y2
τ + δτ

∣

∣

∣

y1
τ

)

=
1√
2π

s/kB√
1− e−2γδτ

exp

[

− s

2kB

(

y2 − e−γδτy1
)2

1− e−2γδτ

]

. (35)

Now eqn. (35), together with (32), constitutes the solutionto the problem of finding
the probability of any path in a Gaussian Markov process. We also remark that (35)
correctly reduces to the one–gate distribution function (20) for δτ → ∞.

Next let us divide the interval(τ, τ + δτ) inton equal subintervals of lengthδτ/n:

τ1 = τ, τ2 = τ1 +
δτ

n
, . . . , τn+1 = τ + δτ. (36)

Then we have

f1

(

yn+1

τn+1

∣

∣

∣

y1
τ1

)

=

∫

dyn · · ·
∫

dy2 f1

(

yn+1

τn+1

∣

∣

∣

yn
τn

)

· · · f1
(

y2
τ2

∣

∣

∣

y1
τ1

)

. (37)

This is again the Chapman–Kolmogorov equation. The integral above extends over
all then − 1 intermediate gates. Using (37) one can reexpress (35) in thefollowing
alternative form [38]:

f1

(

yn+1

τn+1

∣

∣

∣

y1
τ1

)

= Z−1 exp

{

− 1

4kB

∫ τn+1

τ1

dτ R [ẏ(τ) + γy(τ)]
2

}

min

, (38)

subject toy(τ1) = y1, y(τn+1) = yn+1. The subscriptmin refers to the fact that
argument of the exponential is to be evaluated along the trajectory that minimises the
integral.

The one–gate distribution is obtained from the conditionaldistributionf1
(

y2

τ2

∣

∣

∣

y1

τ1

)

by takingτ1 = −∞ andy1 = 0 (because the aged system certainly was at equilibrium
long ago). Thus we setn = 1 in (38) and define thethermodynamical Lagrangian
functionL as

L [ẏ(τ), y(τ)] :=
R

2
[ẏ(τ) + γy(τ)]

2
. (39)

The dimension ofL is entropy per unit time, instead of energy. However, our map
between mechanics and thermodynamics will justify the denomination “Lagrangian”.
The Euler–Lagrange equation for a minimum value of the integral in (38) is

ÿ − γ2y = 0. (40)

The solution to the above that satisfies the boundary conditionsy(τ = −∞) = 0 and
y(τ = τ2) = y2 is

y(τ) = y2e
γ(τ−τ2). (41)
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Evaluating the integral in (38) along this extremal trajectory leads to

f1

(

y2
τ2

∣

∣

∣

0

−∞

)

= f1

(

y2
τ2

)

= Z−1 exp

[

− s

2kB
(y2)

2

]

. (42)

This result is in agreement with what one expects from Boltzmann’s principle (10) in
the Gaussian approximation (19).

Finally substituting (42) into (37), we obtain the thermodynamical analogue of the
quantum–mechanical relation (5):

f1

(

y2
τ2

)

=

∫

dy1 f1

(

y2
τ2

∣

∣

∣

y1
τ1

)

f1

(

y1
τ1

)

. (43)

This concludes our summary of ref. [38].

4 The map between quantum mechanics and irreversible
thermodynamics

The Wick rotation
τ = it (44)

between the thermodynamical evolution parameterτ and the quantum–mechanical
time variablet is the first entry in our dictionary between classical irreversible ther-
modynamics and quantum mechanics.

4.1 Path integrals in irreversible thermodynamics

The concept of a path integral can be traced back to the Chapman–Kolmogorov equa-
tion. Indeed lettingn→ ∞ in (36) and using (37), the right–hand side of (38) becomes
a path integralover the thermodynamical configuration spaceY :

f1

(

y2
τ2

∣

∣

∣

y1
τ1

)

=

∫ y(τ2)=y2

y(τ1)=y1

Dy(τ) exp

{

− 1

4kB

∫ τ2

τ1

dτ R [ẏ(τ) + γy(τ)]
2

}

. (45)

Thus it turns out that (38) actually equals the semiclassical approximation (as per (9))
to the path integral (45). This latter expression for the distribution functionf1 in terms
of a path integral is implicit in ref. [38]—but actually never written down explicitly in
that paper; see however [18].

Dropping in (39) the term proportional tȯyy (a total derivative), we redefine the
thermodynamical Lagrangian functionL to be

L [ẏ(τ), y(τ)] =
R

2

[

ẏ2(τ) + γ2y2(τ)
]

. (46)

We observe thaṫy2(τ) andy2(τ) in L carry the same relative sign. Similarly dropping
in (45) the term proportional tȯyy, we can rewrite the path integral using (46) as

f1

(

y2
τ2

∣

∣

∣

y1
τ1

)

=

∫ y(τ2)=y2

y(τ1)=y1

Dy(τ) exp

{

− 1

2kB

∫ τ2

τ1

dτ L [ẏ(τ), y(τ)]

}

. (47)
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The path integral (47) is the thermodynamical analogue of the path integral (6) that
defines the quantum–mechanical propagator. Thus settingn = 1 in (38), dropping the
total derivativeẏy, and replacing the integrand with the thermodynamical Lagrangian
(46) leads to the Gaussian approximation to (47):

f1

(

y2
τ2

∣

∣

∣

y1
τ1

)

= Z−1 exp

{

− 1

2kB

∫ τ2

τ1

dτ L [ẏcl(τ), ycl(τ)]

}

. (48)

HereL [ẏcl(τ), ycl(τ)] stands for the evaluation of (46) along the classical trajectory
ycl(τ) that satisfies the equations of motion (40). In this way (48) is seen to correspond
to the semiclassical approximation for the quantum–mechanical propagator, given in
(9). On the thermodynamical side, the quantum–mechanical semiclassical approxima-
tion translates as the assumption of Gaussianity for the stochastic forcesξ and for the
entropyS, as well as the assumption of linearity between forces and fluxes (which
leads up to the quadratic forms (17) and (18)).

4.2 Propagators from thermodynamical distributions

The next entry in our dictionary relates quantum–mechanical wavefunctions and prop-
agators to thermodynamical distribution functions. Within the Gaussian approximation
we use throughout, this entry will refer to the free particleand the harmonic oscillator.
We first we need to identify certain mechanical variables with their thermodynamical
partners. Specifically, we will make the following replacements:4

ω ↔ γ,
mω

~
↔ s

2kB
, x↔ y. (49)

To begin with, one expects the squared modulus of the wavefunction |ψ|2 to be
related to the 1–gate distribution functionf1

(

y
τ

)

, while the propagatorK must cor-

respond to a 2–gate distribution functionf1
(

y2

τ2
|y1

τ1

)

. Indeed the 1–gate distribution

function (42) gives the squared modulus of the ground stateψ0(x) = exp
(

−mωx2/2~
)

of the harmonic oscillator once the replacements (44), (49)are applied:

f1

(x

it

)

= Z−1 exp
(

−mω
~
x2

)

= |ψ(harmonic)
0 (x)|2. (50)

With the appropriate choices for the constantsm andω, (50) can also represent a free
wavepacket. Next we turn to propagatorsK. Elementary algebra brings the conditional
probability function for a Gaussian process (35) into the form

f1

(y2
τ

∣

∣

∣

y1
0

)

=
s

2kB

eγτ/2
√

π sinh (γτ)
exp

[

− s

2kB

(

eγτ/2y2 − e−γτ/2y1
)2

2 sinh (γτ)

]

. (51)

We will also be interested in the limitγ → 0 of the above:

f1

(y2
τ

∣

∣

∣

y1
0

)

γ→0
≃ s

2kB

1√
π γτ

exp

[

− s

2kB

(y2 − y1)
2

2γτ

]

. (52)

4A dimensionful conversion factor must be understood as implicitly contained in the replacementx↔ y,
whenever needed.
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Using (44) and (49), the free quantum–mechanical propagator (7) follows from (52):

K(free)(x2, t|x1, 0) =
√

kB
s
f1

(x2
it

∣

∣

∣

x1
0

)

γ→0
. (53)

The case whenγ is nonvanishing requires some more work. Again (44) and (49)allow
one to relate the conditional probability (51) to the harmonic propagator (8) as follows:

f1

(x2
it

∣

∣

∣

x1
0

)

= exp

(

iωt

2
− ∆V

~ω

)

√

2mω

~
K(harmonic) (x2, t|x1, 0) , (54)

whereV (x) = kx2/2 is the harmonic potential and∆V = V (x2) − V (x1). As had
to be the case, (54) correctly reduces to (53) whenω → 0. The square roots present in
(53) and (54) ensure that these two equations are dimensionally correct.

4.3 Integrability vs.square–integrability

Under our correspondence, the squared modulus of the wavefunction|ψ|2 gets mapped

into theunconditionalprobability densityf1
(

y1

τ1

)

, while the propagatorK gets mapped

into theconditionalprobability densityf1
(

y2

τ2
|y1

τ1

)

. One should bear in mind, however,

that the quantum–mechanical objectsψ,K are probabilityamplitudes, while the ther-
modynamical objectsf1 are true probabilities. Therefore quantum mechanics is not
just the Wick rotation of classical, irreversible thermodynamics—it is also thesquare
root thereof, so to speak, because of the Born rule. In order to address this question
in mode detail we need to recall some background mathematics; see ref. [47] for a
physics–oriented approach, and also [5] for a recent discussion of some of the issues
analysed later in this section.

LetM be a measure space, and denote byLp(M) the Banach space5

Lp(M) = {f :M → C, ||f ||p <∞} , ||f ||p :=

(
∫

M

|f |p
)1/p

, 0 < p <∞.

(55)
It turns out thatLp(M) is a Hilbert space only whenp = 2. Moreover,Lp(M) and
Lq(M) are linear duals of each other whenever1/p+1/q = 1. Two particular cases of
this duality will interest us. The first one isp = 2, q = 2, the other one isp = 1, q = ∞.

Whenp = 2 we have thatL2(M) is selfdual, the duality being given by the scalar
product: 〈·|·〉 : L2(M) × L2(M) −→ C. The corresponding algebra of bounded
operators isL(L2(M)), a noncommutativeC∗–algebra with respect to operator mul-
tiplication. Complex conjugation inL(L2(M)) consists in taking the adjoint operator,
while the noncommutativity is that of matrix multiplication.

The operator algebraL(Lp(M)) is also a Banach algebra for anyp > 0, and not
just forp = 2. However, only whenp = 2 is aL(Lp(M)) aC∗–algebra, because only
whenp = 2 doesL(Lp(M)) possess a complex conjugation.

5The spaceLp(M) is complex or real according to whether its elementsf are taken to be complex–
valued or real–valued functions onM . For quantum–mechanical applications we will consider thecomplex
case, while thermodynamical applications require the realcase. For generality, this summary assumes all
spaces complex.
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Set nowp = 1. The dual ofL1(M) isL∞(M). Elements of the latter are measur-
able, essentially bounded functionsf with a finite norm||f ||∞:

L∞(M) = {f :M → C, ||f ||∞ <∞} , ||f ||∞ := supz∈M{|f(z)|}. (56)

The duality betweenL1(M) andL∞(M) is

(·|·) : L∞(M)× L1(M) −→ C, (f |ρ) :=
∫

M

fρ, (57)

for any f ∈ L∞(M) and anyρ ∈ L1(M). Now L∞(M) also qualifies as aC∗–
algebra, the multiplication law being pointwise multiplication of functions (hence com-
mutative), and the complex conjugation being that of the functionsf . An important dif-
ference with respect to the previous case is thatL(L2(M)) is noncommutative, whereas
L∞(M) is commutative.

We will henceforth writeX for the spaceM when dealing with the mechanical
configuration space, andY when referring to the thermodynamical configuration space.

Textbook quantum mechanics regards quantum states as unit rays withinL2(X),
while physical observablesO are represented by selfadjoint operatorsO ∈ L(L2(X)).6

On the other hand, the natural framework for the theory of irreversible thermodynam-
ics is thereal Banach spaceL1(Y ) and its dual, thereal Banach algebraL∞(Y ).
Thermodynamical states are probability distributionsρ ∈ L1(Y ), that is,real func-
tions, normalised as per

∫

Y
ρ = 1. Thermodynamical observables arereal functions

f ∈ L∞(Y ). Thus
∫

Y fρ in (57) equals the average value of the physical quantityf in
the state described byρ.

Clearly the thermodynamical setup is not quite as sophisticated as its mechanical
counterpart. As opposed to thecomplexHilbert spaceL2(X), the real Banach space
L1(Y ) does not know about the existence of the imaginary uniti. In the absence of
a complex conjugation to implement time reversal, the thermodynamical setup nec-
essarily describesirreversibleprocesses. Moreover, there exists no scalar product on
L1(Y ). Correspondingly there is no notion of a selfadjoint operator in L(L1(Y ))—in
fact, thermodynamical observables are elements of a very different space,L∞(Y ).7

The previous differences notwithstanding, we can establish a map between quantum–
mechanical states/observables and their thermodynamicalcounterparts, as we do next.
We treat observables first, and discuss states later.

It is reasonable to identify real thermodynamical averages(f |ρ) with quantum me-
chanical expectation values〈ψ|O|ψ〉 of selfadjoint operatorsO, something like

∫

Y

fρ = (f |ρ) ↔ 〈ψ|O|ψ〉 =
∫

X

ψ∗Oψ, (58)

where the correspondence denoted by↔ has yet to be given a precise meaning. For
this we can assume diagonalisingO by a (complete, orthonormal) set of eigenstates
ψi ∈ L2(X), so we can replace the right–hand side of (58) with the corresponding

6We ignore the mathematical subtleties due to the fact thatO is generally an unbounded operator, hence
generally not an element ofL(L2(X)), because this fact is immaterial to the discussion.

7In particular, thereal spaceL∞(Y ) is a Banach algebra but not aC∗–algebra.
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eigenvalueλi. We want to define a functionalf for the left–hand side of (58). A
sensible definition actually involves a collection of constant functionalsfi, each one of
them equal to the corresponding eigenvalueλi:

fi : Y −→ R, fi(y) = λi, ∀y ∈ Y. (59)

Since the eigenvaluesλi are constants and the densityρ can be normalised to unity, the
imprecise correspondence (58) can be replaced with the precise dictionary entry

∫

Y

fiρ = (fi|ρ) = λi = 〈ψi|O|ψi〉 =
∫

X

ψ∗Oψ. (60)

This generalises in the obvious way to the case of a set of commuting observablesOk.
Noncommuting observables, not being simultaneously diagonalisable, lead to the im-
possibility of simultaneously defining the corresponding thermodynamical functionals
f on the left–hand side of (60). We will examine the thermodynamical analogue of
quantum commutators in a forthcoming publication.

So much for the observables; now we turn to the states. Since thermodynamical
probabilities are elements ofL1(Y ) while quantum–mechanical amplitudes belong to
L2(X), we would like to define some map ofL2(X) into L1(Y ), or viceversa. Given
ψ ∈ L2(X), one’s first instinct is to setρ := |ψ|2 because thenρ ∈ L1(X); this is
of course the Born rule. The attentive reader will have noticed that we actually need
ρ ∈ L1(Y ): it is generally meaningless to equateρ to |ψ|2—or to any other function
of ψ, for that matter. We will proceed ahead under the simplifying assumption that
X = Y .

The usual Born mapb is defined as

b : L2(X) −→ L1(X), b(ψ) := |ψ|2. (61)

This map is obviously not 1–to–1, so it fails to be an injection. As such it possesses no
inverse. We will however use the formal notationb−1 to denote the map

b−1 : L1(X) −→ L2(X), b−1(ρ) :=
√
ρ e

i
~
ϕ, (62)

whereϕ is taken as the solution to the continuity equation

ρ̇+∇ · (ρ∇ϕ) = 0 (63)

that is well known from the Madelung transformation. Moreover, if b−1(ρ) satisfies
the Schroedinger equation, thenϕ must of course equal the action integralI =

∫

dt L,
and thus satisfy thequantumHamilton–Jacobi equation [16]. Although the mapb−1

also fails to be an injection, we use the notationb−1 becausebb−1(ρ) = ρ. Aside
from this difficulty about the lack of injectivity,b andb−1 provide us with the required
maps from quantum–mechanical states into thermodynamicaldistribution functions,
and viceversa.

The Chapman–Kolmogorov equation (37), written below forn = 2,

f1

(

y3
τ3

∣

∣

∣

y1
τ1

)

=

∫

dy2 f1

(

y3
τ3

∣

∣

∣

y2
τ2

)

f1

(

y2
τ2

∣

∣

∣

y1
τ1

)

, (64)
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is the thermodynamical analogue of the quantum–mechanicalequation (4). This leads

us to the following point. Our correspondence mapsf1

(

y2

τ2

∣

∣

∣

y1

τ1

)

, which is a conditional

probability, intoK(x2, t2|x1, t1), which is anamplitudefor a conditional probability.
In other words, under our correspondence, the Born rule doesnot apply to the map
between conditional probabilities, although it does applyto the map between uncondi-
tional probabilities. There is nothing wrong with this. Indeed,f1 andK satisfy the re-
spective Chapman–Kolmogorov equations (64) and (4). Regarding the latter as matrix
equations (which is what they are), they read formallyf1 × f1 = f1 andK ×K = K.
That is, squaringf1 andK as matrices (which is how they should be squared, sincef1
andK are operators), they are idempotent. It therefore makes sensenot to impose the
Born rule on the map betweenK andf1.

4.4 Entropy vs.action

To complete our dictionary between quantum mechanics and irreversible thermody-
namics we postulate the following correspondence between the action integralI and
the entropyS:

(mechanics)
i

~
I ↔ 1

kB
S (thermodynamics), (65)

up to a numerical, dimensionless factor. Now the Wick rotation (44) replacesiI with
the Euclidean actionIE , so we could just as well write

(mechanics)
1

~
IE ↔ 1

kB
S (thermodynamics), (66)

again up to a numerical, dimensionless factor. We observe that bothI andS indepen-
dently satisfy an extremum principle. We also note that the respective fluctuation the-
ories8 in the Gaussian approximation are obtained upon taking the exponential. Thus
exponentiating (65) we arrive at the wavefunction

ψ =
√
ρ exp

(

i

~
I

)

(67)

and at the Boltzmann distribution function (10):

ρB = Z−1 exp

(

1

kB
S

)

. (68)

We should point out that the correspondence (65), (66) has also been found to hold in
independent contexts, long ago by de Broglie [9] and more recentlye.g. in [1, 6].

Applying the Born rule we set the Boltzmann probability density ρB equal to the
quantum–mechanical probability density|ψ|2:

ρB = |ψ|2 = ρ. (69)

8These fluctutations are of course measured with respect to the corresponding mean values ofI andS as
given by their extremals.
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(See ref. [4] for distributions other than thesquaredmodulus). Hence

ρ = Z−1 exp

(

1

kB
S

)

. (70)

Substitution of (70) into (67) yields an elegant expressionfor the wavefunction

ψ = Z−1/2 exp

(

1

2kB
S

)

exp

(

i

~
I

)

, (71)

combining thermodynamics and quantum mechanics into a single formula.
Implicitly assumed in (71) is the identification of mechanical variablesx and ther-

modynamical variablesy, as already done in (49). One can now define thecomplex–
valued actionI(x)9

I(x) := 1

2kB
S +

i

~
I. (72)

in order to write
ψ(x) = Z−1/2 exp (I(x)) (73)

as the semiclassical wavefunction (71), where

Z =

∫

dx | exp (I(x)) |2. (74)

We realise that the correspondence (65), (66) leads naturally to the existence of a com-
plexified action such as (72), which expressesa fundamental symmetry between entropy
and mechanical action.

Finally we would like to point out that complexified action functionals have also
been considered recently in ref. [32].

5 Discussion

We can summarise this article in the following statements:
i) we have succeeded in formulating a correspondence between standard quantum me-
chanics, on the one hand, and the classical thermodynamics of irreversible processes,
on the other;
ii) this correspondence holds at least in the Gaussian approximation (the latter being
defined in quantum mechanics as the semiclassical limit, andin thermodynamics as the
regime of linearity between forces and fluxes);
iii) this possibility of encoding of quantum–mechanical information in thermodynam-
ical terms provides an independent proof of the statement that quantum mechanics is
an an emergent phenomenon.

Specifically, our correspondence between semiclassical quantum mechanics and
Gaussian irreversible thermodynamics includes the following points of section 4:

9While the entropyS is a true function ofx, the action integralI is actually afunctionalof x(t). However,
in (72) we needI within the exponential definingψ. To this end,I is to be evaluated alongthe classical
trajectory starting at a certain given point and ending at a variable endpointx. This amounts to regardingI
as a true function ofx and no longer as a functional.
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i) we have shown that the path–integral representation for quantum–mechanical prop-
agators is already present in the thermodynamical description of classical dissipative
phenomena (section 4.1);
ii) we have mapped thermodynamical distribution functions into quantum–mechanical
propagators (section 4.2);
iii) we have constructed an explicit correspondence between quantum–mechanical states
and thermodynamical states, and also an analogous correspondence between quantum–
mechanical observables and thermodynamical observables (section 4.3);
iv) we have grounded our correspondence in the existence of a fundamental symmetry
between mechanical action and entropy (section 4.4).
In order to make this paper selfcontained we have also included, in section 3, a crash
course in classical irreversible thermodynamics, the latter considered in the linear ap-
proximation. Presumably, the theory of irreversible thermodynamics beyond the linear
regime should allow one to extend the present correspondence beyond the semiclassical
approximation of quantum mechanics.

Having mappedquantummechanics intoclassical irreversible thermodynamics
raises another old question,viz., the issue of how sharply, how univocally defined is
the divide betweenquantumnessandclassicality. This issue has also been addressed,
from the viewpoint of emergent theories, in ref. [15]; we defer our own contribu-
tion to the subject until a forthcoming publication. However we would like to briefly
touch upon the emergence property ofspacetime—not from a gravitational perspec-
tive, but from a purely quantum–mechanical viewpoint. If spacetime is an emergent
phenomenon, as widely conjectured, then everything that makes use of spacetime con-
cepts must necessarily be emergent, too. Quantum mechanicsis no exception, unless
one succeeds in constructing a quantum–mechanical formalism that is entirely free
of spacetime notions. Progress towards this latter goal hasbeen achieved along lines
based on noncommutative geometry (see [17] and references therein). A more modest
approach is to try and directly map quantum mechanics into thermodynamics, as done
here and elsewhere. It turns out that spacetime arises as an emergent conceptalso in
our quantum–mechanical approach, if only because our correspondence has required
replacing space variablesx with thermodynamical variablesy. Thus, indirectly, we
have also furnished (admittedly cirmcumstantial) evidence of the emergence property
of spacetime.

It was Einstein’s dream to see quantum mechanics formulatedas an ensemble the-
ory in which uncertainties wouldnot have a fundamental ontological status. Instead,
Einstein would have uncertainties and fluctuations arise asa consequence ofthe sta-
tistical natureof the description of an underlyingdeterministicsystem (see [27, 35]
and refs. therein). Thermodynamical fluctuation theory thus appears to be the archety-
pal example that Einstein would presumably have liked for quantum mechanics to be
modelled upon.

Actually it has been known since the early days of quantum mechanics that the
(free) Schroedinger equation can be interpreted as the standard heat equation in imag-
inary time, so the thermodynamical connection has always existed. An unavoidable
consequence of imaginary time is that real (decaying) exponentials replace imaginary
(oscillatory) exponentials. This is the hallmark of dissipation. Thus quantum mechan-
ics can be thought of as a dissipative phenomenon that becomes conservative only in
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stationary states [7, 8, 21]—that littlei in the Schroedinger equation makes a big dif-
ference [26].

After completion of this work we became aware of ref. [42], where topics partially
overlapping with those treated here are discussed.

AcknowledgementsJ.M.I. would like to thank the organisers of the Heinz von Foerster
Congress on Emergent Quantum Mechanics (Vienna, Austria, Nov. 2011) for stimulat-
ing a congenial atmosphere of scientific exchange, and for the interesting discussions
that followed.
Willst Du erkennen? Lerne zu handeln!—Heinz von Foerster.
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Abstract: A Toda–chain symmetry is shown to underlie the van der Waals gas and its close cousin,
the ideal gas. Links to contact geometry are explored.

Keywords: van der Waals gas; contact geometry; Toda chain

1. Introduction

The contact geometry of the classical van der Waals gas [1] is described geometrically using
a five-dimensional contact manifoldM [2] that can be endowed with the local coordinates U (internal
energy), S (entropy), V (volume), T (temperature) and p (pressure). This description corresponds to
a choice of the fundamental equation, in the energy representation, in which U depends on the two
extensive variables S and V. One defines the corresponding momenta T = ∂U/∂S and −p = ∂U/∂V.
Then, the standard contact form onM reads [3,4]

α = dU + TdS− pdV. (1)

One can introduce Poisson brackets on the four-dimensional Poisson manifold P (a submanifold ofM)
spanned by the coordinates S, V and their conjugate variables T, −p, the nonvanishing brackets being

{S, T} = 1, {V,−p} = 1. (2)

Given now an equation of state

f (p, T, . . .) = 0, (3)

one can make the replacements T = ∂U/∂S, −p = ∂U/∂V in order to obtain

f
(
−∂U

∂V
,

∂U
∂S

, . . .
)
= 0. (4)

In Ref. [5], we have called Equation (4) a partial differential equation of state (PDE of state for short).
It plays a role analogous to that played by the Hamilton–Jacobi equation in classical mechanics [2,6,7].
With respect to the latter, however, there is one fundamental difference. While in mechanics the
Hamilton–Jacobi equation is just one equation (regardless of the number of degrees of freedom),
in thermodynamics, we have one PDE of state per degree of freedom because the defining equation of
each momentum qualifies as an equation of state.
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2. The PDEs of State of the van der Waals Gas

Let us consider one mole of particles of van der Waals gas (i.e., Avogadro’s number N of particles).
The fundamental equation in the energy representation U = U(S, V) reads [1]

U(S, V) = U0

(
V0

V − b

)2/3
exp

(
2S

3NkB

)
− a

V
, (5)

with U0, V0 certain fiducial values; setting a = 0 and b = 0, one recovers the ideal gas. The variables T
and −p, conjugate to S and V, are

T =
∂U
∂S

= U0

(
V0

V − b

)2/3
exp

(
2S

3NkB

)
2

3NkB
(6)

and

p = −∂U
∂V

=
2
3

U0 exp
(

2S
3NkB

)
V2/3

0
(V − b)5/3 −

a
V2 . (7)

Equations (6) and (7) lead to the van der Waals equation of state(
p +

a
V2

)
(V − b) = NkBT (8)

and the equipartition theorem:

U(T, V) =
3
2

NkBT − a
V

. (9)

The first PDE of state follows from Equation (8),(
∂U
∂V
− a

V2

)
(V − b) + NkB

∂U
∂S

= 0, (10)

while, from Equation (9), we obtain the second PDE of state:

U − 3
2

NkB
∂U
∂S

+
a
V

= 0. (11)

when a = 0 and b = 0, systems (10) and (11) correctly reduce to the corresponding system of PDEs for
the ideal gas, obtained in Ref. [5]. One readily verifies that integration of the systems (10) and (11) lead
back to the fundamental Equation (5) we started off with.

3. Relation to the Toda Chain

Although well studied in the literature [8–10], for the benefit of the reader, we very briefly
summarise the essentials of Toda lattices needed for our purposes here. The Toda chain is a model
for a nonharmonic lattice describing the motion of a chain of particles subject to nearest-neighbour
interactions. The statement that interactions are restricted to nearest neighbours translates into
an equation of motion for the n–th particle

mn ẍn(t) = ∇V(xn+1(t)− xn(t))−∇V(xn(t)− xn−1(t)), (12)

where xn(t) is its displacement from equilibrium, and V is a certain potential function. Toda assumes
the latter to be given by the exponential of the relative displacements:

V = exp (−(xn − xn−1)) . (13)

Although the resulting model turns out to exhibit many interesting properties, integrability being one
of them, the succinct summary just given is all we will need for our purposes.
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Returning now to our problem, a succession of changes of variables in configuration space C (the
submanifold ofM spanned by the extensive coordinates S, V) will relate the fundamental Equation (5)
for the van der Waals gas to the potential energy of the Toda chain. We define the new variables S′, V′

S′ := S, V′ := V − b, (14)

and s, v

s :=
S′

NkB
, v := ln

(
V′

V0

)
, (15)

in terms of which the fundamental Equation (5) reads

U(s, v) = U0 exp
[

2(s− v)
3

]
− a

V0ev + b
. (16)

The transformations (14) and (15) are both diffeomorphisms: they can be inverted, regardless of the
values of the van der Waals parameters a, b. However, the final change of variables

x := s− v, U0 exp
(

2y
3

)
:=

a
V0ev + b

(17)

becomes singular when a = 0. For the moment, we proceed under the assumption that a 6= 0,
so Equation (17) is invertible. Then, the fundamental Equation (16) becomes

U(x, y) = U0

[
exp

(
2x
3

)
− exp

(
2y
3

)]
= W(x)−W(y), (18)

where we have defined the new function

W(z) := U0 exp
(

2z
3

)
. (19)

The function W(z) coincides with the potential function of the Toda chain; we have already encountered
it in Ref. [5] in the context of the ideal gas. Since the latter has a = 0, which causes the change of
variables (17) to be singular, one must proceed differently in this case. Instead of Equation (17),
a nonsingular change of variables to consider for the ideal gas is

x′ := s− v, y′ := s + v. (20)

As already seen in Ref. [5], this yields a fundamental equation depending on x′, but not on y′:

Uideal(x′) = W(x′). (21)

On the other hand, from Ref. [8], we know that, in the limit of small wave amplitudes, the time average
of the momentum variable in a thermal ensemble of Toda chains is directly proportional to the product
of Boltzmann’s constant kB times the temperature T (see Equation (3.20) of Ref. [8], the right-hand side
of which is independent of the lattice site n). We conclude that, in the limit of small amplitudes, a thermal
ensemble of waves in the Toda chain behaves exactly as an ideal gas.

Returning now to the van der Waals gas in Equation (18), the new canonical momenta read

px =
∂U
∂x

=
2
3

W(x), py =
∂U
∂y

= −2
3

W(y). (22)

While the momentum px is the same as for the ideal gas, the negative sign in py can be traced back to
the reduction in energy, with respect to the ideal case, due to the van der Waals parameter a. The PDEs
of state read, in the new variables x, y,
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∂U
∂x
− 2U0

3
exp

(
2x
3

)
= 0,

∂U
∂y

+
2U0

3
exp

(
2y
3

)
= 0. (23)

Compared to Equations (10) and (11), we see that, in the new variables x, y, the PDEs of state decouple
into a system of two identical equations (up to a sign), one for each independent variable. Moreover,
the equation corresponding to the variable x equals that PDE of the ideal gas, which expresses the
equipartition theorem. Finally the contact form (1) reads, in terms of x, y and the corresponding
momenta px, py,

α = dU + pxdx + pydy. (24)

In the limit when the gas is ideal, the momentum py vanishes identically [5], and the physics is
described in terms of the three-dimensional contact submanifold N spanned by x, px and U.

4. Discussion

The physics of the classical van der Waals gas is usually described by a five-dimensional contact
manifoldM endowed with the contact form given in Equation (1). In this paper, we have identified
one particular diffeomorphism that neatly disentangles the (rather abstruse) fundamental Equation (5)
to the much more manageable form given by Equations (18) and (19). This latter form is not just easier
to work with; it is also more inspiring. Namely, the fundamental equation of the van der Waals gas
now equals the difference of two terms (one term per independent variable x, y), each one of which is
a copy of the Toda potential function [8–10].

From the point of view of contact geometry, the only difference between the van der Waals gas
and the ideal gas lies in the fact that the contact manifold describing the van der Waals gas remains
five-dimensional, instead of reducing to the three-dimensional contact submanifold N we found in
the ideal case [5]. However, as we have proved in Equation (18), the fundamental equation can be
expressed in terms of the Toda potential function in both cases.

Why the precisely Toda potential should arise in this thermodynamical context, instead of some
other potential function, is a question that arises naturally. We believe the answer is the following.
The distinguishing feature of the Toda potential is the exponential function. In thermodynamics,
the exponential function arises naturally through Boltzmann’s principle: the number of microstates
that are compatible with a given macrostate specified by the value S of the entropy is proportional
to exp(S/kB). That the latter factor is present in the fundamental Equation (5) should come as no
surprise, since the internal energy should be an extensive variable of the system.

Another intriguing feature of the above correspondence between the fundamental equation
of a gas (either ideal or van der Waals) and the Toda potential function is the following.
The small–amplitude limit considered in Ref. [8] is the limit of vanishing kinetic energy; this fact
is reflected in the vanishing (to first order of approximation) of the time average of the generalised
velocities ṡn in Ref. [8]. This limit has been called the topological limit in Ref. [11]; roughly speaking,
it amounts to cancelling the kinetic term while keeping only the potential term in the Hamiltonian.
This fact allows us to sharpen our previous correspondence, which we can now state more precisely
as follows: the classical thermodynamics of the (ideal or van der Waals) gas has a dual theory which, to first
order of approximation, coincides with the topological limit of a thermal ensemble of waves in the Toda chain.
Surprising here is the fact that, for the ideal gas, all energy is purely kinetic, and the potential energies
introduced by the van der Waals parameters a, b are almost negligible compared to the kinetic energy.
Thus, the theory of gases, where energies are completely or mostly kinetic, is mapped by this correspondence
into a dual theory in which kinetic energies are negligible. Vanishing or at least negligible kinetic energies
are strongly reminiscent of topological field theory [12]; we hope to report on this issue in the future,
as well as on its relation to Riemannian fluctuation theory [13,14].
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Abstract

A new and straightforward proof of the unisolvability of the problem of multivari-
ate polynomial interpolation based on Coatmèlec configurations of nodes, a class of
properly posed set of nodes defined by hyperplanes, is presented. The proof gener-
alizes a previous one for the bivariate case and is based on a recursive reduction of
the problem to simpler ones following the so-called Radon-Bézout process.

Key words: multivariate interpolation, properly posed set of nodes, geometric
characterization, Coatmèlec lattices

1 Introduction

The problem of polynomial interpolation of one-dimensional data has a widely
known solution. However, despite its apparent simplicity, multivariate poly-
nomial interpolation remains a topic of current research [1–3]. The existence
and uniqueness of the interpolation polynomial strongly depends on the ge-
ometrical distribution of the interpolation points. The distribution of points
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for which the interpolation problem is unisolvable is referred to as properly
posed set of nodes (PPSN).

The mathematical characterization of the most general PPSN is not currently
known. The configurations of nodes based on algebraic varieties, such as those
of Bos [4] and Liang et al. [5,6], are very general but non-constructive. In a
computational setting, configurations based on hyperplanes, such as those of
Coatmèlec [7] and Chung and Yao [8], are preferred.

Surprisingly, the configuration of nodes introduced by Coatmèlec [7] in the
plane has received several names: DH-set [2], straight line type node configu-
ration [5], PPSN with node configuration A [9], straight line type node config-
uration A [10], PPSN by the recursive construction theorem using lines [11],
and PPSN by line-superposition process [12].

In this paper, a new proof of the unisolvability of the interpolation problem
for Coatmèlec configuration of nodes in arbitrary dimensions is presented. The
proof is based on a Bézout-Radon process [13,14]. Chui and Lai [9] present a
proof for the bivariate case only, state the result in arbitrary dimension, but
did not prove it because of complications in their notation. Multidimensional
interpolation is the basis to develop different numerical methods. The results of
this paper permit to design, for example, generalized finite difference methods
in irregular meshes based on Coatmèlec configuration of nodes in two [15] or
more dimensions.

The contents of this paper are as follows. The definitions and notation re-
quired to set our main theorem are presented in the next section. The proof
of this theorem is detailed in Section 3. Finally, in the last section, the main
conclusions are summarized.

2 Presentation of the problem

Let Πm(R
k) be the vector space of multivariate polynomials of degree not

greater than m with k variables. Let w = (x1, . . . , xk)
⊤ ∈ R

k, where ⊤ denotes
transpose, N0 = N ∪ {0}, j = (j1, . . . , jk)

⊤ ∈ Γ := N
k
0, |j| = j1 + · · · + jk,

wj = xj1
1 xj2

2 · · · xjk
k , and Γm := {j ∈ Γ : |j| ≤ m}. The set of multivariate

monomials {wj}j∈Γm
is a basis of Πm(R

k), i.e., every polynomial pm(w) may
be written uniquely as

∑

j∈Γm
aj w

j, with aj ∈ R. Hence, the vector space

Πm(R
k) has dimension N = Ck

k+m, where Ck
n is the binomial coefficient

(

n

k

)

.

Let Γs := {j ∈ Γm : |j| = s}, s = 0, 1, . . . , m. Note that Γm = ∪m
s=0Γ

s,
the cardinal #Γs = Ck−1

k−1+s, and #Γm =
∑m

s=0C
k−1
k−1+s = N . The set of s-

th degree monomials may be represented as a column vector of length #Γs

2



given by w(s) := (xs
1, x

s−1
1 x1

2, . . . , xi1xi2 · · ·xis , . . . , x
1
k−1 x

s−1
k , xs

k)
⊤, for all i =

(i1, . . . , is)
⊤ ∈ N

s
0, and 1 ≤ i1 ≤ i2 ≤ · · · ≤ is ≤ k. Note that w(0) = (1) ∈

R, w(1) = w ∈ R
k, and each component of the vector w(s) corresponds to

a unique monomial wj with j ∈ Γs. Using this notation, every polynomial
pm(w) ∈ Πm(R

k) may be written as
∑m

s=0

∑

j∈Γs aj w
j.

Here on, a node refers to a point in R
k and a configuration of nodes (CN) is a

set of pairwise distinct nodes Xm = {wi}Ni=1 where wi ≡ (x(1,i), x(2,i), . . . , x(k,i))
⊤

∈ R
k.

The Lagrange interpolation problem may be stated as follows: Given a CN
Xm and an arbitrary set of real numbers {fi ∈ R}Ni=1, find a polynomial
pm(w) ∈ Πm(R

k) such that

pm(wi) :=
∑

j∈Γm

aj w
j
i = fi, i = 1, 2, . . . , N. (1)

This problem is properly posed with respect to Xm if it has a unique solu-
tion (unisolvability) for every set {fi}Ni=1. Compared with the one-dimensional
case where the solvability is always assured, the solvability of multivariate in-
terpolation depends strongly on the geometrical distribution of the nodes. A
CN Xm is said to be a properly posed set of nodes (PPSN) if the Lagrange
interpolation problem is properly posed with respect to Xm.

Equation (1) is a system of N linear equations with a multivariate Vander-
monde matrix Vm, i.e., (Vm)ij = wj

i , where j ∈ Γm, wi ∈ Xm, and 1 ≤ i ≤ N .
Note that this matrix looks a little bit bizarre since rows and columns are in-
dexed by different structural entities. A graded lexicographical order in the set
of multiindices Γm may be introduced to enhance the notation (see Ref. [16])
but this is not required in this paper.

The following theorem summarizes some previously known results.

Theorem 1 Let Xm = {wi}Ni=1 be a CN in k dimensions and Vm the cor-

responding multivariate Vandermonde matrix, then the following expressions

are equivalent:

(i) Xm is a PPSN in R
k.

(ii) Vm is a nonsingular matrix, i.e., det(Vm) 6= 0.
(iii) rank(Vm) = N .

Let Xm ≡ X(m,k) = {wi}Ni=1 ⊂ R
k be a CN with N = Ck

m+k nodes in k
dimensions. Let us define by induction on k the following CNs, first introduced
by Coatmèlec [7,9].

Definition 2 A CN Xm ≡ X(m,k) ⊂ R
k is Coatmèlec in k dimensions if

X(m,k) =
⋃m

p=0X(p,k−1) with #X(p,k−1) = Ck−1
p+k−1 and there exists m+ 1 hyper-
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planes γ0, γ1, . . . , γm such that X(m,k−1) ⊂ γm and X(p,k−1) ⊂ γp \
⋃m

q=p+1 γq,
for 0 ≤ p ≤ m− 1, with each X(p,k−1) being Coatmèlec in (k − 1) dimensions

by identifying each hyperplane γp with R
k−1.

Note that, in one dimension, every CN Xm ≡ X(m,1) ⊂ R is Coatmèlec because
all its nodes are pairwise distinct, i.e., wi 6= wj, if i 6= j. Note also that, in
Definition 2, only one node belongs to the hyperplane γm.

The main result of this paper is a proof of the following theorem.

Theorem 3 Every Coatmèlec CN Xm in k dimensions is a properly posed set

of nodes in R
k.

3 Proof of the main theorem

Our proof makes use of the following lemmas.

Lemma 4 Let us take the CN Xm where the nodes {wi}Ni=1 are represented

as column vectors in R
k, and the CN X̂m whose nodes are ŵi = w0 + H wi,

i = 1, . . . , N , where w0 is an arbitrary vector and H is a non-singular matrix

of dimension k. Let Vm and V̂m be the Vandermonde matrices associated to

the CNs Xm and X̂m, respectively. If rank(Vm) = N , then rank(V̂m) = N .

Proof of Lemma 4. For every set of real numbers {fi ∈ R}Ni=1, there exists
one and only one interpolating polynomial such that p̂m(ŵi) = fi, given by
p̂m(x̂) = pm(H

−1 (x−w0)) where pm(x) is the unique interpolating polynomial
for Xm given by Theorem 1. Therefore, rank(V̂m) = N .

Lemma 5 Let {x̂i : i = 1, . . . , k} be an orthonormal basis of Rk, and n1 an

arbitrary vector. There always exists an orthogonal matrix H, representing a

rotation in R
k, which transform the vector x̂1 onto H x̂1 = n̂1 = n1/‖n1‖.

Proof of Lemma 5. If n̂1 = x̂1, then H = I, the identity matrix. Otherwise,
let us apply the procedure of Gram-Schmidt orthonormalization to vectors
{x̂1, n1}, yielding

q̂1 = x̂1, q2 = n1 − (n1 · q̂1) q̂1, q̂2 =
q2√
q2 · q2

=
q2

‖q2‖
,

where the dot is the ordinary Euclidean dot product. An arbitrary vector q
can be written as q = q⊥+q‖, where q‖ = (q · q̂1) q̂1+(q · q̂1) q̂1 = QQ⊤ q, where
Q = [q̂1; q̂2] is the rectangular matrix whose columns are the vectors q̂i; note
that Q⊤ Q is the identity matrix of dimension 2. Taking the vector q⊥ = q−q‖
as the rotation axis for the rotation matrix H results in H q = q⊥ + H q‖ =

4



(I − QQ⊤) q + QRQ⊤ q, where R is the standard two-dimensional rotation
matrix

R =







cos θ − sin θ

sin θ cos θ





 , cos θ = x̂1 · n̂1, sin θ =
√

1− (x̂1 · n̂1)2.

Hence, H = I −QQ⊤ +QRQ⊤ is a rotation matrix (HH⊤ = H⊤H = I and
det(H) = 1) such that H x̂1 = n̂1.

Proof of Theorem 3. Let us use the induction principle over m and k. Let us
first consider m = 0 and any k ∈ N. Clearly X0 = w1 and rank(V0) = 1 = N .
We consider next k = 1 and m 6= 0. The corresponding CN is Coatmèlec in
one dimension and the coefficient matrix is a (one-dimensional) Vandermonde
matrix with maximal rank C1

m+1 = m + 1 = N , since the nodes are pairwise
distinct.

By the induction hypothesis, let us assume that the theorem holds for either
m − 1 or k − 1, and let us prove that it holds for m and k. Here on, let us
take n = m+ k. Since Xm is a Coatmèlec CN in k dimensions, the following
conditions are fulfilled

X(m,k−1) =
{

w1, w2, . . . , wCk−1

n−1

}

⊂ γm,

X(m−1,k−1) =
{

wCk−1

n−1
+1, . . . , wCk−1

n−1
+Ck−1

n−2

}

⊂ γm−1\γm,

X(m−2,k−1) =
{

w
Ck−1

n−1
+Ck−1

n−2
+1, . . . , wCk−1

n−1
+Ck−1

n−2
+Ck−1

n−3

}

⊂ γm−2\γm−1 ∪ γm,
...

X(0,k−1) = {wN} ⊂ γ0\γ1 ∪ · · · ∪ γm,

where

Xm = X(m,k−1) ∪X(m−1,k−1) ∪ · · · ∪X(0,k−1).
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The multivariate Vandermonde matrix associated to the Lagrange interpola-
tion problem in the CN Xm may be written as

Vm =

























































1 1 · · · 1

w
(1)
1 w

(1)
2 · · · w

(1)
Ck

n

w
(2)
1 w

(2)
2 · · · w

(2)
Ck

n

...
...

...

w
(m)
1 w

(m)
2 · · · w

(m)

Ck
n

























































.

Let us apply the affine transformation ŵ = w0 +H w to all the nodes of the
CN, where H is the orthogonal matrix given in Lemma 5, that transforms the
xk coordinate axis in R

k into the normal vector to the hyperplane γm, and w0

is the distance between the intersection point of the (new) rotated xk axis and
the hyperplane γm.

The application of the affine transformation nullifies the k-th coordinates of

the vectors
{

ŵ1, ŵ2, . . . , ŵCk−1

n−1

}

, hence ŵi =
(

x̂(1,i), x̂(2,i), · · · , x̂(k−1,i), 0
)⊤

.

Let V̂m, where (V̂m)ij = ŵj
i , be the coefficient matrix of the transformed linear

system of equations. From Lemma 4, rank(Vm) = rank(V̂m).

The rows and columns of the matrix V̂m may be sorted by renaming the nodes
ŵi to w̃i, in order to group all its zero elements into its left-bottom part.
This process preserves the rank. The resulting matrix Ṽm has the following
structure







A B

0 A′ D





 , (2)
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where A is the Ck−1
n−1 × Ck−1

n−1 matrix given by

A =



























































1 1 · · · 1

w̃
(1)
1 w̃

(1)
2 · · · w̃

(1)

Ck−1

n−1

w̃
(2)
1 w̃

(2)
2 · · · w̃

(2)

Ck−1

n−1

...
...

. . .
...

w̃
(m)
1 w̃

(m)
2 · · · w̃

(m)

Ck−1

n−1



























































,

B is the Ck−1
n−1 × Ck

n−1 matrix

B =



























































1 1 · · · 1

w̃
(1)

Ck−1

n−1
+1

w̃
(1)

Ck−1

n−1
+2

· · · w̃
(1)
Ck

n

w̃
(2)

Ck−1

n−1
+1

w̃
(2)

Ck−1

n−1
+2

· · · w̃
(2)

Ck
n

...
...

. . .
...

w̃
(m)

Ck−1

n−1
+1

w̃
(m)

Ck−1

n−1
+2

· · · w̃
(m)

Ck
n



























































,
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D is the Ck
n−1 × Ck

n−1 diagonal matrix

D =











































x̂(k,Ck−1

n−1
+1) 0 · · · 0

0 x̂(k,Ck−1

n−1
+2) · · · 0

...
...

. . .
...

0 0 · · · x̂(k,Ck
n)











































,

A′ is the Ck
n−1 × Ck

n−1 matrix given by

A′ =













































1 1 · · · 1

w̃
(1)

Ck−1

n−1
+1

w̃
(1)

Ck−1

n−1
+2

· · · w̃
(1)

Ck
n

...
...

. . .
...

w̃
(m)

Ck−1

n−1
+1

w̃
(m)

Ck−1

n−1
+2

· · · w̃
(m)

Ck
n













































,

and finally 0, cf. Eq. (2), represents the null matrix of dimensions Ck
n−1 × Ck−1

n−1.
We recall that Ck

n = Ck−1
n−1 + Ck

n−1.

The square matrix A is a multivariate Vandermonde matrix in (k−1) variables
and the Ck−1

n−1 nodes {w̃i} are a Coatmèlec CN in (k−1) dimensions. Therefore,
by the induction hypothesis, rank(A) = Ck−1

n−1.

The diagonal matrix D is nonsingular, i.e., x̂k,i 6= 0, for i = Ck−1
n−1 + 1, . . . , Ck

n,
because if there existed at least an i with x̂k,i = 0, then there would be at least
Ck−1

n−1 + 1 different nodes lying in the hyperplane γm, but this is not possible
because Xm is a Coatmèlec CN. Hence, rank(A′ D) = rank(A′). Moreover, the
matrix A′ is also a multivariate Vandermonde matrix corresponding to the
Ck

n−1 nodes that do not belong to the hyperplane γm. Since the Coatmèlec
property of a CN does not change under either rotation or translation of all
the nodes, the CN {w̃i}, i = Ck−1

n−1 + 1, · · · , Ck
n, is also a Coatmèlec CN. The

induction hypothesis yields that the rank of matrix A′ is Ck
n−1.

Finally, the rank of the Ck
n × Ck

n matrix Ṽm is rank(A) + rank(A′) = Ck−1
n−1 +

Ck
n−1 = Ck

n, and the theorem is proved.
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4 Conclusions

The unisolvency of the problem of multivariate polynomial interpolation in a
Coatmèlec CN, a kind of properly posed set of nodes defined by hyperplanes,
has been shown through a new and straightforward proof. This proof uses el-
ementary techniques from linear algebra. This fact permits the understanding
of the topic by nonexperts and opens the possibility of it being incorporated
in numerical analysis textbooks.

The geometrical condition characterizing Coatmèlec CNs is one of the most
general conditions currently available for the characterization of properly posed
set of nodes defined by hperplanes, which is easier and more efficient to be
checked by an automatic computational software than the widely known ge-
ometrical characterization of Chung and Yao [8]. Therefore, Coatmèlec CNs
are useful in mesh generation for the numerical solution of partial differential
equations in irregular domains, such as generalized finite difference methods.
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Abstract: We present a numerical analysis and experimental measurements of the temperature stabilization of high-power LED chips 
that we have obtained by employing an aluminium passive heat sink, designed to be used in a compact light bulb configuration. We 
demonstrate that our system keeps the temperature of the LED chip well-below 60ºC yielding long-term operation of the device. Our 
simulations have been performed for a device of low fabrication costs and which enables an easy installation in public streetlights. 
The experimental measurements performed in different configurations show a nice agreement with the numerical calculations. 
 

1. Introduction 

The use of high-power light emitting diodes (HP-LED) 
for public illumination is an emerging subject, triggered 
by recent developments of different technologies 
including semiconductor materials [1], fluorescence 
techniques [2], driver electronics [3], or thermal control 
[4], among others [5].  

One of the key aspects concerning the performance and 
durability of HP-LED lighting systems is the adequate 
control of the temperature of the LED chip [6]. As it has 
been pointed by recent studies [7], LEDs have a high 
energy efficiency and long lifespan, however, a large 
amount of heat is dissipated during operation due to 
Joule effect; thus, cooling HP-LEDs is an important 
challenge in package designs, where a correct evacuation 
of the heat will substantially enlarge the lifetime of the 
device. 

Besides the previous constraint, other practical aspects 
like a compact design, low cost, mass production or even 
aesthetic considerations can play an important role in 
market-oriented products. Thus, in this paper we present 
a numerical analysis of the thermal stabilization of a 
50W LED chip attached to a passive heat sink, yielding a 
compact light bulb design that can be used for 
commercial purposes in the street lighting market. The 
system we propose keeps the temperature of the LED 
chip well-below 60ºC under all circumstances, yielding 
long-term operation of the bulb. 
 
After the numerical calculations performed, a practical 
device has been implemented in a compact and easy-to-
install design in order to compare the results of the 
computational simulations with experimental measure-
ments taken under realistic conditions, finding a nice 
agreement. 

2. Numerical Model 

Our first aim is to calculate the steady-state temperature 
distribution over the surface of a heat sink with 

translational symmetry along, say the z-axis. This 
configuration is ideal for mass production via metal 
extrusion process. In our model, we have assumed that 
the heat sink is made of black anodized Al surrounded 
by a laminar air flow with constant properties except the 
density of air (ρ), given by the ideal gas law. Thus, in the 
air side the first formula is the continuity equation: 
 

∇⋅ ρ
v( ) = 0 ,    (1) 

being v the velocity of air. In addition we have the 
energy equation [8]: 
 

ρ
∂
v
∂t
= −∇P +µ∇2v − ρg ,   (2) 

where t is the time, P the pressure, µ the dynamic 
viscosity and g the acceleration of gravity. One more 
formula needed is the moment equation: 

ρCP
∂T
∂t

=∇⋅ (k∇T )+ ∂P
∂t

,   (3) 

being CP the specific heat, T the absolute temperature 
and k the thermal conductivity. On the heat sink we have 
the condition ∇2T = 0 . For a black anodized surface with 
high emissivity (>0.8), we can neglect at the interface 
the effect of the incoming radiation heat flux (W/m2) and 
thus, the outgoing flux ( q ) is given by the Stefan-
Boltzmann law: 

q = εσT 4 ,    (4) 

where ε is the is the emissivity of the wall is the Stefan-
Boltzmann constant and T is the absolute temperature of 
the heat sink. We want to solve the previous problem for 
a heat sink made of black-anodized aluminum (Al6061) 
with the geometry shown in Fig. 1. To numerically 
integrate the previous set of equations, we have used 
COMSOL MultiphysicsR, which is a finite element 
analysis solver commercial package for various physics 
and engineering applications. As it can be appreciated in 
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Fig. 1, the steady-state temperature distribution ranges 
from 53ºC to 42ºC.   
 

 
Fig. 1. Numerical simulation of the steady-state 
temperature distribution over the heat sink. The size is 
10cm height and 6cm diameter. The LED (red square) 
power is 50W. 

3. Experimental results and discussion  

In order to check the validity of our numerical model, a 
series of experiments were made.  As shown in Fig. [2] 
an Al6061 black anodized heat sink 10cm length was 
attached to a 50W LED chip in a light-bulb 
configuration. The emissivity of the heat sink with the 
surface treatment was 0.8. The geometric parameters of 
the experimental model are the same as in the numerical 
simulations described before.  
 

 
Fig. 2. Lateral (left) and front (right) view of the real 
system composed of a black anodized aluminum 
structure in a compact LED bulb configuration. 

 
A temperature sensor with three different probe heads  
(DAQ-9172, NI9211), a power supply, a wattmeter, and 
a  laptop were used in order to collect data. To minimize 
the thermal contact resistance between the LED chip and 
the heat sink a graphite film of high thermal conductivity 
(240Wm-1K-1) was used. As it can be seen in Fig. 3 the 
steady state temperature of the LED chip shows a nice 
agreement with the numerical calculations. 

4. Conclusions 

We have presented a numerical study of the steady-state 
temperature distribution of a practical high-power light 
emitting diode (HP-LED) bulb. Our results have been 
compared with experimental data obtained in a physical 
device fabricated for market purposes. From our analysis 

we can derive that low-cost passive heat sinks fabricated 
for 50W HP-LED chips can keep the temperature of the 
device below 60ºC, thus making it possible to reach life-
times of 55.000h. 
 

 
Fig. 3. Experimental measurement of the temperature 
distribution of the LED chip (top curve) and the 
environment (bottom curve) . 
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Abstract. In this paper we present a numerical analysis and experimental measurements of
the temperature stabilization of high-power LED chips that we have obtained by employing an
aluminum passive heat sink, designed to be used in a compact light bulb configuration. We
demonstrate that our system keeps the temperature of the LED chip well-below 70◦C yielding
long-term operation of the device. Our simulations have been performed for a low-cost device
ready to install in public streetlights. The experimental measurements performed in different
configurations show a nice agreement with the numerical calculations.

1. Introduction
The use of high-power light emitting diodes (HP-LED) for public illumination is an emerging
subject, triggered by recent developments of different technologies including semiconductor
materials[1, 2, 3], fluorescence techniques[4], driver electronics[5] or thermal control[6] among
others[7, 8].

One of the key aspects concerning the performance and durability of HP-LED lighting systems
is the adequate control of the temperature of the LED chip[9]. As it has been pointed by recent
studies[10], LEDs have a high energy efficiency and long lifespan, however, a large amount of
heat is dissipated during operation due to Joule effect; thus, cooling HP-LEDs is an important
challenge in package designs, where a correct evacuation of the heat will substantially enlarge
the lifetime of the device[11].

Besides the previous constraint, other practical aspects like a compact configuration, low cost,
mass production or even esthetic considerations can play an important role in market-oriented
products. Thus, in this paper we present a numerical analysis of the thermal stabilization of
30W −50W LED chips attached to passive heat sinks, yielding a compact light bulb design that
can be used for commercial purposes in the street lighting market. The system we propose keeps
the temperature of the LED chip well-below 70oC under realistic conditions, yielding long-term
operation of the bulb, with the corresponding savings in energy consumption and maintenance.

After the numerical calculations performed, in order to compare the results of the
computational simulations with experimental measurements taken in standard systems, a set
of prototypes has been constructed in a compact and ready-to-install configuration. As we will
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Figure 1. Detail of the computational grid used for the numerical simulations. The size of the
real devices was 5cm and 10cm height and 9cm diameter. Details of the calculations are given
in the text.

demonstrate, there is a nice agreement between the numerical simulations and the corresponding
data obtained.

2. Numerical model
Our first aim is to calculate the steady-state temperature distribution over the surface of a heat
sink with translational symmetry along one axis. This configuration is ideal for mass production
at a very low cost via metal extrusion process. In our theoretical model, we have assumed that
the heat sink is made of black anodized aluminum (Al 16061), which is surrounded by a laminar
air flow of density (ρ) given by the ideal gas law. Thus, in the air side, the first expression that
we formulate is the continuity equation:

∇ · (ρv⃗) = 0, (1)

being v⃗ the velocity of air. In addition we have the energy equation[12]:

ρ
∂v⃗

∂t
= −∇P + µ∇2v⃗ − ρg⃗, (2)

where t is the time, P the pressure and µ the dynamic viscosity of air. We assume that the
acceleration of gravity g⃗, is parallel to the z-axis. Another formula to be added to the model is
the moment equation:

ρCP
∂T

∂t
= ∇ · (k∇T ) +

∂P

∂t
, (3)

being CP the specific heat, T the absolute temperature and k the thermal conductivity. On the
heat sink we have the condition ∇2T = 0. At the interface, for a black anodized surface with
high emissivity (≥ 0.8), we can neglect the effect of the incoming radiation heat flux (W/m2)
and thus the outgoing flux (q̇) is given by the Stefan-Boltzmann law:

q̇ = ϵσT 4, (4)
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Figure 2. Numerical simulation of steady-state temperature distribution over the surface of
a passive heat sink in vertical configuration corresponding to the geometry of Fig. 1. The
color scale ranges from 50◦C (blue) to 61◦C (red). The arrow indicates the direction of the
gravitational force, which in this case is parallel to the axis of symmetry of the heat sink. The
system modeled is black anodized Al and the size used for the calculations was 10cm height and
9cm diameter. The LED power in this simulation is 50W . Other details of the simulation are
given in the text.

where ϵ is the emissivity of the aluminum wall, σ is the Stefan-Boltzmann constant and T is the
absolute temperature of the heat sink.

We want to solve the previous problem for a heat sink made of black-anodized aluminum
(Al6061) with the geometry shown in Fig. 1. To numerically integrate the previous set
of equations, we have used COMSOL Multiphysics R⃝, which is is a finite element analysis
solver commercial package for various physics and engineering applications, especially coupled
phenomena. In addition to conventional physics-based user interfaces, this software also allows
for entering coupled systems of partial differential equations (PDEs). In particular, we have
used the Heat Transfer Module which provides user interfaces for heat transfer by conduction,
convection and radiation.

We have modeled the LED chip as a 1mm−thick aluminum square plate which provides a
constant heat flux at the base of the heat sink. For the chips under consideration the amount of
waste heat can be estimated as 70% of the LED power[13]. The dependence on the grid density
was investigated by changing the number of points. The final selection is shown in Fig. 1. The
simulation corresponds to a heat sink 10cm height with a diameter of 9cm. The diameter of the
solid internal core is 4cm.

The results of the numerical calculations are shown in Fig. 2 for a vertical configuration (i.e.:
the symmetry axis of sink parallel to the direction of the acceleration of gravity g⃗) and simulating
the effect of a 50W LED chip placed at the bottom of the heat sink. As it can be appreciated
in the picture, the maximum of the temperature distribution is obviously located at the LED
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Figure 3. Front (left) and lateral (right) view of the real system composed of a black anodized
aluminum structure in a compact LED bulb configuration. The height of the sink is 5cm and
its diameter is 9cm the corresponding simulations and experiments for horizontal and vertical
orientations with a 25W LED chip are shown in Fig.5 and Fig. 6, respectively.

chip and the values of T gradually diminish with the distance from the chip, showing a radially
symmetric distribution around the axis of the cylinder. For an ambient temperature of 21◦C, the
maximum of the resulting steady-state distribution calculated is 60.8◦C, well below the critical
damage temperature provided by the LED manufacturer, providing thus a maximal lifetime of
the device. As we will show below, this result is un good agreement with the experimental
measurements performed in a real system. Of course, for higher ambient temperatures our
predictions are still valid and in this case the gap with respect to the damage threshold is
reduced accordingly[11] .

3. Experimental Setup
In order to check the validity of our numerical model, a series of experiments were made.
Aluminum (Al6061) black anodized heat sinks with the same geometry as in Fig 1 and two
different lengths (5.0cm and 10.0cm were attached to a 25W and 50W LED chips respectively. In
Fig. 3 we show a photo of one of the prototypes that we constructed to perform the experimental
measurements.

In all the cases, to minimize the thermal contact resistance between the LED chip and the heat
sink a graphite film of high thermal conductivity (240Wm−1K−1) was used. Finally, the light
bulbs were mounted in several orientations in order to reproduce different operation conditions.
The emissivity of the heat sink with the black-anodized surface treatment is 0.8. The geometric
parameters of the experimental model are the same as in the numerical simulation described
above and below. A temperature sensor with three different probe heads (DAQ-9172, NI9211),
a power supply, a wattmeter, and a laptop were used in order to collect data.

The overall pattern for the air flow could be described as follows: the cooling air enters from
the outer region of the heat sink and is heated while passing through the fins. The heated air
rises upward in the inner regions of the heat sink due to the fact that the density of the air in
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Figure 4. Experimental measurement of the temperature distribution in the vertical
configuration (the axis of symmetry of the sink is parallel to the gravity force) corresponding
to the numerical simulation of Fig.2. Curves a), b) and c) correspond respectively to the LED
chip, the center of the top side of the heat sink and the ambient. Details of the experiment are
given in the text. The arrow points to the instant when the power is switched on.

this zones became less than that of the surrounding air. In addition, a thermal boundary layer
develops discontinuously, after some delay. Thus, a relatively high local heat transfer coefficient
is expected in the inner regions of the heat sink.

The pin-fin heat sink will show uniform cooling performance in the case of natural convection
considered. Repeated leading-edge effects will appear in the outer regions of the heat sink
because the fins are arranged to keep the flow at a certain distance in the radial direction.

4. Results and discussion
In Fig. 4, we plot the experimental measurement of temperature values measured for a 50−W
LED chip in vertical configuration (the axis of symmetry of the sink is parallel to the gravity
force) corresponding to the numerical simulation of Fig.2 with the chip placed at the bottom
of the heat-sink. Curves a), b) and c) correspond respectively to the temperatures measured at
the LED chip, the center of the top side of the heat sink and the ambient.

As it can be appreciated in the curves, once the power is switched on (indicated by an
arrow) the temperature increases until saturation after less than one hour. The maximum
values measured in curves a) and b) are respectively 63◦C and 49◦C which are in very good
agreement with the numerical simulation of Fig. 2.
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To determine the optimum configuration and the precision of the numerical model, we have
simulated and measured different orientations and lengths of the heat sink. The results of
the numerical calculations can be seen in fig. 5 for a 25W HPLED and 5cm height heat
sink. The results show the simulation of the steady-state temperature for vertical (a) and
horizontal (b) configuration, meaning these names that the acceleration of gravity (g⃗) is parallel
or perpendicular to the symmetry axis of the heat sink, respectively.

The comparison of the numerical simulations of Fig. 5 with experimental values is shown
in Fig. 6. In this figure we plot the temperature measured at the chip (a) and at the center
of the opposite side of the heat sink (b). Line c) shows the ambient temperature during the
experiment.

Figure 5. Numerical simulation of steady-state temperature distribution over the passive heat
sink in horizontal (left) and vertical (right) configuration. The arrows indicate the direction of
the gravitational force in each case. The color scale ranges are plotted in the left side of each
simulation. The system modeled is black anodized Al as in Fig. 2. In this case the size used for
the calculations was 5cm height and 9cm of diameter. The LED power is 25W . Other details
of the simulation are given in the text.

As it can be appreciated in the left non-shaded zone of Fig. 6, after less than one hour of
operation of the LED, the system reaches a thermal steady state with a maximum temperaure in
the chip of 63◦C, in excellent agreement with the simulations of Fig. 5-a. Once the temperature
is stabilized, we rotate the system 90◦ which corresponds to a perpendicular orientation of the
axis of symmetry of the heat sink with respect to the force of gravity (see Fig. 5-a). This
situation is indicated by a dark-grey shading in the graph. It is obvious that this configuration
is not the optimal one, yielding an increase of about 8◦C in the chip temperature.

Then, we rotate the sink another 90◦ and thus, the axis of symmetry of the sink is aligned
with the gravity force as in 5-b, however the chip is placed now at the top of the chip instead of
the bottom. As it can be appreciated the temperature slightly decreases showing the important
contribution of air convention along the pin-fins.

Finally, we restore the initial position and the temperature asymptotically recovers the steady-
state value of the first zone of the graph. All the measurements made are in very good agreement
with the numerical simulations shown in Fig. 5 for two different orientations.
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Figure 6. Experimental measurement of the temperature distribution measured at: a) the
LED chip, b) the center of the back side of the heat sink, and c) the ambient. The non-shaded
parts of the graph correspond to measurements made for parallel orientation of the symmetry
axis of the heat sink with respect to the force of gravity and with the LED chip placed placed at
the bottom of the heat sink corresponding to Fig. 5-a. The dark-gray zone displays the values
obtained for perpendicular orientation (Fig. 5-b) and the light-gray region corresponds to the
same orientation Fig. 5-a but with the LED chip place at the top of the sink. The rest of the
parameters of the experiment are given in the text.

5. Conclusions
We have presented a numerical study of the steady-state temperature distribution of a realistic
high-power light emitting diode (HP-LED) bulb. Our results have been compared with
experimental data measured in a prototype fabricated under market considerations. A nice
agreement has been found between the computer simulations and the measurements performed.

Therefore, from our analysis we can derive that aluminum low-cost passive heat sinks can
be used to keep the temperature of 30W − 50W HP-LED chips below 70◦C, thus making it
possible to reach life-times of 55.000h with the corresponding savings in energy consumption
and maintenance.
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Improving Parameter Estimates Obtained from Thermal Response Tests: 
Effect of Ambient Air Temperature Variations  
T.V. Bandos1*, Á. Montero2, P. Fernández de Córdoba1, J.F. Urchueguía1  
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ABSTRACT 

This paper presents a method of subtracting the effect of atmospheric conditions from thermal 
response test (TRT) estimates by using data on the ambient air temperature. The method assesses 
effective ground thermal conductivity within 10% of the mean value from the test, depending on 
the time interval chosen for the analysis, whereas the estimated value can vary by a third if 
energy losses outside the borehole are neglected. Evaluating the same test data using the finite 
line-source (FLS) model gives lower values for the ground thermal conductivity than for the 
infinite line-source (ILS) model, whether or not heat dissipation to ambient air is assumed. 

 

Keywords: Borehole heat exchangers, Heat transfer, Finite line-source method, Ground-source 
heat pumps, Thermal response test 
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Nomenclature 

C(Cf)  volumetric heat capacity of ground (fluid) (Jm−3K−1) 

D length along the piping between the temperature probe location and the 
borehole inlet or outlet (see Fig. 1) (m) 

Ei exponential integral 

  thermal response function 

G fluid volume flow rate (m3s−1) 

H depth of the borehole heat exchanger (BHE) (m) 

r radial coordinate (m) 

p =< Qair > /Qt part of the total heat rate transmitted to the ambient air 

rb radius of the BHE (m) 

Ra thermal resistance between fluid and ambient air (KmW–1) 

Rb borehole thermal resistance (KmW–1) 

     heat flow per unit length (Wm–1) 

Qair heat dissipation rate to the ambient air (W) 

  total produced heat rate (W) 

s coordinate along the pipe in the range from 0 to D (m) 

t0 (t1) start (end) point of the time interval (s) 

tr = rb
2/α short time scale for the BHE (s) 

ts = H2/(9α) Eskilson (1987) steady-state time scale (s) 

tz = H2/α large time scale for the BHE (s) 

T temperature of ground (K or C) 

Ta ambient air temperature (K or C) 

Tf temperature of heat carrier fluid (K or C) 

T0 undisturbed ground temperature (K or C) 

Tin inlet temperature of BHE (K or C) 

Tout outlet temperature of BHE (K or C) 

T*
in measured inlet temperature of BHE (K or C) 

T*
out measured outlet temperature of BHE (K or C) 

2( ) ( )O
z

g t T T
q
 

( )f
z in out

GC
q T T

H
 

* *
( )t f in outQ GC T T 
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z vertical axial coordinate (m) 

Greek letters 

α = λ/C ground thermal diffusivity (m2/s) 

γ Euler’s constant 

λ ground thermal conductivity (W(Km)–1) 

η[= D/(RaCfG)] dimensionless parameter  

Superscripts 

 arithmetic mean 

< ... >   integral mean 

<...>t time average 

...↑ (... ↓) up (down) directions for heat carrier fluid circulation  

Subscripts 

a ambient air 

 

1.  Introduction 

Nowadays, ground-source heat pumps (GHPs) are a solid alternative as choice of system for 
heating and cooling in buildings (Omer, 2008; Sanner et al., 2005; Urchueguía et al., 2008). By 
comparison with standard technologies, they offer competitive levels of comfort, reduced noise 
levels, savings of greenhouse gas emissions, and reasonable environmental safety. Furthermore, 
their electrical consumption and maintenance requirements are lower than those required by 
conventional systems and, consequently, the annual cost is lower (Lund, 2000). Ground-source 
systems are recognized by the Environmental Protection Agency as being among the most 
efficient and comfortable heating and cooling systems available today. 

A thermal response test (TRT) is a method of determining the effective on-site ground thermal 
conductivity in order to design ground coupled heat pump systems. These in-situ tests are based 
on the ILS theory of heat transfer by thermal conduction (Ingersoll et al., 1954; Reuβ et al., 
2009).   Due to its two-dimensional  nature, the  ILS theory  cannot describe axial temperature 
variations around geothermal borehole heat exchanger.    

Fig. 1 represents a typical TRT test to measure the temperature response of the  borehole heat 
exchanger (BHE) to a constant heat injection or extraction. A U-tube loop, through which a heat 
carrier fluid circulates, is inserted inside the borehole to approximately the same depth as the 
BHE planned for the site. To provide a constant heat flux to the ground, the fluid flow rate in the 
borehole loop and the temperature difference between inlet and outlet are kept constant during 
the testing. The outputs of the TRT are the inlet (Tin) and outlet (Tout) temperatures of the heat 
carrier fluid as a function of time (see Fig.1). The difference between the temperatures Tin and 
Tout, measured at the end points of the U-tube, is used to determine the rate at which heat is 
transferred by thermal conduction into the ground. 
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The BHE, which consists of two tubes separated by filling material, can be modeled as a heat 
source in the form of a line or cylinder. The effective thermal resistance of the borehole 
(Mogensen, 1983) defines the temperature drop between the BHE surface and an average 
temperature of the fluid. The temperature of heat carrier fluid circulating through the loop varies 
with depth, as do the ground thermal properties. A weighted average of Tin and Tout measured at 
the end points of the U-tube is assumed to be the mean temperature of the heat carrier fluid over 
the loop length (Marcotte and Pasquier, 2008). Typically, their arithmetic average is compared 
with a reference temperature of the borehole surface from the ILS model, around which the TRT 
is designed. From these experimental data and with an appropriate model for average 
temperature around the BHE, the effective thermal conductivity of the surroundings is inferred. 

Different analytical and numerical methods have been developed for determining ground thermal 
properties from the TRT output data. The cylinder heat source (Ingersoll et al., 1954) and line 
heat source (Carslaw and Jaeger, 1959) model for BHE with parameter-estimating techniques are 
commonly applied in Europe (Claesson and Eskilson, 1988; Gehlin and Hellström, 2003; Sanner 
et al., 2005; Witte et al., 2002) and North America (Austin, 1998; Beier and Smith, 2002; Beier, 
2008; Shonder and Beck, 2000). Kelvin’s ILS model is among the most widely used models for 
evaluation of response test data at sufficiently large times because of the fact that the TRT was 
actually devised on the basis of ILS theory (Ingersoll et al., 1954; Mogensen, 1983). 

The FLS model overcomes some limitations of the ILS model: its solution has been expressed as 
an integral (Eskilson, 1987), given zero temperature at the boundary of the semi-infinite 
medium. The temperature response functions, so-called “g-functions” introduced by Eskilson 
(1987), are based on the solution of this model for the BHE temperature field at a constant heat 
load. The g-functions are computed for moderate times (Javed et al., 2009) and provide an 
asymptotic approach to the steady-state limit, which is not reached within the ILS model. The 
FLS solution for the ground temperature in the vicinity of the midpoint of the BHE depth was 
shown to be approximately the same as the classical result of the traditional ILS during the TRT 
(Bandos et. al, 2009). 

However, the best solution for applications is given by the mean integral temperature (Lamarche 
and Beauchamp, 2007; Zeng et. al, 2002). This is because the average or effective thermal 
properties of the ground are used in the design. An exact solution for the temperature averaged 
over the borehole depth has been approximated, providing analytical formulae for a wide time 
range (Bandos, et al., 2009) that account for the edge effects due to the vertical heat transfer 
along the borehole. These simple asymptotic expressions for the mean borehole temperature 
allow flexibility in parametric analysis of the test data. It is important to take account of the finite 
depth of the BHE because there is an incentive to install the minimum possible length and so 
decrease the cost of the ground source systems. 

Evaluating TRT data based on the ILS model assumes that there is no heat transfer between the 
heat carrier fluid and the ambient air, and that there are no significant effects of boundary 
conditions for the vertical temperature profile in the ground surrounding the BHE. In practice, 
the inlet and outlet temperatures T∗in and T∗out are measured at some distance D from the ground 
surface; Fig.1 shows location of the temperature probes. The data analysis is based on solution of 
a purely conductive problem in the ground, which depends on Tin and Tout temperatures inferred 
from T∗in and T∗out (see Fig.1). The above-surface part of the TRT system is thermally insulated. 
However, it is difficult to insulate the external pipes completely; the exchange of heat between 
the ambient air and fluid is often inevitable. Depending on air temperature, the heat carrier fluid 
can gain or lose some heat to the ambient. Furthermore, even a small flow of heat through the 
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insulation may influence the ground conductivity estimate, causing instability (i.e., the 
dependence of the estimate on the time interval used for evaluation). That complicates the 
analysis of the TRT. 

Experiments have demonstrated that the evaluation of thermal conductivity is affected by 
ambient air temperature changes. The influence of diurnal temperature changes on the measured 
fluid temperature has been reported several times (Austin, 1998; Esen and Inalli, 2009; Florides 
and Kalogirou, 2008; Fujii et al., 2009; Signorelli et al., 2007). In particular, the cooling effect of 
the ambient conditions has been observed (Gehlin and Nordell, 2003). The observation of 
atmospheric effects in numerous experiments prompts a quest for a method that would allow the 
influence of air temperature variation to be subtracted from the dependence of the ground 
conductivity estimate on the time interval chosen for analysis. Being complementary to the 
efforts to increase the accuracy of the test (Sanner et al., 2005; Witte et al., 2002) such a 
technique would allow the already existing data, whose acquisition is fairly costly, to be used 
more efficiently. 

This paper addresses the heat transfer in the above-ground and subsurface parts of the TRT 
system shown in Fig. 1. It presents (i) a new method for subtracting the atmospheric effect on the 
test parameters by using data of ambient air temperature in the estimation; (ii) analysis of test 
data on the basis of the formula for average borehole temperature, accounting for the edge 
effects from the FLS model; and (iii) comparison of these thermal conductivity estimates to 
those from the ILS model, accounting for heat losses to the ambient. 

The rest of the paper is organized as follows: Section 2 reviews the results from the classical 
infinite and finite line-source models. Section 3 introduces the heat balances for the heat carrier 
fluid and proposes a method to account for climatic influence and efficiently subtract it from the 
data. Section 4 compares the proposed model with experimental dependence of the temperature 
of the circulating fluid on time and summarizes results for the test estimates with and without 
heat losses to the atmosphere. Finally, Section 5 concludes and discusses directions for further 
investigation. 

2.  Line-source theory 

Within the ILS framework commonly applied for the evaluation of thermal response test data, 
the ground is assumed to be a homogeneous infinite medium characterized by its thermal 
conductivity λ. In the vicinity of the borehole, for sufficiently large time values, the ILS model 
gives (Ingersoll et al., 1954):
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where Ei(u) denotes the exponential integral (Carslaw and Jaeger, 1959) qz as the heat flux 
density per length unit, γ as Euler’s constant, α as ground thermal diffusivity, and T0 as the 
undisturbed ground temperature. It is usually assumed that the heat is released at a constant rate 
from the BHE, in the “radial” direction orthogonal to it, and is transferred by the mechanism of 
thermal conduction. The ILS solution is applicable to the temperature around a midpoint of 
BHE, modeled as an FLS of the same constant heat flow, and only for moderate times (t < tz) 
(because a physically reasonable steady-state solution is beyond its scope). It has been shown 
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analytically that the classical result of the traditional ILS is reproduced by the FLS solution for 
the ground temperature about the midpoint depth (up to the exponentially small correction terms 

) at times that are comparable with the duration of the TRTs (Bandos et. al, 2009). That is 
precisely the reason why the simplifying assumption about an infinitely long heat source in an 
infinite medium provides a good approximation and is commonly used for the TRT analysis 
(Mogensen, 1983) and for the design standards of the International Ground Source Heat Pump 
Association (Bose et al., 1985). This is also why the ILS is used as a benchmark model for 
comparison with new proposals. 

Approximate expressions for average borehole temperature (instead of temperatures at the 
midpoint of the borehole) were derived to apply over a wide range of time values (Bandos et. al, 
2009). In the frame of the FLS in the semi-infinite region, the approximation of the average 
ground temperature for the times corresponding to the TRT (i.e., for tz >> t >> r2/4α) is given 
by: 

    

                                             (2) 

 

 

 

 

This expression for the average temperature of the BHE differs from the classical one (Eq. 1) by 
the finite-size corrections, which vanish in the limiting case of H → ∞. Notice that for both 
models ILS (1) and FLS (2), the heat flux density qz is implied to be the same and constant along 
the borehole, assuming a purely conductive heat transport. The effects of the finite source size 
are described by the last three terms in the right-hand side of Eq. 2. Their contribution to the 
transient temperature at various radial distances from the borehole center is significant for 
shallow boreholes as calculated numerically (Philippe et al., 2009). Indeed, Eq. 2 shows that, for 
H = 25m and for t/tz ≈ 0.16 and t/tz ≈ 0.0016, corresponding approximately to 4 months and 1 
day respectively, the relative difference between the results from the ILS and FLS model reaches 
30% and 6.5% at r = 1m. 

Early time, t < 5tr , values are in the order of one day (Eskilson, 1987), whereas typical thermal 
test durations range from 40 to over 200 hours (Signorelli et al., 2007). The latter fall within tr < 
t < tz, termed medium times to distinguish them from very long time values t > tz corresponding 
to the approach to the steady-state (Claesson and Eskilson, 1988). In this case, the integral 
average temperature change at the radial distance r from the borehole center is given by (Bandos 
et al., 2009): 
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Eq. 3 describes the time-asymptotic approach to the steady-state temperature of the designed 
geothermal system, whereas Eq. 2 is applicable to the data of the test within the medium time 
interval. The following section shows how to account for the atmospheric effect that influences 
the time dependence of the temperature of heat carrier fluid. 

3.  Analysis of TRT data 

3.1 The response test 

The test described here was carried out in Castellon (Spain) in January 2007, to obtain design 
values for the planned geothermal pump. In the data acquisition system, the apparatus used to 
monitor the thermal response was connected to the BHE by thermally insulated 4-m-long tubes. 
The field test was performed on a borehole with radius rb of 0.15m, and H = 25m (See Fig. 1). 
Bentonite grout filled the space between the U -loop tube and the inner BHE wall, and water was 
used as the heat carrier fluid. By measuring the plug flow temperature before the test, the 
undisturbed temperature was determined to be 18.4± 0.2C. 

The test apparatus worked in heat injection mode: the water entering the BHE was warmer than 
that exiting. The test parameters were monitored every three minutes by a data logger. Fig 2 
presents plots of the 1,418 data readings of ambient air temperature and average water 
temperature, defined by the arithmetic mean of the inlet and outlet temperatures, as a function of 
time during the 71-hour experiment. 

To provide a constant heat rate (about 1.04 kW, as shown by the gray line of Fig. 3), the 
difference between the temperatures of the circulating fluid at the input and output of the ground 
loop was held constant (at about 3C), as was the volume flow rate of water, G≈ 0.3 m3/h. High-
frequency oscillations of the total heat rate were due to the control system for the temperature of 
water entering borehole. The flow rate was measured by a Coriolis meter with an accuracy 
limited to 1%, while the temperature sensors were four-wire PT100 with an accuracy of ±0.1C. 

Although pipes connecting the test device with the borehole were well thermally insulated, an 
undesirable correlation between the air temperature and the mean temperature of the fluid was 
also observed in our test, as in other cases. Just visible in Fig. 2 are small jumps in average water 
temperature at 15, 30, and 54 hours that are related to significant variations of the temperature of 
the ambient air around its average value of 14C. This implies some heat transfer through the 
above-ground pipes between the borehole and data acquisition instrument (Sanner et al., 2005). 

The relationship between the time dependence of the carrier fluid temperature and the ambient 
air temperature has been observed during TRTs carried out by different groups (Esen and Inalli, 
2009; Florides and Kalogirou, 2008; Fujii et al., 2009; Gehlin and Nordell, 2003; Sanner et al., 
2005;  Shonder and Beck, 2000; Signorelli et al., 2007; Spitler, 2000). This may indicate that it is 
often difficult to completely remove the atmospheric effect by means of insulation. The fact that, 
in practice, the ambient air and the fluid temperatures are correlated strongly affects the stability 
of the ground conductivity estimate, making it dependent on the chosen time interval (Austin, 
1998; Gehlin and Hellström, 2003; Shonder and Beck, 2000; Signorelli et al., 2007; Witte et al., 
2002). On the other hand, the observation of such correlations in numerous experiments suggests 
that it is necessary to consider heat transfer processes in the geothermal system as a whole in 
order to handle test data that is influenced by the ambient air temperature variation. 
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3.2  Climatic effect on the heat transferred to the ground: interpretation model  

Heat exchange between the ambient air and the fluid in the above-ground pipe work changes the 
heat transferred to the borehole. Then, the total heat rate Qt can be written as a sum of the heat 
dissipation rate to the ambient air (Qair) and the actual heat rate transferred to the ground (qzH): 

Qt = Qair + qzH                            (4) 

Besides diurnal variations of the air temperature, the interior temperatures of the test rig affect 
the efficiency of the system operation (Sanner et al., 2005). In many practical circumstances, the 
inlet and the outlet temperatures are measured using temperature probes on the above-ground 
connection pipes, as implied in Fig. 1. The thermal influence on the borehole temperature of the 
heat carrier fluid in the above-ground piping has been recorded (Gehlin and Nordell, 2003). 

The fluid temperature changes with the s coordinate along the pipes outside the borehole due to 
the undesirable heat exchange with the ambient air. In the quasi steady-state case, the heat 
transport by the fluid in the tube, accompanied by the transverse heat flux to the air, is governed 
by the convection equations (Claesson and Eskilson, 1988; Hellström, 1991): 

                                     (5) 

                       (6) 

                                                                                                                        

 

The measured temperatures T∗out and T∗in related to the borehole input and output are required to 
estimate the total amount of the heat rate: 

Qt = CfG(T∗in − T∗out)           (7) 

Heat dissipation to the ambient air causes temperature variation along the connection pipe. As a 
result, the actual heat rate transferred to the ground is not Qt, but qzH (see Eq. 4). In fact, the heat 
convection by fluid balances the radial heat flux to the ground and determines the heat rate qzH 
through the temperatures near the surface level as: 

qzH = CfG(Tin − Tout)                 (8) 

The BHE input and output temperatures, Tin = T↓f (s = D) and Tout = T↑f (s = D), need to be 
found. Here, D is the length of piping along the zone of thermal contact of fluid with the ambient 
air (i.e., between the point of measurement and the point of input (output) to the BHE, as Fig. 1 
shows). The effective length D may also include the uppermost part of the borehole. 

The solution of the system of Eq. 5 and 6 with the boundary conditions at the points of 
measurement can be written as:  

                                                  

                                                                                                                                                                        (9)    
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                                                                                                                          (10) 

The above solutions depend on thermal characteristics of the flow system through the model 
parameter η. Its physical meaning can be inferred from physical parameters entering Eq. 10: 
flow rate, heat capacity of fluid, piping dimensions; its value can be calculated based on an 
assumed thermal resistance Ra. Notice that this model parameter η takes non-zero values in 
actual conditions of penetrating ambient influence, while its zero value is reached for the limiting 
case of perfect thermal insulation of the connecting pipes Ra. = ∞ or G → ∞. Therefore, η = 0 
corresponds to the ideal test conditions without heat dissipation to the ambient and is used for 
comparison with the proposed model hereafter. A non-zero value of the dimensionless parameter 
η from Eq. 10 accounts for the climatic influence. It can be calculated using physically 
observable properties, as in Eq. 10, or estimated from the test data as described below. 

The outputs of the exterior problem, Eq. 9, influence both the heat rate to the ground and mean 
fluid temperature. Indeed, substituting Eq. 9 into Eq. 8, one finds: 

                                                        (11) 

and then 

                      (12) 

The inputs for the conduction problem, related to Tin and Tout at the top of the borehole are now 
expressed using measured fluid temperatures T∗in and T∗out.  

Notice that if the connecting pipes were ideally insulated (i.e., η = 0, neither Tout, Tin, or qz would 
depend on the ambient air temperature. In the test, the temperature probes are to be immersed 
directly into the flow (Witte et al., 2002), where, presumably, the outside heat influence should 
not penetrate. However, under real conditions, there exist heat losses to the ambient outside the 
borehole, and so the parameter η takes small but non-zero values. 

The question then arises of how to select parameter η in order to filter out the effect of air 
temperature variation. The energy rate balance, Eq. 7 and 11 set the correspondence between η 
and the fraction p of the total heat rate transmitted to the ambient air 

< Qair >t= p < Qt >t (13) 

as: 

    (14) 

 

Note that the thermal resistance Ra = D/ (η Cf G) between the fluid and the air is independent of 
the flow direction due to the fact that above equation is invariant under η → −η if this is supplied 
by T∗in(t) ↔ T∗out(t). If the heat loss to the ambient air is a small part of the total produced heat 
rate (p << 1), the leading terms in the series expansion in η in Eq. 14 give: 

                                    (15)     
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Then, the values of η turn out to be small as long as p << 1; these parameters are proportional, 
and the case of η = 0 corresponds to p = 0. (Eq. 15 does not mean that the flow parameter should 
be considered as a function of the measured temperatures.) One can use Eq. 15 to select η. 

The idea behind the proposed method of handling TRT data is to use the freedom in choosing η 
to suppress the influence of the air temperature oscillations. The algorithm to determine the 
model parameter η can be summarized as follows: 

1. Choose an initial guess for p (for instance, use an acceptable energy loss to the ambient, 
and calculate η from Eq. 15 

2. Apply the three-parameter scheme, described in section 4.1 below, varying estimates of 
λ, Rb, and T0 

3. Compare the value T0 thus obtained with the experimental value  

4. If  is less than some tolerance threshold, then stop iteration: the value of η is 

sufficiently accurate; otherwise, choose another value for p 

As a sample application of the above proposed algorithm for determining η using  , consider 

the  TRT data.  For the initial guess of p, the optimal choice happens to be p = 0.055, or 5.5% of 
heat dissipated to the ambient during the heat injection. With this value for p, Eq. 15 gives η = 
0.006. Then, as a result of steps 2 and 3, the estimate of T0 (what is the value) appears to be close 

enough to the value  determined from the experiment before the test.  

Fig. 3 plots the variable heat rates qzH and Qair calculated using Eq.11 and 17 with p = 0.055, η 
= 0.006; it is seen that the heat rate Qt remains roughly the same by keeping the temperature 
difference T∗in − T∗out constant during the TRT. There are minor variations of the resulting heat 
input during this TRT (in accordance to hardly discernable fluctuations of fluid temperature 
caused by the daily air temperature fluctuations; see Fig. 2.) 

In the next stage, the total heat flow from the fluid to ground through the borehole wall is 
considered. When fitting the temperature at the lateral surface of the borehole Tb = T(r = rb, t) to 

the experimental data  for the mean heat carrier temperature, the thermal resistance Rb 

between the borehole wall and the fluid must be taken into account (Mogensen, 1983): 

 

  (16) 

 

Notice that the temperature drop, Tf(η, t) −Tb(t), is influenced by the ambient air temperature Ta 
(t) through the heat rate Qair (t) that is given by: 

      (17) 

  

or, for small values of η  (<< 1): 

                                                                               (18) 
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Besides determination of the ground thermal conductivity, an evaluation of the borehole thermal 
resistance, Rb, is another objective of the test. This test estimate is very sensitive to the value of 
undisturbed temperature T0 (Marcotte and Pasquier, 2008). 

The proposed formulae for subtraction of climatic influence from the TRT data, using a 
multivariate parameter estimation analysis, is described in the next section and the results are 
compared with the test estimates from new models. 

4.  Results and discussion 

4.1  Parameter estimation algorithm 

The data obtained from the TRT are evaluated and compared by making use of the ILS and FLS 
models, along with the above described method of accounting for the heat rate transmitted to 
ambient air, characterized by η. To find suitable model parameters, Eq. 1 and 2 (in the time 
interval of their validity) have been matched, using a regression technique, to the experimental 
data for the mean temperature of the water as a function of time. 

Parameter estimation minimizes some measure of discrepancy between the measured fluid 

temperature  and its prediction from Eq. 16, which can be rewritten as: 

      (19)  

 

Here, < ... >t denotes time averaging, and the g-function is defined by the models in Eq. 1 and 2. 

To find optimal test estimates, the measure of loss, which is proportional to the error , 

is minimized by adjusting test parameters. The model parameter η was fixed by applying two or 
three parameter schemes based on the multivariate regression method. In the three-parameter 
estimation procedure, T0 was allowed to vary, along with the variables of the two-parameter 
scheme: ground thermal conductivity and borehole thermal resistance. 

Note that the approximation for the average temperature in Eq. 2 differs from the linear 
logarithmic time dependence for the ILS (Eq. 1) by the extra terms that are proportional to 1/H. 
Both approximate functions remain linear in the test parameters 1/λ, Rb, and T0. However, the 
general regression technique is valid regardless of the functional form of the time dependence of 
the model (Hastie et al., 2001). The optimization procedure was performed using the best 
estimates of the three or two variables (i.e.,  variable or fixed T0) for both the model proposed 
here, Qair(η ≠ 0) ≠ 0, and the traditional version, Qair(η = 0) = 0 (i.e., with and without energy 
loss in the connections). 

4.2  Test parameter estimates with four models 

Fig. 4 compares the results of FLS and ILS models with the results of the benchmark ILS model, 
qz(η = 0), using α = 1.21 x 10−6m2/s throughout the numerical calculations. Four different models 
were developed from the data measured (in situ) by applying two- and three-parameter 
estimation methods. These are FLS and ILS for η = 0 and FLS and ILS for η ≠ 0 models: i.e., 
two models incorporating measured temperatures of the ambient air, qz(η≠ 0), and two models 
without it, qz(η = 0). 

exp
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The classical ILS and FLS approaches are applied to the data set obtained from the test after the 
first few hours. Transient early-time data (t << r b

2/α) are influenced by the borehole itself (i.e., 
by its radius, length, etc.), thermal properties of the grout, tubes, and convective resistance 
between inside their walls and the fluid. Therefore, these early-time data are ignored in the 
analysis of the thermal properties of ground. 

Fig. 4 shows the thermal conductivity as a function of length of the time interval [t0, t1] chosen 

for the estimation, where t0 is the time the measurement starts and t1 is the overall time of the 

measurement. Then, the length of the estimation interval (t1–t0) corresponds to time on the x-axis 

of Fig. 4 and 6. 

Fig. 4 plots the thermal conductivity estimates obtained by using the data in the intervals: from 
the [46–71] hours to the [1–71] hours (thus, t0 varies from 1 hour to 46 hours). The length of 
estimation interval is changed by 1 hour in a step-wise manner from 25 to 70 hours; the former 
interval corresponds to the late times of the test. These sequential plots can indicate whether the 
estimate converges to a particular value over the time intervals chosen for the analysis and 
provides a check for groundwater flow (Sanner et al., 2005). 

Firstly, Fig. 4 compares the thermal conductivities on different length-of-time intervals estimated 
from both the ILS and FLS models for η = 0 (i.e., assuming zero energy losses to the ambient 
air) for the same test. When assuming no heat losses in the above-ground piping and the 
uppermost part of the vertical BHE, the instability of the effective thermal conductivity may 
mask a convergent value of the TRT estimate. Indeed, Fig. 4 reveals the cyclic nature of the 
temperature response for η = 0 because of the influence of the outside perturbation; very small 
and hardly noticeable changes in the mean fluid temperature curve in Fig. 2 are significantly 
amplified for λ, which is inversely proportional to its time derivative. 

As Fig.4 demonstrates, conventional data analysis (i.e., assuming no heat exchange between the 
ambient air and the fluid) gives significant differences between thermal conductivity estimates 
within the selected time intervals (when varying  t0  from 1 hour to 46 hours, while t1 is fixed). In 
contrast to this TRT estimate, which is hardly interpretable, one can find convergence if the heat 
exchange through the connection pipes is taken into account by setting a non-zero value for the 
parameter η (see Eq. 10). And if the model accurately represents the heat transfer processes in 
the whole system, the thermal conductivity curves are expected to flatten out below and above 
the ground surface for large estimation intervals . 

Secondly, Fig. 4 compares the λ values estimated from both the ILS and FLS models, for η = 
0.006, on different time intervals from the same test data. In this case, the injected heat rate 
varies with time, but without clear decreasing or increasing trends that can distort the estimate of 
ground conductivity (Beier and Smith, 2003). A superposition technique or a method proposed 
by Beier and Smith (2003) can provide a solution for the case of non-constant heat flow. 
However, if qz weakly changes with time, Δqz/qz << 1, acceptable results can also be obtained 
through averaging the heat load over the TRT time. This is just the case, because the maximum 
variation of qz (caused by the ambient temperature variations) is less than 5.5% of average heat flow. 
Therefore, to fit the model to the water temperature data, when the variations of qz(η;t) are 
caused by Ta (t) fluctuations, the average component of the heat rate density, < qz(η;t) >t, is used. 
As can be seen from Eq. 19, the mean heat rate is the key factor in the g-function, whereas the 
time variation of qz(η;t) accounts for the atmospheric effect which it turns out to be proportional 
to the time dependence of the air temperature attenuated by the small multiplier η in Eq. 18 and 
is therefore small. In this case, η ≠ 0, Fig. 4 also demonstrates that the ground conductivity curve 
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approaches a horizontal line with increasing length of time series. In addition, these sequential 
plots in Fig. 4 allow assessment of the time interval that is necessary to obtain an accurate 
parameter estimate. Fig. 4 shows that fluctuations in ground thermal conductivity estimates from 
the both ILS and FLS models with η = 0 almost disappear when using three-parameter regression 
for the value of η ≠ 0 determined previously. Indeed, as Fig. 4 demonstrates, the effective ground 
thermal conductivity estimate from the ILS (FLS) is constant to within 10%. 

Fig. 5 shows that the FLS temperature curve (η ≠ 0) (solid line) calculated in such a way (with 
the converged values of the test estimates found by using the three-parameter scheme) lies 
perfectly on a line of the measured temperature of fluid   (ignoring high frequency fluctuations). 
This excellent agreement between the two curves is reached by taking into account the rate of 
heat losses Qair(t). The temperature curve (solid line) with the underlying atmospheric trend 
corresponds to λ = 2.57 W/(mC) and Rb = 0.174 mC/W, T0 ≈ 18.32C, estimated from the 
three-parameter scheme for the proposed model with η = 0.006 in the time interval range from 6 
to 71 hours. The straight dashed line in Fig. 5 corresponds to a thermal conductivity of 2.66 
W/(mC) and borehole resistance of 0.163 mC/W found from two parameters fitting at the same 
effective undisturbed ground temperature of T0 ≈ 18.32°C without heat dissipation to the 
ambient (i.e., at η = 0). Fig. 5 demonstrates the ability of the proposed model to predict the 
temperature of the heat carrier fluid as function of time. 

After ground thermal conductivity, thermal resistance of the borehole is the most important test 
estimate for the design of a vertical BHE. The borehole resistance values are also estimated from 
the field data and are plotted versus the time evaluation interval in Fig. 6. In fact, Fig. 6 shows 
that the borehole, filled with thermally enhanced grout, yielded values within the range from 
0.151 to 0.185 mC/W. The estimate of the undisturbed ground temperature (from the three-
parameter estimation scheme) varies from 19.4 to 17.9C for the same time intervals. This range 
includes the T0 value used for determination of the model parameter p in Eq. 13 and 14. 
Therefore, the developed method successfully filters out the main part of the cyclic distortions of 
test estimates caused by the diurnal temperature cycle and smoothens their dependencies on the 
length of time interval chosen for the assessment. 

When neglecting energy losses to the ambient air (p = 0), the values of λ calculated from both 
ILS and FLS models are higher than ones evaluated with the proposed method of suppressing the 
climatic influence from the TRT data; this is because of the cooling effect. For η ≠ 0 (p ≠ 0), as 
well as for η = 0 (p = 0), the comparison between the numerical results of FLS and ILS models 
applied to the same experimental data shows that, as predicted by Bandos et al. (2009), the 
effective thermal conductivity value of the ground is overestimated by the ILS model (Fig. 4). 

5.  Conclusions 

The ground thermal conductivity has been estimated from the TRT data by modeling a BHE as a 
finite and infinite line-source of constant heat flow. A method of subtracting the influence of 
outside perturbations has been developed and applied in the estimation process. The removal of 
the climatic effect successfully damps the oscillations of the ground conductivity estimates from 
the test data with increasing length of the time series. Application to the borehole test 
demonstrates that the atmospheric effect can distort the estimate of ground conductivity by a 
factor of one-third, while the proposed method estimates ground conductivity to within a 10% 
interval of the mean value. It has been shown that this proposed method of using the ambient 
temperature data in the analysis allows suppression of the influence of diurnal atmospheric 
conditions on the estimates of thermal conductivity and borehole resistance. 
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Parameter estimation from the test data yields a lower value for ground thermal conductivity 
when some energy dissipates from the above-ground pipes in the heat injection mode. This holds 
true for calculations in the framework of of both infinite and finite line-source models.. The 
results confirm that the finite depth corrections for the mean borehole temperature result in 
decreasing the ground thermal conductivity estimate from test data and improve accuracy of the 
evaluation. The proposed method is model-independent and is valid for data analysis with the 
line-source or cylindrical model for BHE. 
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Figure captions 

Figure 1. Schematic of field test to measure ground properties. 

Figure 2. Daily variations of the air temperature (black line) and the average fluid temperature 
(gray line) versus the time of the thermal response test at constant heat injection rate. 

Figure 3. Time variation of the measured total heat rate, Qt (gray line) and variable heat rate, 
qzH, transferred to ground (black line). Qair calculated with the fitting parameter η= 
0.006 corresponding to 5.5% heat losses (p = 0.055) to ambient air (dashed black line). 

Figure 4. Comparison between dependence of thermal conductivity on the time interval length 
from the ILS (gray line) and FLS (black line) models for the same test data. Estimates 
of thermal conductivity are from the ILS and FLS models when the end of the 
evaluation interval is fixed while its starting point increases: (i) without outside heat 
losses to the ambient air (p = 0, η = 0)   and (ii) with 5.5% heat losses (p = 0.055, η = 
0.006) to the ambient air. 

Figure 5. Measured (gray line) and calculated mean fluid temperature versus the natural log of 
time (hrs) from two FLS models with (solid black line) and without (p = 0, dashed 
black line) external heat dissipation for the converged test parameters values. 

Figure 6. Comparison between dependence of borehole thermal resistance on the time interval 
length from the ILS (black line) and FLS (gray line) models  for the same test data 
assuming 5.5% heat losses (p = 0.055, η = 0.006) to the ambient. Estimates of BHE 
thermal resistance are from  the ILS and FLS models when the end of the evaluation 
interval is fixed while its  starting point increases        
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ABSTRACT  

This paper addresses anisotropic dependence of effective thermal conductivity measured by a field 

thermal response test (TRT). That is a key parameter in the design of Ground-Coupled Heat Pumps 

(GCHP)    to heat and cool buildings. 

First, the paper provides a brief overview of the current technique of estimating thermal conductivity 

from a data obtained in TRT based on predictions for temperature from line source of heat in an isotropic 

ground.  Then, the solutions for   isotropic medium are used to develop this temperature transient method 

for stratified medium, where the angle between the ground surface and the sedimentary strata is arbitrary.  

In addition, the paper provides a new analytical exact solution for temperatures around finite line source 

(FLS) of heat in an anisotropic semi-infinite medium.  Approximate expressions for the temperature 

evolution during the test duration and for the steady state temperature are presented.    

   The limitations of the FLS method in stratified medium and recommendations for layout of multiple    

vertical or horizontal ground coupled heat exchangers or waste canisters in repository rock are discussed. 

  

 

 

 

 



 INTRODUCTION   

 Thermal conductivity of the ground is a key property when sizing of the ground coupled heat 

pump (GCHP) air-conditioning systems. For large commercial installations it is measured on a field 

borehole in a thermal response test (TRT) the scheme of which is shown in Figure 1.  Figure 1 represents a 

typical TRT test to measure the temperature response of the borehole heat exchanger (BHE) to a constant 

heat injection or extraction. A U-tube loop, through which a heat carrier fluid circulates, is inserted inside 

the borehole to approximately the same depth as the BHE planned for the site.   The outputs of the TRT are 

the inlet (Tin) and outlet (Tout) temperatures of the heat carrier fluid as a function of time (see Figure 1). The 

average change of fluid temperature is directly related to the rock/soil thermal conductivity around the well.   

To determine the rate at which heat is transferred into the ground its model is necessary that may account 

for underground water flows, temperature dependency of thermal conduction, variable thickness of the 

strata , id    see Figure 1.   The temperatures Tin and Tout, measured at the end points of the U-tube, are used 

to determine a mean value of thermal conductivity, averaged over the length of shallow BHE. The effective 

thermal conductivity   represents a number of the model parameters, when fitting the TRT data.   

  From the experimental data, and with an appropriate model describing the heat transfer between the 

fluid and the ground, the effective thermal conductivity of the surroundings is inferred. Thermal conduction 

of ground from a TRT data can be estimated with different models. The measured thermal conductivity of 

the ground depends on parameters of the model for the ground chosen for analysis through the effective 

thermal conductivity.       

The Kelvin's solution for temperature of the ground surrounding the borehole heat exchanger (BHE)             

modeled as an infinite line source (ILS), is the basis for the TRT in estimating the thermal properties of the 

ground. This approach is used further in the GCHP design standards of the International Ground Source 

Heat Pump Association (Bose et al.  1985). The cylinder heat source and line heat source (Carslaw and 

Jaeger 1959) model for BHE with parameter-estimating techniques are commonly applied for the design 

and analysis of vertical ground coupled systems (Bernier   2001).     

The Kelvin's concept assumes a homogeneous isotropic media surrounds the heat line source of a 

constant heat rate. However, vertical BHE systems are often installed in ground of multiple dipping layers 



(of rock or soil) with different thermal conductivities. For stratified media effective thermal conductivity in 

the ILS theory represents average thermal conductivity.      

  An algorithm proposed in (Sutton et al. 2001) for the performance of vertical BHE is based on 

analytical solution of an infinite cylindrical heat source model for horizontally stratified geologic 

formations.  These models for the BHE describe radial heat flow that implies only transverse conductivity 

to its axis.   

  

Figure 1.  In-situ  TRT schematic and formation layers. 

In general, the ground is an anisotropic medium whose thermal conductivity depends on the direction. 

Typically, the sedimentary soil or rock formations have the conductivity in one direction greater than in 

another: the heat flow passes more easily along the planes of deposition than across them and, thus, 

direction of heat flow does not coincide with the direction of the imposed temperature gradient.  The heat 

flow and temperature gradient are vector quantities related by the thermal conductivity tensor  in 

anisotropic media instead of scalar thermal conductivity in isotropic one.  

      It is necessary to determine thermal conductivity tensor of the ground with application to the estimation 

of temperature field. On a large scale it depends upon the average thermal conductivities parallel and 

perpendicular to bedding and its spatial orientation to the surface.  

A geophysical logging of wells is one of the methods presently used for identification of type of the 

ground,   and establishment of thermal conductivity distribution in depth   (Pribnow and Sass, 1995; Davis 



et al., 2007). In-plane thermal conductivity ||  and thermal conductivity    
normal to the bedding can be 

determined  
 
from parallel and series models, applicable for bedded sediments.   

Data on   thermal conductivities and anisotropy values, assembled from different areas around the 

world are available from literature (Deming, 1994).  These data are classified by rock name and origin. 

Thermal properties of samples extracted from identified layers are available from review articles (Pribnow 

and Sass, 1995).      

There are areas where only data on borehole cuttings are available.    The typical approach to the 

estimation of thermal conductivities is to carry out measurements in the laboratory on samples. The thermal 

conductivity tensor and   the anisotropy (defined as 
||2a




   ) can be obtained on oriented core, when 

measuring   by line source probe on the same sample face at multiply   angles to bedding (Pribnow and 

Sass, 1995; Popov et al., 1999).    

Laboratory results are normally combined with in situ thermal conductivity measurements.    

Assessments of the thermal conductivities by laboratory methods are difficult to extrapolate to in-situ 

conditions for deep boreholes   (Pribnow and Sass, 1995). 

The line source method, used for thermal conductivity determination in both field and laboratory, 

provides ground thermal conductivity in the direction perpendicular to the line.      

In addition,   the mean dip angle   between bedding and surface is required for practical applications to 

define the average thermal conductivity tensor.    Small variations of dip in wells can be viewed in borehole 

imaging logs (Borehole Televiewer, Formation Micro Scanner) (Pribnow and Sass, 1995).  In practice, the 

value of dip angle can be estimated simply by examining the in situ cross section.  

When no data are available on the dip angle between the bedding formations and the earth’s surface, 

assessment of the temperature   in the BHE surroundings may be useful in the limiting cases of horizontal   

and vertical stratification.   Such estimation   defines upper and lower limits for average temperature field 

for the intermediate angle values from 0 to
2


.

 

   



 For geologic applications,  to measure thermal conductivity in vertical  direction, normal to the earth’s 

surface,  the model was developed  for arbitrary angle between  the ILS  and  the principal  direction of  

heat flow in  an infinite anisotropic medium   (Grubbe et al. 1983). 

       However, infinite-source models have some limitations. For long time periods the finite size 

effects need to be taken into account; otherwise the ILS models predict   unlimited increase of the 

temperature when time tends to infinity. The very introduction of the surface boundary has the effect of 

setting a steady-state (Bandos et al., 2009); this is beyond the scope of the infinite line-source models either 

for isotropic or anisotropic media. Three dimensional finite line source (FLS) model of the BHE in a semi- 

infinite medium (Carslaw and Jaeger, 1959) does account for vertical heat transfer with both the soil 

surface and deep earth.   

Design tools use the so called “g-function” introduced by Eskilson (1987), which represents the 

thermal response factor of the borehole to a constant heat pulse at the borehole periphery, i.e.  br r .  It is 

estimated at the BHE mid-point in simulations of GCHP systems because ILS method implies the 

temperature at the point far away from the BHE ends.   After Zeng et al. (2002), Lamarche and Beauchamp 

(2007) extended the g-function concept of Eskilson to analytical integral average g-function.    Further, the 

mean g-function has been approximated for a wide time range, providing its explicit steady state limit at 

any point and the finite size corrections during the test for bH r r  , i.e. in the borehole vicinity (Bandos 

et al. 2009).  The edge effects are due to the vertical heat flow along the borehole from the deep earth and 

its surface.  The thermal response of a borehole is proportional to the ratio of   z

eff

q


of two significant 

factors in almost all analytical g-functions for the short and long term time analysis of the BHE response 

(Javed et al., 2009).      

These FLS models have been limited in application to the infinite ground of either isotropic or 

anisotropic thermal properties,   whereas to the best of author knowledge, solution for the temperature in 

the semi-infinite anisotropic medium has never been known.  To assess properly the steady state 

temperature of the underground installation one needs to  account for principal directions of the heat flow 

in the ground.   It may be relevant to guarantee stability of operating the ground coupled   installation as 

well as the time  of   investment return. The financial reward of installing a geothermal system comes after 



the long term. The anisotropy effect on temperature in borehole surroundings also becomes significant for 

very long time values. 

In this context, line-source methods to estimate thermal conductivity include conducting laboratory 

experiments on rock and soil samples and/or performing field tests (Davis et al. 2007; Popov et al. 1999).   

It should be noted, however, that the ILS based method was developed for rocks layered non perpendicular 

to the ILS (Grubbe et al. 1983). In geologic applications it is widely used for calculation of terrestrial heat 

flow density, while in geothermal applications it is necessary to determine the borehole temperature for the 

design purposes. However, for both applications of this method   do not account for the fact that the earth’s 

surface can make arbitrary angle with the sedimentary bedding. The ILS method in an infinite anisotropic 

medium was proposed to determine the vertical component of thermal conductivity  along the ILS 

embedded in rocks layered non perpendicular to it (Grubbe et al. 1983). However, this method cannot 

describe exactly the temperature field in an anisotropic half-space without accounting for a boundary 

condition on the ground surface.   

Further refinement of the FLS approach is desirable for anisotropic semi-infinite medium; anisotropic 

corrections to the g-function reveal how rocks are layered to the surface.   Moreover, bedding angle 

dependence on temperature response is of significant importance for long-term underground energy 

systems. It may be important, when estimating maximum temperatures tolerated in nuclear waste 

repositories or aquifer thermal energy storages (Hörmark and Claesson 2005; Sundberg and Helström 

2009).         

The effect of anisotropy of heat flow in a multi-layer geological formation on the temperature around 

the vertical line heat source at an arbitrary dip angle of the strata to the earth surface is the subject of this 

paper. It has practical implications for the estimate of test data, the steady-state temperature field and for 

the selection of orientation of vertical bore field. 

This paper presents (I) exact solution for the FLS thermal response function of a borehole that takes 

into account the geometrical disposition of the earth surface and the sedimentary bedding; (II) approximate 

expressions for the mean temperature of the vertical BHE for the times corresponding to the TRT duration 

as well as to the long times in the limiting cases of horizontal and vertical stratification to the earth's 



surface.  Results on the time-series expansion for the temperature around the   finite line-source in an 

anisotropic semi-infinite medium - including the existence of a steady-state limit – are also discussed. 

PROBLEM STATEMENT               

For the line-source analysis of TRT data, the ground is assumed to be a homogeneous isotropic 

medium characterized by scalar thermal conductivity  .  For the stratified geologic regime, this assumption 

is extended to the thermal conductivity tensor that characterizes anisotropic medium.   The heat flow and 

temperature gradient are vector quantities related by the thermal conductivity tensor ik    (Carslaw and 

Jaeger, 1959). The heat flow in the i-th direction   iQ  at a given point of the anisotropic medium is given by   

3

1
= /i ik kk

Q T x


     

It is assumed that the heat flow in the stratified ground proceeds as if the media were homogeneous, i.e. the 

thermal conductivity tensor is homogeneous, but anisotropic.    

This paper considers heat flow along the vertical z- axis, which is perpendicular to the surface of the 

semi-infinite region, as shown in Figure 1. The heat is realised at a constant rate along the z-axis of the 

Borehole Heat Exchanger (BHE), modelled as the Finite Line- Source (FLS), and is  transferred by thermal 

conduction along the preferential directions in the semi-infinite region.   In the anisotropic model the 

equation of heat diffusion, generally, is not invariant under spatial rotation about the z-axis of the vertical 

BHE. The subsurface temperature, T, is governed by the heat conduction equation:  

23 3

1 1

( , ) ( , )
( ) ( ) ( ( ) ( )), 0, 0 (1)ik z

i k k i

T x t T x t
C q x y z z H for t z

t x x
   

 

 
      

  


 

 where   1 2 3( , , ) ( , , )x x x x x y z      is the coordinate vector,  and zq  is the heat flux density per  length unit 

of the BHE of radius br , where ( )x  is the Dirac delta function characterized by the property  

( ) ( ) 0x f x




 for all functions f, ( )z  is the unit step function, which is zero for z <0 and unity for z >0 

. The initial condition and boundary condition on the surface are given by: 

0 0( , 0) , ( , , 0, ) (2)T x t T T x y z t T   
 



 

Typically, the line-source of heat is introduced as boundary condition on the cylindrical surface 

 11 22 13= / / /
2

z

b

q
T x T y T z

r 

          

and not as a heat generation term of Equation  (1) in this equivalent formulation of problem (Carlaw and 

Jaeger, 1959).    

 We address the simplest case of anisotropy in which the thermal conductivity is the same for all 

directions of a plane X'Y and differs in the Z' direction noted in Figure 2.  Two components of the thermal 

conductivity for heat flow through the ground in a direction perpendicular and parallel to the bedding plane 

are denoted by  and || , respectively. The in-plane thermal conductivity || is larger than orthogonal 

component of thermal conductivity tensor   (Davis et al. 2007; Popov et al. 1999), but this study is valid 

for any anisotropy ratio.   

 

 

Figure 2.  Direction of X', Y, Z'  principal axes of the thermal conductivity tensor. The XY plane 

represents the ground surface at the  dip angle    from the X'Y plane. 

In order to formulate the problem around the BHE inserted into the ground so that its surface is at 

angle    to the bedding plane one needs to find the conductivity tensor in the chosen axes. The  thermal 

conductivity tensor is diagonal  in the  X', Y, Z'  coordinates  shown in Figure 2. These three directions are 

called the principal axes of the thermal conductivity tensor: 

3

1

(3)k ik

k

    



with the   1 ||  , 2 ||    and
 3    components.  

To find the conductivity tensor ij in the chosen axes X, Y and Z (so that the BHE axis is at angle    

to the Z' axis)  one performs a rotation of tensor  in Equation  3:     

3 3

1 1

= (4)ij ki k mk mj

m k

R R
 

     

by the orthogonal matrix mjR  describing the rotation between two sets of axes shown in Figure 2.  This is 

given by (Hastie et. al 2001):  
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Making use of the transformation defined above one gets              
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The coefficient  11  is the thermal conductivity coefficient for the heat flow in the X direction due to a 

gradient in the direction X.  It also gives rise to a heat flow in the vertical direction due to the presence of 

the off-diagonal coefficient   13 .  

3 31 33= / /Q T x T z       

The anisotropy factor causes the distortion of the temperature gradient at the surface of multilayered 

ground and around the BHE bottom, because the heat flow is not normal to the isotherms.   

Throughout the paper the following normalization was used 

33/ , , 1, 2,3 (7)ij ij i j     

  The temperature field is thus defined by the solution of Equations 1, 2 with the   above   matrix in 

Equation 6.   If the angle  0   (or / 2 ),  the axes coincide with appropriate symmetry directions of 

a multilayered ground, this matrix   becomes  diagonal one, where   0    (or    / 2 )  correspond 

to horizontal (or vertical) stratification of the ground.   



In the following the grounds of these types will be considered as well as the ground strata at any dip 

angle  to the surface.  

ANISOTROPIC DIFFUSION IN SEMI-INFINITE MEDIUM. LINE HEAT SOURCE THEORY 

  This section is focused on the generalization of the analytical solutions of the thermal conduction 

problem for isotropic medium  to  the solutions  for anisotropic semi- infinite medium representing multi-

layered ground. 

We introduce the common methods for TRT estimations and highlight their limitations due to the 

isotropy  assumption.  

Solution for Finite Line Heat Source in Isotropic Medium 

 The   exact solution for temperature response from the isotropic ground, where the thermal tensor is 

diagonal, 
ik ik  , can be written    (Bandos et. al 2009): 
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and its integration  over the length of the BHE gives:  
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Both the exact solution and  its average  represented in such a form recover straightforwardly the ILS 

result in the  limit  H      

2 2 2

2

4
( ) {ln }, 5 (9)

4 4 4

z zq qr t r H
Ei for t

t r




    
       

 There are some approaches of deriving analytical expressions for Equation 8a   (Eskilson, 1987)  to 

overcome time consuming numerical calculation of  the  above integrals  and  to get insight  on physical 

interpretation of the heat transfer processes.   It can be seen that there are two characteristic scales of time, 



namely, 2

zt H  , 2

r bt r  .  Early time values (i.e. 5 rt t ) are of the order of one day,  whereas typical 

thermal test durations range from 40 to over 200 hours (Sutton et al., 2001).  Thus, the duration of TRTs 

conform to what are called intermediate times ( r zt t t  ) to distinguish them from very long times ( zt t ) 

that would approach those corresponding to steady-state conditions. Time of steady-state attainment is 

infinite and finite for the ILS and FLS, respectively.  Furthermore, the approximation of the average ground 

temperature for the times corresponding to the TRT (i.e., for  5 r zt t t   ) is given by: 

2

0 2 2
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  This expression for the average temperature of the BHE differs from the classical one   by the finite-size 

corrections, which vanish in the limiting case of H → ∞. The comparison between the numerical results of 

FLS and ILS models applied to the same experimental data showed that, as predicted by Bandos et al.   

(2009), the  thermal conductivity value of the ground is overestimated by the ILS model (Bandos et al., 

2011).   In addition,  error in estimating  the thermal conductivity  between two models can be  found 

analytically.  

Evaluating TRT is based on the linear logarithmic time dependence for the temperature from the ILS 

theory.    From Equations 9 and 10 one can find  
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Here ILS and  FLS    are the effective thermal conductivities estimated with the ILS and the 

approximation of the mean FLS models, respectively.

 

Therefore, the estimate from the TRT with the mean 

FLS model gives a lower value for the log-derived thermal conductivity than the one predicted by the ILS 

model; the relative error is proportional to the square root of the small parameter 1
z

t

t
  for test durations.

 

The explicit steady state borehole temperature was derived amid the approximate expressions for the 

mean ground temperature   over a wide range of time values (Bandos et al. 2009).     
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To proceed further, the anisotropy effect on the TRT estimate and the long time temperature profile are 

considered for horizontally and vertically alternating formations and in general case for layers non-parallel 

to the ground surface. 

  Solution for Finite Line Heat Source in Anisotropic Medium 

  This section, firstly, addresses to the simple case when a main direction of the thermal conductivity 

coincides with the vertical direction, perpendicular to the surface, while in-plane bedding plane is 

horizontal,  i.e. parallel to the surface.  Secondly, we introduce mean temperature method for  the 

horizontal  strata, 0  , i.e. parallel to the surface,  present the closed form temperature solution around 

FLS  for  strata  at any dip angle to it and conclude with the limiting case of vertical stratification, 

/ 2 .   

  

 Mean temperature approximations at horizontal stratification   

It is assumed that the thermal conductivity of horizontally stratified ground   takes on different values 

in the horizontal  (in-plane) direction, 1 2 ||= =   , and in the vertical z direction, 3 =   , which are the 

diagonal components of the thermal conductivity tensor with zero off-diagonal elements, 

= , = 1,2,3ik k ik k   .  The problem of heat diffusion in horizontally stratifed geologic regime ( 0  ) 

is subject to the conditions specified in Equation 2. Its solution is invariant under spatial rotation about the  

axis  of the vertical BHE as it is in the case of the isotropic medium. Furthermore, after a transformation

|| /z z    , Equation 1  takes the same form as the equation for the isotropic homogeneous ground 

with the thermal conductivity  ||   
 as for the primary line source model.  This transformation reduces  the 

heat conduction problem in the horizontally stratified anisotropic ground to the one in the isotropic semi-

infinite medium of the thermal conductivity ||  and diffusivity || ||= / C  . Thus the solutions for the 



anisotropic ground can be obtained from Equations 8a, 8b for the isotropic soil by substituting  

|| /z z    supplemented by the || /H H    rescaling; hence, the   resulting depth is stretched 

for the horizontal stratification for ||  . 

  Approximate expressions for ground temperature, averaged over the BHE depth, were derived to use 

(instead of temperature at the mid-point) over a wide range of time values (Bandos et al. 2009).  Then, after 

applying the above described transformations, the average ground temperature response for the time in the 

interval corresponding to the TRT (i.e. for 2 2 2

|| ||/ 4 4r t H a   ) can be written as: 

0 || ||

|| ||

3 1
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where 2

|| /a    is the in-plane conductivity  scaled by the normal conductivity,   
||

|| 2

t
Fo

r


  is the 

Fourier number that refers to a radial distance r    from the borehole center, not to the borehole radius 
br  , 

which defines characteristic time 
rt . The TRT measures a multiplier for logarithm of time that is a function 

of model parameters.    Effective thermal conductivity   is such a function   that is inversely proportional to 

logarithmic derivative from the temperature in the intermediate-time interval.     From the above equation 

effective thermal conductivity eff measured by the line source method equals to the thermal conductivity 

in direction parallel to bedding (to the ground surface for horizontal stratification) || . Note that the  log- 

derived thermal conductivity is equal to the only parameter of the isotropic model of the ground:  eff  .   

The effects of the finite source size  (described by the last three terms in the right hand side of 

Equation 12 for intermediate time values)  depend on  the anisotropy  a , vanish  in the limiting case 

H      and are smaller  than  those in the isotropic model  ( 1a  ) for ||   .   

Application of the same scale transformations to the approximation derived   for the long times 

(Bandos et al. 2009), when approaching the steady-state conditions, the integral average temperature 

response at the radial distance  r  from the borehole center is given by: 
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This equation provides time-asymptotic approach to the steady-state of the designed geothermal 

system, whereas Equation 12 is applicable to analysis of the TRT data in the intermediate-time interval.  It 

is noteworthy to mention  that the effective thermal conductivity ||=eff    defines thermal response of the 

BHE  embedded in horizontally stratified ground in the the intermediate and the long-time intervals.    

Furthermore, both above approximations for the mean BHE response depend on anisotropy through the 

ratio
aH

r
. There are two characteristic times  

2

||

r

  
and 

2 2 2

||

H a H C

 
  for anisotropic diffusion in the radial 

and   axial directions, respectively; these directions coincide with the   principal axes for horizontal 

stratification.  

Exact solution for the mean steady-state temperature in the dimensionless form of   ˆ ( )S

aH
g

r
 reveals 

anisotropy effect at any radial distance from borehole center.  Using the expansion we arrive at the 

following result for anisotropy correction to the steady state temperature from isotropic and anisotropic 

models, which can be used in the vicinity of borehole, i.e. r H  

1
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The symbol O(x) denotes terms proportional to x and higher powers of x.   This comparison is done for

||eff    .  

Throughout the paper the following parameters were used in the numerical calculations: = 1a .4 

for the anisotropy case (Davis et. al 2007) and   
61.16 10   m2/s, 4.3  W/(mK). How anisotropy of 

the ground thermal conductivity influences the time dependence of the temperature distribution around the 

vertical BHE penetrating strata is shown in Figure 3. Exact temperature profiles along the borehole 

calculated for the horizontal stratification are presented in Figure 3a at various time values  from 1.5 

months to 12 years.    Figure 3a   shows that maximum temperature  along the BHE for || / >1   

(anisotropic case) becomes noticeably higher than that for = 1a  (isotropic case) as the time increases. That 

is due to decreased heat transfer from the bottom of the borehole.  

 

 



 

 

 

 

(a)                                                               (b) 

      

Figure 3. Comparison between thermal response g-functions at br r =0.1m around the borehole 

penetrating horizontal strata ( 0)  from two models: isotropic model ( ||    )   and anisotropic 

model ( 2

|| a  , 0  ; ||  ) of the ground.  (a) Profiles of the g-function  versus the   natural 

logarithm  of time  / st t  and  the dimensionless coordinate /z H  along the borehole; (b) Mid-point (z=H/2) 

(gray line) and mean g-functions from the isotropic model   and  mean  g-function from the  anisotropic 

model  versus the  natural logarithm  of time.  Exact solutions calculated for constant heat injection are 

shown in the range:  2 2 2

|| ||5 / /br t H a   ,  ||  .  The time is scaled by  2 / (9 )st H   (Eskilson, 

1987). 

Figure 3b shows that the g-function estimated at the  BHE mid-point (Eskilson, 1987)   and averaged  

response function are rather close to each other  for  the isotropic  medium ( ||  ) and to the mean 

temperature response  function for the anisotropic medium in the intermediate-time interval.     There is the 

increase of the mean temperature   evaluated from Equation 13 for the horizontal stratification of 

sufficiently low   value: = 1.4a  compared to the mean  temperature , but  this temperature remains 

lower than    mid-point  temperature at = / 2z H    for the isotropic case.  



Notice that the higher the scaled thermal conductivity || /  in the horizontal direction,   the later is the 

onset of the asymptotic behavior when attaining steady state. Therefore, evaluation of thermal conductivity 

from the TRTs provides primarily effective thermal conductivity in the horizontal direction, while thermal 

conductivity in the vertical direction noticeably manifests itself for the long time values. 

 

  

Temperature solution for FLS in a half-space of axial anisotropy at arbitrary dip angle 

The problem for ground layered non-parallel to the surface can be solved by using exact 

correspondences between the isotropic and anisotropic solutions.  It is easy to check that the transformation 

of   coordinates  
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reduces Equation 2 to the  heat  conduction equation in  an isotropic medium. Formulation in the new 

coordinates  1 2 3( , , )y y y y is given by: 
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with exactly the same  initial and boundary conditions : 

0 1 2 3 0( , 0) , ( , , 0, ) (16)T y t T T y y y t T     

Equations 15, 16 formulate the problem for an inclined line-source of heat strength 33

det
z zq q


 


 in the 

semi-infinite medium of the unit thermal conductivity, where    denotes tilting angle of the line source 

with the 3y axis  (Cui et al., 2006) in the mapped space (not shown  in Figure 2).    



 Since its solution is known (Cui et al., 2006), the solution in the physical space x   can be obtained   

directly by   back transformation from the y  coordinate space as: 
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where   
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 and   {0,0, cos }x z    is the vector along the line-source of  the length / cosH   . 

 Note also that the tilting angle  in the transformed space   can be expressed through   the dip angle   as 

follows 
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 For the TRT analysis the above solution   ( , )T x t obtained for the finite-line source in anisotropic medium 

was approximated and compared with that from the isotropic FLS model in a wide time range starting from 

the intermediate times.  

We proceed to derive expression that allows the calculation of an effective thermal conductivity as a 

function of bedding direction.     

Effective thermal conductivity, measured by the vertical line-source method: the layers are non parallel 

to the ground surface.   To compare the results of evaluating the thermal conductivity for isotropic medium 

with that developed here for anisotropic medium, the ground temperature in the vicinity of the mid-point of 

the finite depth BHE was calculated. 

Series of  ( , )T x t  in time about a mid-point depth (up to the exponentially small correction terms) 

can be written as:  
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and
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This expansion is valid for time values in the interval  
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Figure  4.  Effective scaled thermal conductivity versus the angle   between the ground surface and 

sedimentary planes, see Figure 2, for 1.4a  .      

 Equation 22 represents that effective thermal conductivity as a function of   the thermal 

conductivity components and the structure of ground (dip angle).     Effective thermal conductivity eff

depends on the angle   between the FLS and the axis of symmetry, as it is shown in Figure 4.  This result 

for the eff
 
at the intermediate time values is consistent with the ILS prediction for the perpendicular 

thermal conductivity measured   in ground bedding non-parallel to the surface   (Grubbe et. al 1983).    In 

geologic applications, the interpretation  of  Equation  22 enables determination of the thermal conductivity 

in a  certain  direction from the tensor components,  when  measuring anisotropy of rock samples in the 

laboratory at various angles  (Pribnow and Sass, 1995).   



Let us stress that  the  estimate of thermal conductivity is defined  by the logarithmic derivative of 

the   TRT data  and should be identified with the  effective conductivity from a  model. So, using 

anisotropic model one should write  

            2 1
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while for isotropic model the right hand side is equal just to  .                                                                              

  Figure 4   illustrates that the   ground thermal conductivity from the TRT varies significantly from the 

maximum value ||eff   for the horizontal stratification to the minimum value ||eff    as angle     

tends from 0 to    / 2 .   

The following shows how the anisotropy influences the steady-state temperature distribution 

around the line-heat source and   long-term performance of underground installation due to vertical heat 

transfer effects with the surface and the deep earth.  

Steady–state temperature field around LS penetrating layers at any angle to the ground 

surface.  Retaining the first leading term in the expansion of the integral in Equation 17 we arrive at the 

following result for FLS, which can be used for the long-time values (i.e. for 33 / cost H  ): 

2 2 2

0 = {ln[ cos ( ) ]
4

z

eff

q
T T z r z        

                                                                          

                                                                                                                                                       
(25)

   

                         

2 2 2

2 2 2

2 2 2

cos ( )
ln [ cos ( ) ]}

cos ( )

H z r H z
z r z

H z r H z

 

  

  

     
   

     

  
  

  
 

    
Here 

13 13

cos 2 (1 2cos 2 ), (1 2cos 2 ) (26)
2 2

x x
z z z z    

 
                         

||2 2 2

13 2 2

13 ||

4sin ( ), (27)
cot tan

x
r r z z

 
 

  



 




   

 
 

This result, describing the steady state temperature field of one borehole, embedded in 

multilayered semi-infinite medium at arbitrary angle of the bedding relative to the surface, agree with the 

result derived from the isotropic FLS model (Zeng et al. 2002).  In  the limiting case, when   tends to  , 



the proposed  Equation 25  recovers  the well known result  for  the steady state limit  (SSL)    of the 

temperature  in the isotropic model.   

One can see that the steady state temperature is proportional to the z

eff

q


 in addition to the BHE 

response function on anisotropy, dip angle and borehole depth.   The effect of anisotropy manifests itself in 

the steady state conditions, whereas thermal conductivity values obtained by fitting the same TRT data to 

anisotropic solution, Equation (20),   and isotropic solution, Equation (9),   are identical.     The steady state 

BHE response is strongly influenced by anisotropy.  

Figure 3   shows that the steady state temperature profile along the borehole depth at the horizontal 

stratification exceeds that for the isotropic ground, as one might expect for ||    .  

The following section addresses the specific case of vertically stratified geologic regime,  i.e.  for 

/ 2    and thus 13 0 .                                          

Mean temperature approximations at vertical stratification   

The effect of anisotropy on   vertical temperature dependencies increases with increasing of the dip 

angle for typical situation: ||   . Indeed, let there be strata parallel to the plane  YZ
  

depicted in Figure 2. 

The thermal conductivity of  such vertically stratified ground takes smaller values in the X direction,  

1 =   ,  than  in the  in-plane  direction, 2 3 ||= =    (Polubaronova-Kochina 1962). These define the 

principal components of the thermal tensor.  The exact temperature solution is presented by Equation 17 at 

0 ;  it  is not invariant under spatial rotation about the  axis of the vertical BHE  as  at the  horizontal 

stratification of the previous section.  Notice that the effective thermal conductivity attains minimum value: 

||eff   .  Furthermore, substituting 
||

/x x   
 
and   

2 2 2r r x a y  
 
 into Equation 8b one 

can also get the solution for the temperature field integrated along the same borehole depth H . Indeed, 

under   the conditions in Equation 23, the mean thermal response at 0  is represented by the 

approximation in the transient regime . 

2
|| 2 2 2

0 2 2

||||

4 4
< >= 3 , = (28)
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Here 2

|| || || ||/ , /t H C     and  r   is defined by Equation 21 at 2

11 221/ , 1a   .  Notice that   

isotherms of the mean thermal response function around  the borehole, where r  is constant .  Furthermore,  

due to  1 ( )a r r   the effective ratio of the BHE depth to r  is shortened for the vertical stratification 

with respect to /H r  for the isotropic medium and the edge corrections become more pronounced.   The 

steady state limit from Equation 8b or 21  for
2 2

||>> ( , ) /t max H r   can be wriiten  in the following 

form. 

3/2 22 2 2 2
||

0 || ||

|| ||||

( / ) 1 / ( , )
ˆ< >= ( ) 1 3 , , >> (29)
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There are two characteristic times  
2

||

r

  
and 

2 2

|| ||

H H C

 
  for anisotropic diffusion in the radial and   

axial directions, respectively. 

Exact solution for the mean steady-state temperature in the dimensionless form of   ˆ ( )S

H
g

r
  is valid at 

any distance from borehole center.  Using the expansion of the  ˆ ( )S

H
g

r
  for large values of the  

H

r
  we 

arrive at the following result for anisotropy correction to the steady state temperature from isotropic and 

anisotropic models    

1 1

3( )
ˆ ˆ( , ) ( , ) ( ) ( ) 2ln ( ) ( )

2 2

z z

S Sa a

eff eff

q qH H r r r r H
T x y T x y g g O for VS

r r H H rr 
 

  
         

   

This correction is derived for  ||eff     and valid in the vicinity of borehole.  Equations HS and VS 

provide anisotropy corrections for the mean borehole temperature in explicit form in the limiting cases of 

horizontal and vertical stratifications, respectively 

Figure 5  presents the time-dependence of the exact mid-point g-function and average g-functions for 

isotropic ground and average g-functions for the vertical stratification at ||  .  Futhermore, as shown in 

Figure 5,  point x=0.1m; y=0  has lower  value of  mean thermal response function  than  point x=0; 

y=0.1m in the   uniform   in – plane direction y. Notice that,  although the physical distance is the same  as 



derived from the line heat source, the ratio /r H  is different at these two points causing  splitting   mean ĝ

function curve calculated for an isotropic ground in two branches shown in Figure 5. 

 

 

 Figure 5. Comparison between the borehole response functions from two models of medium with 

vertical strata.  Mid-point (z=H/2) (gray line) and mean g-functions from the isotropic model  ( ||   

)  and mean  ĝ -functions in the X and Y directions from the  anisotropic model ( 2

|| a  , / 2  ) 

versus the natural logarithm of time.  Exact solutions calculated for constant heat injection are shown in the 

range:  2 2 2

|| ||5 / /br t a H   , ||  . 

This behavior attributed to the fact that the thermal conductivity parallel to the layers is higher than 

that perpendicular to the bedding plane,  suggests  that row of boreholes should be aligned along the 

direction X  to enhance conditions of the heat exchange with  a multilayered ground as comparison shows 

also in Figure 6.         

   Many sedimentary and metamorphic laminated rocks are strongly anisotropic (Davis et al., 2007): 

the thermal conductivity in parallel to bedding planes of these rocks is 2-3 times higher than that 

perpendicular to bedding (Deming, 1994; Popov et al., 1995).   This proposal on layout of the borehole raw 

is not referred to the anisotropy values less than unity also reported (Davis et al., 2007).   

 Although anisotropy value: a=1.4 in  the given examples is common, our solution is valid for any 

thermal conductivity anisotropy.    

 

 



(a)                                                              (b) 

        

Figure 6.  Comparison between isotherms curves of   steady-state  ĝ -functions from two  3 borehole 

configurations (with an inter-borehole distance of 3 m and H=50 m) at the / 2  : (a) along the 

direction X; (b) along the direction Y, shown in Figure 2.  

 

CONCLUDING REMARKS, SUMMARY AND DISCUSSION 

 Results have been presented of a study of the thermal response from multilayered ground 

modeled as an anisotropic medium to constant heat pulse from the finite line source.  This study discusses 

anisotropic dependence of both effective thermal conductivity measured by TRT and the steady state 

temperature field around vertical  FLS in the arbitrary oriented strata with respect to the surface of the 

semi-infinite medium. 

What is actually measured for the intermediate time values of the TRTs is the effective thermal 

conductivity  of the soil/rock formation in the direction perpendicular to the borehole axis.   We have 

provided effective conductivity as a function of the inclination angle, which should prove to be useful for 

the geothermal applications.   In addition,  we have shown that the dip angle  and the anisotropy factor 

influence the steady-state temperature field of the designed installation.  Therefore, it may be a discrepancy 

between the real temperature spatial distribution   around vertical or horizontal GCHP systems in the steady 

state conditions and its prediction of the isotropic model with thermal conductivity value obtained from the 

short time TRT, but without using the data of anisotropy and dip of the bedding.  



   The exact solution accounting for anisotropy, its asymptotic behavior and the steady state 

expression for the temperature obtained here for any dip angle between the surface and the bedding should 

prove to be useful for designing multiple borehole configurations in stratified medium.   

Analytical formulae have been obtained for the asymptotic behavior of the average  temperature in 

horizontally and vertically stratified   ground  for intermediate- and long- time scales.   The suggested 

corrections for anisotropic effects (Equations HS and VS) may give errors, when estimating the steady state 

average temperature by the isotropic model. 

In these limiting cases the proposed   response functions in Equations 13, 29 can be easily applied 

to estimate maximum and minimum of the mean steady state temperature field of an arbitrary borehole 

configuration using the superposition principle.   

Due to the fact that the thermal conductivity of ground is higher along the  layers the average thermal 

response method provides the  lowest estimation for the dimensionless response  function approaching 

steady-state limit; that is reached in the direction across the layers at the vertical  stratification. This 

conclusion is relevant when choosing a proper configuration to minimize temperature between vertical 

sources of heat from data about the geometrical disposition of the layers and the surface.    To this objective 

the proposal consists  in  disposing a row of vertical heat sources  normally to the  lines  of  strata 

intersection  with  the surface  rather than  along them at any values of the dip angle.   This 

recommendation regards also selection of orientation for   horizontal GCHP systems.   The analytical 

formulae for the temperature allow flexibility in the estimation of the temperatures within and around a 

repository of nuclear waste in anisotropic rock.   

  

NOMENCLATURE 

a




  = thermal conductivity anisotropy factor  

 

C = volumetric heat capacity of ground, Jm−3K−1 

 

Ei = exponential integral 

0

2
ˆ ( , )

eff

z

g T r t T
q


   

     

= generalized thermal response function for br r  

  



||

|| 2

t
Fo

r


  = in-plane Fourier number 

  

H = depth of the borehole heat exchanger (BHE), m 

 

 r = radial coordinate, m 

 

rb = radius of the BHE, m 

 

r  = coordinate vector, m 

 

zq                                           = heat flow per unit length, Wm–1 

Q                                            = vector of heat density per unit area, Wm–2 

2 /r bt r    = short time scale for the BHE, s 

2

s

H
t


  = steady-state time scale, s  

 

tz = H2/α = isotropic time scale for the BHe, s  
2

|| ||/t H   = in-plane time scale for the BHE, s  

T = temperature of ground (K or C) 

 

T0 = undisturbed ground temperature (K or C) 

 

z  = vertical axial coordinate, m 

 

Greek letters 

 

/ C    = isotropic thermal diffusivity,   m2/s 

|| || / C    = in-plane thermal diffusivity,   m2/s 

 

   = delta function  

 
2

11 13      = dimensionless parameter 

 

33/     = dimensionless thermal conductivity tensor  
 

   = Euler’s constant 

 

eff  =Equation  20, effective thermal conductivity, W (Km)–1 

 

||  = in-plane thermal conductivity  (parallel to bedding plane), W (Km)–1 

 

   = normal  thermal conductivity ( normal to bedding plane ), W (Km)–1 

 

   = three-dimensional thermal conductivity tensor, W (Km)–1 

 

( )He z   = unit step function  

 

  = angle between the surface and strata,  

 



13arccos



  = dimensionless parameter   

Subscripts 

 

||  = direction parallel to  bedding 

 

s  = steady-state 

 

Superscripts 

   

0

1
... ( ... )

H

dz
H

     = integral mean 
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Figure captions  
 

Figure 1.  In-situ TRT schematic and formations layers. 

Figure 2.  Direction of X', Y, Z’ principal axes of the thermal conductivity tensor. The XY plane 

represents the ground surface at the dip angle    from the X'Y plane. 

Figure 3. Comparison between thermal response g-functions at br r =0.1m around the borehole 

penetrating horizontal strata ( 0)  from two models: isotropic model ( ||  )   and anisotropic model (

2

|| a  ) of the ground.  (a) Profiles of the g-function  versus the   natural logarithm  of time  / st t  and  

the dimensionless coordinate /z H  along the borehole; (b) Mid-point (z=H/2) (gray line) and mean g-

functions from the isotropic model   and  mean  g-function from the  anisotropic model  versus the  natural 

logarithm  of time.  Exact solutions calculated for constant heat injection are shown in the range:  

2 2 2

|| ||5 / /br t H a   . The time is scaled by  2 / (9 )st H   (Eskilson, 1987). 

Figure 4.  Effective scaled thermal conductivity versus the angle   between the ground surface and 

sedimentary planes, see Figure 2, for 1.4a  .     

Figure 5.    Comparison between thermal response g-functions around the borehole penetrating vertical 

strata from two models of medium.  Mid-point (z=H/2) (gray line) and mean g-functions from the isotropic 

model ( ||  ) and mean ĝ -functions in the X and Y directions from the anisotropic model ( 2

|| a  ) 

versus the natural logarithm of time.  Exact solutions calculated for constant heat injection are shown in the 

range:  2 2 25 / /br t a H   .   

Figure  6.  Comparison between isotherms curves of generalized steady-state ĝ -functions from two 3 

borehole configurations (with an inter-borehole distance of 3 m and H=50 m) at the / 2  : (a) along the 

direction X; (b) along the direction Y, shown in Figure 2.   
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Abstract: A dynamical estimate is given for the Boltzmann entropy of the Universe, under the
simplifying assumptions provided by Newtonian cosmology. We first model the cosmological fluid
as the probability fluid of a quantum-mechanical system. Next, following current ideas about the
emergence of spacetime, we regard gravitational equipotentials as isoentropic surfaces. Therefore,
gravitational entropy is proportional to the vacuum expectation value of the gravitational potential
in a certain quantum state describing the matter contents of the Universe. The entropy of the matter
sector can also be computed. While providing values of the entropy that turn out to be somewhat
higher than existing estimates, our results are in perfect compliance with the upper bound set by the
holographic principle.

Keywords: newtonian cosmology; emergent quantum theory

1. The Approach via Emergent Quantum Theory

In this article, we will argue in favour of emergent quantum mechanics as providing an appropriate
framework to estimate thermodynamical quantities of the Universe, such as the entropy.

The notion that quantum mechanics is an emergent theory has been discussed at length in the
literature [1–7]. Combined with the idea that spacetime is also is an emergent phenomenon [8–12], this
paves the way for a computation of some thermodynamical properties of spacetime in quantum-mechanical
terms. We would like to remark that a quantum-mechanical approach to the expansion of the Universe
was called for long ago in Reference [13], where it was suggested to regard the expansion of the
Universe as a scattering problem in quantum mechanics.

The expansion of the Universe is a long-standing experimental observation [14] that has in recent
years been refined thanks to very precise measurements [15,16]. In the Newtonian approximation, this
receding behaviour of the galaxies can be easily modelled by a phenomenological potential—namely,
an isotropic harmonic potential carrying a negative sign:

UHubble(r) = −
H2

0
2

r2. (1)

As the angular frequency, we take the current value of Hubble’s constant H0. Thus, UHubble has
the dimensions of energy per unit mass, or velocity squared.

In the emergent approach to spacetime presented in Reference [12], gravity qualifies as an
entropic force. If gravitational forces are entropy gradients, gravitational equipotential surfaces can
be identified with isoentropic surfaces. Recalling the arguments of Reference [12], a classical point
particle approaching a holographic screen causes the entropy of the latter to increase by one quantum
kB. Here we will analyse a quantum-mechanical model in which the forces driving the galaxies away
from each other can be modelled by the Hubble potential (1). We will replace the classical particle of
Reference [12] with a collection of quantum particles (the matter contents of the Universe) described
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by the wavefunction ψ. Let U denote the gravitational potential. Once dimensions are corrected using
h̄ and kB, the expectation value 〈ψ|U|ψ〉 becomes the quantum-mechanical analogue of the entropy
increase caused by a classical particle approaching a holographic screen. Thus, the expectation value
〈ψ|U|ψ〉 is a measure of the gravitational entropy of the Universe when the matter of the Universe is described
by the wavefunction ψ.

The potential UHubble of Equation (1) encodes the combined effect of the gravitational attraction,
and of the repulsion caused by the dark energy on the matter content of the Universe (baryonic
and dark matter). We can therefore identify the Hubble potential UHubble of Equation (1) with the
gravitational potential U in the previous paragraph. Let us briefly recall why UHubble in fact combines
a Newtonian gravitational attraction plus a harmonic repulsion. In the Newtonian limit considered
throughout in this paper, the gravitational attraction is computed by applying Gauss’ law to a sphere
filled with a homogeneous isotropic density of matter. Then, the gravitational field within the sphere
turns out to be proportional to the position vector, so the corresponding potential becomes a quadratic
function of the position. Altogether, the total potential at any point within the cosmological fluid is the
sum of two harmonic potentials; Hubble’s constant H0 is the frequency of this total harmonic potential.

We will first start with a flat Euclidean space governed by nonrelativistic Newtonian
cosmology. The latter leads to the same equation that governs the scale factor of general-relativistic
Robertson–Walker models [17]. On the other hand, it circumvents the mathematical sophistication
required by general relativity. The advantage of first performing a nonrelativistic treatment is
that it bears out the deep connection existing between the cosmological fluid and the Madelung
approach to Schroedinger quantum mechanics; this is done in Section 2.1. In Section 2.2, we
obtain a perturbative estimate for the entropy of the Universe; finally, this analysis is carried
out nonperturbatively in Section 2.3. As a next level of sophistication, we move on to a flat
Friedmann–Lemaître–Robertson–Walker (FLRW) four-dimensional spacetime; due to the great
length of the calculations involved, the corresponding results will be presented in an upcoming
publication [18].

We would finally like to stress the following points:
(i) The wavefunction ψ we will be concerned with here is meant to provide a phenomenological

description of the receding matter in its recessional motion within a fixed spacetime.
(ii) We will comply with the cosmological principle, the latter stated in either one of the following

two (inequivalent) ways. In its first formulation, given the wave function ψ, the volume density
of matter |ψ|2 is spatially constant. In its second formulation, given ψ and the three-dimensional
volume element d3V =

√
|g|dx1dx2dx3, the particle number |ψ|2d3V is spatially constant. This

second formulation is weaker than—and implied by—the first one.
(iii) A quantum-mechanical wavefunction ψ for the matter contents of the Universe will be used

to obtain an estimate of the gravitational entropy of the Universe.
(iv) Invoking Boltzmann’s principle, the same wavefunction ψ can be used to obtain an estimate

of the entropy of the matter of the Universe (baryonic and dark matter).
(v) All entropies referred to in this paper are Boltzmann entropies.
We would like to thank the referees for drawing our attention to a number of issues and papers

where points related to those analysed here are dealt with from different perspectives. Specifically,
a wavefunction of the Universe was first considered in Reference [19]; the quantum potential was
shown to generate gravitational attraction between particles in Reference [20]; the Hubble potential
possesses no groundstate when considered on all of R3 [21]; the nonexistence of a stable groundstate
has consequences on quantum fields on an expanding spacetime [22]. Since we are considering
the Hubble potential on a finite Universe (with radius R0), the existence of a stable groundstate is
guaranteed. Additionally, the Hubble expansion is considered to maintain the Universe close to
equilibrium, so we can apply standard thermodynamical relations.
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2. Newtonian Cosmology à la Madelung

Newtonian cosmology represents a first step that succeeds in capturing some essential physics of
the Universe, while avoiding the technical difficulties of general relativity [17,23].

2.1. The Ideal-Fluid Description

In this section, we will establish that Newtonian cosmology can be conveniently regarded as a
nonrelativistic quantum mechanics.

In Newtonian cosmology, the matter content of the Universe is modelled as an ideal fluid satisfying
the continuity equation and the Euler equation,

∂ρ

∂t
+∇ · (ρv) = 0,

∂v
∂t

+ (v · ∇) v +
1
ρ
∇p− F = 0. (2)

Above, ρ is the volume density of fluid mass, p is the pressure, v is the velocity field, and F
the force per unit volume acting on the fluid. The cosmological principle requires ρ and p to be
spatially constant; it also leads to the requirement that the velocity v be everywhere proportional to
the position vector r. This latter requirement is nothing but Hubble’s law, so the Hubble potential (1)
arises naturally as a consequence of the cosmological principle. The gravitational self-attraction of the
matter distribution and Hubble’s repulsion are both taken care of by the force F in the Euler equation.

Madelung long ago re-expressed Schrödinger quantum mechanics also in terms of an ideal fluid.
Specifically, one separates the nonrelativistic wavefunction ψ into amplitude and phase,

ψ = A exp
(

i
h̄
I
)
= exp

(
S +

i
h̄
I
)

, A =: eS = exp
(
S

2kB

)
, (3)

where I is the classical mechanical action integral; we will later invoke Boltzmann’s principle to regard
S as the Boltzmann entropy and S := S/2kB as the dimensionless Boltzmann entropy. Substituting
the Ansatz (3) into the Schrödinger equation for ψ, one is led to an expression containing a real part
and an imaginary part. The imaginary part turns out to be the continuity equation for the quantum
probability fluid,

∂S
∂t

+
1
m
∇S · ∇I + 1

2m
∇2I = 0, (4)

where the velocity field v and the density ρ are defined by

v :=
1
m
∇I , ρ = A2 = e2S. (5)

The real part turns out to be the quantum Hamilton–Jacobi equation:

∂I
∂t

+
1

2m
(∇I)2 + V +Q = 0, (6)

where V = mU is the external potential, and we have introduced the quantum potential [24]

Q := − h̄2

2m
∇2 A

A
. (7)

Finally, a Euler equation for this quantum probability fluid is obtained by taking the gradient of
the quantum Hamilton–Jacobi Equation (6):

∂v
∂t

+ (v · ∇) v +
1
m
∇Q+

1
m
∇V = 0. (8)
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We conclude that a one-to-one correspondence between the cosmological fluid on the one hand,
and the quantum probability fluid on the other is provided by the following replacements:

ρ 7→ e2S, v 7→ 1
m
∇I ,

1
ρ
∇p 7→ 1

m
∇Q, F 7→ − 1

m
∇V. (9)

The above correspondence suggests that, given the cosmological fluid in the Newtonian approximation,
we use nonrelativistic quantum mechanics as an equivalent description thereof . The value of m entering
Equation (9) is that of the overall matter contents of the Universe (baryonic and dark matter). This
matter is subject to the repulsive effect of the dark energy, and to its own gravitational self-attraction,
the combined effect of which is modelled by the effective Hubble potential (1).

2.2. Perturbative Estimate of the Entropy

2.2.1. Wavefunction of the Matter Distribution

We will model the ideal fluid of Newtonian cosmology by means of the probability fluid
corresponding to a scalar field ψ satisfying the Schrödinger equation. Initially, the latter will be taken to be
the free equation, for a perturbative treatment. That is, ψ will be used to compute 〈ψ|U|ψ〉, with U
the Hubble potential (1). Alternatively, we can include the Hubble potential (1) in the Schrödinger
equation already from the start; this nonperturbative treatment will be carried out in Section 2.3.

The squared modulus |ψ|2 will equal the volume density ρ of mass. The cosmological principle
requires the density ρ to be constant across space. In turn, the correspondence (9) implies that S must
be a constant, so the quantum potential Q will vanish identically. Again by the correspondence (9), the
pressure p must be spatially constant, which is also in agreement with the cosmological principle. The
effective Hubble potential will be introduced later on, as a perturbation to the free field ψ.

The free Schrödinger equation admits the plane-wave solutions

ψk(r) =
1

R3/2
0

exp (ik · r) . (10)

They have been normalised within a cubic box of side R0, the radius of the observable Universe.
The cosmological principle is satisfied in its first formulation as given in Section 1. Moreover,
the constant amplitude A = R−3/2

0 leads to a vanishing quantum potential in Equation (7), in agreement
with previous requirements.

The free Schrödinger equation can also be separated in spherical coordinates. The resulting free
spherical waves ψκlm(r, θ, φ) are then labelled by κ (the modulus of the linear momentum k) and l, m
(the angular momentum quantum numbers). The cosmological principle imposes l = 0. We will
therefore consider the free spherical waves

ψκ00(r, θ, φ) =
1√

4πR0

1
r

exp (iκr) . (11)

They have been normalised within a sphere of radius R0, instead of a cubic box. Once the spherical
Jacobian factor 4πr2 is taken into account, the second formulation of the cosmological principle given
in Section 1 is satisfied. Moreover, the amplitude A = 1/r also leads to a vanishing quantum potential
in (7) because

∇2 A
A

= r∇2
(

1
r

)
= −4πrδ(r) = 0. (12)

We will use both plane waves (10) and spherical waves (11) in order to model the distribution of
the matter contents of the Universe. The results obtained from one or the other can differ at most by a
dimensionless factor of geometrical origin, due to the use of a cubic box as opposed to a spherical box.
Imposing boundary conditions on the wavefunction at the walls of the corresponding box only leads
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to a quantisation of the energy levels—a possibility that we will disregard here (see Section 2.4 for a
discussion of this point).

Since we are not imposing boundary conditions, we will work with a set of two
linearly-independent solutions to the free Schrödinger equation. In Cartesian coordinates, a
fundamental set of solutions is provided by the wavefunctions ψ±k(x, y, z); in spherical coordinates, a
fundamental set of solutions is provided by the wavefunctions ψ±κ00(r, θ, φ).

2.2.2. Expectation Values

From what was said above, the operator R2 = X2 + Y2 + Z2—which is proportional to the
effective potential (1)—is a measure of the amount of gravitational entropy enclosed by the Universe.
Specifically, the combination

Sg := N kBmH0

h̄
R2 (13)

is dimensionally an entropy; a dimensionless factor N is of course left undetermined. We call Sg the
gravitational entropy operator. Its expectation value in the cubic-box state (10) equals

〈ψk|Sg|ψk〉 = N
kBmH0

h̄
R2

0, (14)

while in the spherical-box state (11), it reads

〈ψκ00|Sg|ψκ00〉 = N
kBmH0

h̄
R2

0
3

. (15)

Substituting the known values of the cosmological data [25] into Equations (14) and (15), we find
the estimate

〈Sg〉
kB
' 10123, (16)

where we have (arbitrarily) set N = 1/2.6 when using the plane-wave result (14), and N = 3/2.6
when using the spherical-wave result (15), in order to keep only powers of 10. Our final result (16)
saturates the upper bound set by the holographic principle [26].

We can also obtain an estimate for the entropy content of the matter described by the wavefunction
ψ. Invoking Boltzmann’s principle, one regards the amplitude A of the wavefunction ψ as the
exponential of the entropy (in units of kB) of the particles described by the wavefunction ψ. This
fact has been implicitly taken into account in the notation of Equation (3), from where we derive the
entropy in terms of the amplitude:

Sm = 2kB ln A. (17)

Acting on the plane waves (10), the matter entropy operator Sm is a constant,

Sm = −3kB ln R0. (18)

Therefore, its expectation value in the state (10) equals

〈ψk|Sm|ψk〉 = −3kB ln R0. (19)

The above is the correct behaviour for the entropy of an ideal gas, since the radius of the Universe
is inversely proportional to its temperature.

For the spherical waves (11), we arrive at a matter entropy operator Sm

Sm = −2kB ln r− kB ln (4πR0) . (20)
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Its expectation value in the state (11) is found to be

〈ψκ00|Sm|ψκ00〉 = −3kB ln R0, (21)

after dropping a constant independent of R0. We again find the expected (ideal-gas) logarithmic
dependence of the entropy with respect to the temperature.

2.3. Nonperturbative Estimate of the Entropy

2.3.1. Exact Eigenfunctions

A nonperturbative evaluation requires solving the interacting Schrödinger equation Hψ = Eψ,
where now

H = − h̄2

2m
∇2 − keff

2
r2, keff = mH2

0 . (22)

Let us separate variables in Equation (22) using spherical coordinates. The standard factorisation
ψ(r) = R(r)Ylm(θ, φ) leads to a radial wave equation

1
r2

d
dr

(
r2 dR

dr

)
− l(l + 1)

r2 R +
2m
h̄2

(
E +

keff
2

r2
)

R = 0. (23)

Two linearly independent solutions with l = 0 are [27]

R(1)
λ (r) = exp

(
ia2

2
r2
)

1F1

(
3
4
− iλ

4
,

3
2

;−ia2r2
)

(24)

and

R(2)
λ (r) =

1
r

exp
(

ia2

2
r2
)

1F1

(
1
4
− iλ

4
,

1
2

;−ia2r2
)

. (25)

Above, 1F1(α; γ; z) is the confluent hypergeometric function, and the parameters a, λ can be
expressed in terms of the mechanical data m, keff, E, H0:

a4 :=
mkeff

h̄2 , λ :=
2E

h̄H0
. (26)

The complete interacting wavefunctions are (up to radial normalisation factors)

ψ
(j)
λ (r, θ, φ) =

1√
4π

R(j)
λ (r), j = 1, 2, λ ∈ R. (27)

Since λ ∈ R is the (dimensionless) energy eigenvalue, it plays the same role that the quantum
number n ∈ N plays in the standard harmonic oscillator. Our harmonic potential does not have
quantised energy levels, but continuous energy levels λ instead. However, the range of values covered
by λ, while unbounded above, is bounded below by

E0 = −1
2

mH2
0 R2

0 (28)

or, in terms of the dimensionless eigenvalue λ, by

λ0 = −
mH0R2

0
h̄

= −2.6× 10123. (29)

Substituting this value of λ0 into Equation (27) produces the wavefunctions ψ
(j)
λ0

, with j = 1, 2,
which are the analogues of the vacuum wavefunction of the usual oscillator. The bound (28) has been
determined by a purely classical argument; although the uncertainty principle will shift the minimum
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energy (28) by a positive amount, this correction can be discarded for our purposes, as it will be
negligible compared to (28) itself.

As opposed to the free wavefunctions (10) and (11), the existence of zeroes of the confluent
hypergeometric function 1F1 is a sure sign that the cosmological principle will be violated by the
wavefunctions (27), but the extent of this violation remains to be determined. We claim that:

(i) the expectation value of the quantum potential (7) is a measure of the violation of the
cosmological principle. More precisely, small values of the dimensionless ratio |〈Q〉/〈V〉| imply
small violations of the cosmological principle, while large values imply large violations;

(ii) the ratio |〈Q〉/〈V〉| achieves a minimum when evaluated in two states ψ
(j)
λ0

, because the
numerator |〈Q〉| reaches a minimum while the denominator |〈V〉| reaches a maximum. That |〈V〉|
achieves a maximum when λ = λ0 is obvious. In what follows, we would like to argue that |〈Q〉| also
reaches a minimum when λ = λ0.

Evaluating the quantum potential (7) in terms of the eigenfunction ψ, with eigenvalue E, leads to

Q = E−V +
h̄2

8m

[
ψ−2(∇ψ)2 + (ψ∗)−2(∇ψ∗)2 − 2(ψ∗ψ)−1∇ψ∗∇ψ

]
. (30)

Its expectation value in the eigenstate ψ equals

〈Q〉 = E− 〈V〉+ h̄2

8m

∫ [
ψ∗ψ−1(∇ψ)2 + (ψ∗)−1ψ(∇ψ∗)2 − 2∇ψ∗∇ψ

]
. (31)

Altogether, the ratio

〈Q〉
〈V〉 =

E− 〈V〉
〈V〉 +

h̄2

8m〈V〉

∫ [
ψ∗ψ−1(∇ψ)2 + (ψ∗)−1ψ(∇ψ∗)2 − 2∇ψ∗∇ψ

]
(32)

is a dimensionless number. If it vanishes, the eigenfunction ψ satisfies the cosmological principle
reasonably well. If the ratio (32) is nonvanishing but nevertheless small in absolute value, the
eigenfunction ψ will satisfy the cosmological principle at least approximately, and our computation of
the entropy will be on a sound basis.

Actually, the ratio (32) depends on the energy eigenvalue λ. We expect a regime of values to
exist for λ such that within this regime, the dimensionless ratio 〈Q〉/〈V〉 will be small enough to
guarantee the validity of the replacement of the cosmological fluid with the quantum probability
fluid. In order to justify this expectation, we first observe that for real eigenfunctions ψ, the ratio (32)
simplifies considerably:

〈Q〉
〈V〉 =

E− 〈V〉
〈V〉 , ψ∗ = ψ. (33)

Of course, our eigenfunctions (27) are not real. However, still assuming ψ∗ = ψ, the best possible
ratio 〈Q〉/〈V〉 is attained for E = 〈V〉. This makes the following assumption plausible: the complex
wavefunction ψ0 which minimises the ratio |〈Q〉/〈V〉| is that for which the energy eigenvalue E0 equals the
expectation value 〈ψ0|V|ψ0〉.

We therefore expect the two states ψ
(j)
λ0

of Equation (27)—with λ0 given in Equation (29)—to be
those that minimally violate the cosmological principle. In other words, the correspondence put forth
in this paper (the quantum probability fluid as an equivalent description of the ideal cosmological
fluid) works best when applied to the states ψ

(j)
λ0

, while progressively becoming less and less reliable
as the energy increases.

Unfortunately, the exact vacuum-state eigenfunctions ψ
(j)
λ0

of Equations (24) and (25) contain the
huge parameter λ0 of Equation (29). Due to the oscillatory behaviour of the confluent hypergeometric
function, this renders the exact radial eigenfunctions (27) extremely cumbersome to work with,
both analytically and numerically. To simplify matters, we will replace the exact vacuum-state
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eigenfunctions ψ
(j)
λ0

of Equations (24) and (25) with a set of approximate radial eigenfunctions for the
vacuum state. We will also see that these approximate eigenfunctions will be real, so they will only
minimally violate the cosmological principle.

2.3.2. Approximate Eigenfunctions for the Vacuum State

We set l = 0 in Equation (23) and use E = E0 from (28) to arrive at the eigenvalue equation for the
vacuum state:

1
r2

d
dr

(
r2 dR

dr

)
+

m2H2
0

h̄2

(
r2 − R2

0

)
R = 0. (34)

The change of variables
r =: R0x, R(r) =: f (x), (35)

where x ∈ [0, 1] is dimensionless, reduces Equation (34) to

1
x2

d
dx

(
x2 d f

dx

)
+ σ2

0 (x2 − 1) f (x) = 0, σ2
0 :=

m2H2
0 R4

0

h̄2 . (36)

As compared to (34), the above equation is defined on the interval x ∈ [0, 1], which is more
manageable than the original r ∈ [0, R0]; moreover, all large numbers present in the problem are
contained within the dimensionless parameter σ0 (the opposite of λ0 in Equation (29)):

σ0 = −λ0 = 2.6× 10123. (37)

The parameter σ0 equals the entropy of Equation (16) in units of kB; in fact, modulo the irrelevant
factor 2.6, it equals the holographic bound [26]. We conclude that the radial wave Equation (36) encodes
information about the holographic principle.

We have seen in Section 2.3.1 that Equation (36) is exactly soluble. However, the sheer size of σ0

renders the exact wavefunctions (24) and (25) totally useless: analytical computations with them are
out of the question, and numerical computations quickly get out of range. For this reason, we will
consider an approximate solution in two steps. In the regime x → 0, the radial wave Equation (36) can
be approximated by

1
x2

d
dx

(
x2 d f

dx

)
− σ2

0 f (x) = 0, x → 0, (38)

while in the regime x → 1, the approximate form of (36) reads

1
x2

d
dx

(
x2 d f

dx

)
= 0, x → 1. (39)

Their respective solutions are

f+0 (x) =
1
x

cosh (σ0x) , f−0 (x) =
1
x

sinh (σ0x) , x → 0 (40)

and
f1(x) =

A
x
+ B, x → 1. (41)

As announced above, these eigenfunctions are real; by the discussion following Equation (33),
they violate the cosmological principle only minimally. The functions f±0 must be joined smoothly
to f1 at some point x0 ∈ [0, 1]; the joint function will be an approximate radial wavefunction for the
vacuum state.
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Beginning with the hyperbolic sine first, let us consider the radial wavefunction

f (x) =


sinh(σ0x)/x if 0 ≤ x ≤ x0

A/x + B if x0 ≤ x ≤ 1,
(42)

up to an overall normalisation factor N(x0). Dropping terms of order exp(−σ0x0) and higher (this
approximation is totally justified due to the sheer size of σ0 = 10123. For this approximation to break
down, one would have to go to a regime where σ0x0 ' O(1), or equivalently, x0 ' 10−123. In turn, this
would imply that the exponential part of the wavefunction should be strongly suppressed in favour of
the term A/x + B. This, however, would be incompatible with the Hubble expansion), the matching
conditions that f and its derivative f ′ be continuous at x0 yield

A = − x0σ0

2
exp(σ0x0), B =

σ0

2
exp(σ0x0), (43)

while for the normalisation factor N(x0) of f we find

N(x0) =

√
12σ−1

0 exp(−σ0x0)

(1− x0)3/2 . (44)

Equation (44) is singular at x0 = 1; this results from dropping subdominant terms. Had we
dropped no subdominant terms at all, then N(x0 = 1) would be perfectly regular. We can now
compute the expectation value 〈Sg〉 = N kBσ0〈x2〉 as a function of the matching point x0. We find

〈x2〉(x0) = 〈 f |x2| f 〉(x0) =
1

10

(
x2

0 + 3x0 + 6
)

, (45)

which no longer exhibits any singularity, since 〈x2〉(x0 = 1) = 1. Some other values are

〈x2〉(x0 = 0.9) = 0.95, 〈x2〉(x0 = 0.5) = 0.77, 〈x2〉(x0 = 0.1) = 0.63. (46)

This result is easily interpreted: the Hubble potential drives an exponential expansion that causes
the Universe to concentrate mostly around the boundary at x = 1, even if the matching point x0 is
close to the origin. At the other end, when x0 = 1, the corresponding entropy equals

〈Sg〉
kB

= σ0〈x2〉 = 10123, (47)

in complete agreement with the perturbative results of Section 2.2. In particular, the holographic
bound continues to be saturated in this nonperturbative approach. The effect of having x0 < 1 reduces
this value somewhat, and the holographic bound is no longer saturated. However, the reduction thus
attained is negligible, far from the necessary ∼10−19 that would be required to bring the entropy from
the holographic bound ∼10123 down to its estimated value ∼10104 [28–31].

One readily verifies that Equations (45) and (47) continue to hold if one replaces the hyperbolic
sine with a hyperbolic cosine in the wavefunction (42).

2.4. Concluding Remarks

In all three approaches considered here (perturbative using plane waves, perturbative using
spherical waves, nonperturbative using approximate radial wavefunctions), we have abstained from
applying boundary conditions to the wavefunction ψ. An obvious boundary condition to impose
would be the vanishing of the wavefunction at R0, the boundary surface of the Universe. Now,
requiring ψ(R0) = 0 would quantise the allowed energy levels. This represents no problem per se,
but it creates some difficulties without actually improving our analysis. One expects the quantised
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energy levels to be so densely packed that, for all practical purposes, they will be indistinguishable
from a continuous energy spectrum. On the other hand, the boundary condition ψ(R0) = 0 reduces
the two linearly-independent solutions of the Schrödinger equation to just one. For example, instead
of the plane waves (10), one would now have a sinusoidal wave vanishing at R0, plus all of its higher
harmonics. We do not gain much by this, but we do lose some consistency, because sinusoidal waves
(as opposed to the complex exponentials (10)) no longer satisfy the cosmological principle. Analogous
arguments hold in the cases of the spherical waves (11) and the hyperbolic functions (42). Altogether,
these considerations justify not applying boundary conditions.

The dimensionless parameters λ0 and σ0 (Equations (29) and (37)) carry opposite signs—they
have to, as λ0 is the energy of the groundstate of a negative potential, while σ0 is its corresponding
entropy. However, they have the same absolute value. Given the physical constants at our disposal, σ0

is the only (dimensionless) entropy and λ0 is the only (dimensionless) energy that one can construct
(up to dimensionless factors which our analysis cannot determine). So, the equality σ0 = −λ0 is
inevitable. In turn, this equality reflects a physical property, namely: the equality of gravitational
equipotential surfaces and isoentropic surfaces as dictated by the emergent spacetime scenario of
Reference [12], used here.

One could turn the argument around and try to reason as follows. Starting from a knowledge
of the actual entropy of the Universe σ ∼ 10104, one derives the radial wavefunction describing
this nonmaximally entropic Universe: one simply substitutes the dimensionless eigenvalue
λ = −σ = −10104 into the eigenfunctions (24) and (25). Call the latter ψ

(j)
10104 as in Equation (27).

The expectation value of R2 in the states ψ
(j)
10104 should give back the initial entropy 10104.

However, the above logic is flawed, because the eigenfunctions ψ
(j)
10104 violate the cosmological

principle substantially—and not just minimally, as argued in Section 2.3.1. We can get an idea of
the order of magnitude of this violation. The radius R of the Universe described by ψ

(j)
10104 can be

inferred from Equation (36): write σ = mH0R2/h̄, with R replacing R0, and solve for R. We find
R = 8× 1016 m—a far cry from the actual radius of the Universe, R0 = 4× 1026 m.

The notion of the emergence of spacetime put forward in Reference [12] demands that if the
holographic bound is not to be saturated, then the quantum state of the Universe must be an
excited state instead of the vacuum—it is only in a state of maximal entropy that minimal energy
can be attained. Moreover, this must happen compatibly with the cosmological principle. Due to
the limitations of our approach (the Newtonian approximation), the Universe described by our
wavefunctions of Sections 2.2 and 2.3 has more entropy than necessary. On the positive side,
the Universe described by our wavefunctions complies with the cosmological principle, with the
holographic bound, and with the basic assumptions of emergent spacetime (forces are entropy gradients)
put forth in Reference [12].

3. Discussion

In the nonrelativistic approximation, the cosmological fluid can be very conveniently described à
la Madelung by separating the wavefunction of the matter contents of the Universe into amplitude
and phase. This observation opens the gate to the application of quantum mechanics in order to obtain
estimates of thermodynamical quantities of the Universe, such as the gravitational entropy.

In Section 2.2, we have carried out a perturbative computation. This perturbative analysis is
based on a set of free wavefunctions which one uses to evaluate the expectation value of the Hubble
potential. The nonperturbative computation performed in Section 2.3 is based on a set of interacting
wavefunctions, obtained by solving the Schrödinger equation corresponding to the Hubble potential.

Both the perturbative and the nonperturbative analysis yield the same result: our estimates (16)
and (47) saturate the upper bound established by the holographic principle [26]. Some estimates [28–31]
place 〈Sg〉/kB at around 10104. While a somewhat lower value of our entropy would clearly be
desirable, the fact is that the upper bound set by the holographic principle is respected by all of our
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results. We are inclined to believe that the Newtonian approximation applied throughout is responsible
for this saturation of the holographic bound, and that a fully relativistic treatment [18] will provide the
necessary refinements that will reduce our entropy down to values better fitting with current estimates.
Moreover, it is very rewarding to see the precise value of the holographic bound encoded in the wave
equation as the parameter σ0 (see Equations (36) and (37)). This means that our crude model bears an
element of truth.

Our analysis can be regarded as a quantum-mechanical application of the theory of emergent
spacetime presented in the celebrated paper [12]. We have made decisive use of the property of
emergence, both of classical spacetime and of quantum theory. As concerns spacetime, the emergent
property is used when regarding gravitational equipotentials as isoentropic surfaces. Concerning
quantum theory, emergence is used when regarding the wavefunction amplitude as the exponential of
the (matter) entropy, as dictated by Boltzmann’s principle.

Admittedly, the assumptions made throughout automatically put black holes beyond our scope.
Black holes are supposed to be the largest single contributors to the entropy budget of the Universe.
Whether or not quantum mechanics as we know it remains applicable to black holes is of course a
disputed question [30,31]. This understood, we would like to point out that our estimate is based on a
dynamical model—a feature which, to the best of our knowledge, is entirely new.
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Abstract: The classical thermostatics of equilibrium processes is shown to possess a quantum
mechanical dual theory with a finite dimensional Hilbert space of quantum states. Specifically,
the kernel of a certain Hamiltonian operator becomes the Hilbert space of quasistatic quantum
mechanics. The relation of thermostatics to topological field theory is also discussed in the context of
the approach of the emergence of quantum theory, where the concept of entropy plays a key role.
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1. Motivation

The approach of the emergence of quantum mechanics has provided interesting clues into
the deeper structure of the theory. The statement that standard quantum mechanics is an emergent
phenomenon [1–4] has found further support in a series of papers, some of which have been reviewed in
Reference [5]. Although this is a huge topic to summarize here, let us briefly mention some key points
of this approach. The underlying notion is that it provides a coarse-grained version of some deeper
theory, out of which quantum mechanics emerges as a kind of effective description. This effective
description—in using variables that arise as averages over large collections of individual entities
carrying the truly fundamental degrees of freedom—ignores the underlying fine structure. These
fundamental degrees of freedom have been identified in References [3,4] as those of cellular automata.

This state of affairs is reminiscent of the relation between thermodynamics (as an emergent
phenomenon) and statistical mechanics (the corresponding underlying theory). Based on this analogy,
we have in previous publications (see [5] and references therein) established a bijective map that one can
define between quantum mechanics, on the one hand, and the classical thermodynamics of irreversible
processes, on the other [6,7]. It must be stressed that the classical thermodynamics of irreversible
processes [6,7] is conceptually quite different from the usual thermostatics of equilibrium as presented in
the standard textbooks [8]. Specifically, in the theory of irreversible processes, the continual production
of entropy provides a rationale for the dissipation—or information loss—that has been argued to lie at
the heart of quantum mechanics [3,4]. The relevance of thermodynamical concepts to quantum theory
and gravity has been emphasized recently in references [9–13].

It might thus appear that the usual quasistatic thermodynamics [8] (i.e., the thermostatics of
equilibrium processes) possesses no quantum mechanical dual theory at all. In this letter, we point
out that such a conclusion is not true: the thermostatics of equilibrium processes does have a quantum
mechanical dual; namely, a quasistatic quantum mechanics. By quasistatic, we mean that the kinetic term
in the mechanical Lagrangian can be neglected compared to the potential term.

Neglecting the kinetic term in the Lagrangian function forces one to look elsewhere for the
dissipative mechanism that is characteristic of quantum theory [3,4]. In particular, such a mechanism
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can no longer be identified with the continual production of entropy associated with Onsager’s
kinetic term Lij q̇i q̇j. The reciprocity theorem [6] ensures Lij = Lji, and dissipation requires that this
matrix be positive definite; the latter two properties ensure that Lij qualifies as a metric. The result of
neglecting the kinetic term in the Lagrangian is a mechanics bearing some resemblance to topological
field theory [14]. Indeed, once the metric represented by the kinetic term is neglected, correlation
functions can no longer be metric dependent. Hence, while correlators can still depend on the
topology of the underlying manifold, they can no longer depend on its metric structure. In our case,
the underlying manifold will be given by the equipotential submanifolds (within configuration space)
of the potential function.

2. A Quasistatic Mechanics

A quasistatic mechanics is obtained by neglecting the kinetic term K in the mechanical Lagrangian
L = K−U, and keeping only the potential term U:

L = −U. (1)

Since our Lagrangian does not depend on the velocities q̇, this phase space is constrained by the
requirement that all momenta vanish, p = 0, and the Hamiltonian equals

H = U. (2)

We can now construct the reduced phase space corresponding to this reduced configuration
space, and eventually quantise it (for our purposes, it will not be necessary to apply Dirac’s theory
of constrained quantisation [15]). When moving along equipotential submanifolds, the particle is
effectively free; whenever motion takes place between neighbouring equipotentials, forces will cause
the particle’s kinetic energy to increase or decrease. However, the allowed motions must be quasistatic,
so even for these motions, K must be negligible compared to U. In classical mechanics, motion along
equipotential submanifolds plus a vanishing kinetic energy imply that a classical particle must forever
stay at rest. Quantum mechanically, due to the uncertainty principle, a (more or less localised) free
particle always carries a nonzero kinetic energy. So, neglecting the kinetic energy of a quantum particle
implies a large uncertainty in the position. This large uncertainty is reflected in a large spread of the
corresponding wavepacket: the latter encompasses a large interval of different classically allowed
positions (or states), all of which coalesce into a single quantum state. It is only in the limit of complete
delocalisation in space that a quantum particle can carry zero kinetic energy.

We have just described an information loss mechanism whereby different classical states (different
spatial positions on an equipotential submanifold, corresponding to different classically allowed
equilibrium states) are lumped together into just one quantum state. This information loss has been
argued to be a key feature of the quantum world.

3. The Thermostatics Dual to Quasistatic Mechanics

We claim that the quasistatic quantum mechanical model described in Section 2 possesses a dual
theory: the classical thermostatics of equilibrium processes. In what follows, we will exhibit the claimed
duality explicitly.

The classical thermostatics of equilibrium [8] is a theory of quasistatic processes. In particular,
all kinetic energies are neglected; the processes described are either in thermal equilibrium, or at
most differ infinitesimally from thermal equilibrium. This feature is in sharp contrast with
the thermodynamics of irreversibility [6,7] that we described in previous publications [5] as a
thermodynamical dual of quantum mechanics, whenever the kinetic energies involved could not be neglected.

Next we recall that classical thermostatics is—like quantum mechanics—an emergent theory.
By emergent, we mean that classical thermostatics is the result of coarse graining over very many
microscopic degrees of freedom; the resulting theory renounces the knowledge of detailed information
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about its constituent degrees of freedom, retaining just a handful of relevant averages such as pressure,
volume, and temperature. In other words, an information loss mechanism is at work. This situation is
similar to that described in Section 2 for the passage from classical mechanics to quantum mechanics.

In the dual thermostatics considered here, the counterpart of the mechanical action I =
∫

Ldt
is the entropy S. We will identify isoentropic submanifolds (of thermodynamical state space) with
equipotential submanifolds (of mechanical state space). This is justified because in the approach of
emergence, forces are (proportional to) entropy gradients. In the particular case of the gravitational force,
this identification has been put forward in reference [16]; it coincides with the viewpoint applied in the
theory of irreversibility [7], and indeed with the whole programme of the emergent physics paradigm.
In this way, the quantum mechanical exponential

exp
(
− i

h̄
I
)

(3)

becomes, in the dual thermostatics,

exp
(

S
kB

)
. (4)

The correspondence between expressions (3) and (4) has been known for a long time, having
been discussed more recently in reference [9] from the point of view of statistical mechanics. However,
we would like to stress that the theory being considered here as dual to quantum mechanics is not
statistical mechanics, but the thermostatics of equilibrium emerging from the latter.

Finally, the connection between the mechanical time variable t and the temperature T is as follows
(this substitution is widely applied in thermal field theory; e.g., [17]):

i
h̄

t←→ − 1
kBT

, (5)

where h̄ and kB are Planck’s constant and Boltzmann’s constant, respectively. The double arrow
is to be understood as replace every occurrence of it/h̄ in the mechanical theory with −1/kBT in the
thermostatical dual, and vice versa. Quasistatic mechanics therefore corresponds to isothermal processes
in the dual thermostatics.

4. The Quasistatic Mechanics Dual to Thermostatics

Given some specific thermostatical systems, below we illustrate how to define their corresponding
(quasistatic) quantum mechanical duals.

4.1. The Ideal Gas

An expression for the entropy of a system in terms of its thermodynamical variables is called
a fundamental equation for the system [8]. To be specific, let us consider 1 mole of an ideal gas occupying
a volume V at a fixed temperature T. Its fundamental equation reads

S(V) = S0 + kB ln
(

V
V0

)
, (6)

where S0 is the entropy in the fiducial state specified by V0; we take S0 to contain a constant contribution
from the fixed temperature T. The entropy depends only on the volume V; the latter, running over
(0, ∞), can be regarded as the thermodynamical coordinate for the isothermal processes of an ideal gas.

In order to construct a kinetic energy operator K for the quantum theory, the standard rule is

K : = − h̄2

2M
∇2, (7)
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where ∇2 is the Laplacian operator on functions. By definition, the Laplacian requires a metric gij:

∇2 =
1
√

g
∂i

(√
ggik∂k

)
, g = |det(gij)|. (8)

The fundamental Equation (6) provides us with a clue as to which metric can be meaningfully
chosen. We first observe that Equation (6) is valid in three-dimensional space, where the volume V
scales like r3; here r, θ, ϕ are spherical coordinates. This suggests using the Euclidean metric in R3,

ds2 = dr2 + r2dθ2 + r2 sin2 θdϕ2, (9)

and imposing the following two requirements. First, motion along the radial direction r must cause
an increase or decrease of the entropy, as per the fundamental Equation (6), with V = 4πr3/3; second,
the sphere r = r0 must define an isoentropic surface for each r0.

Further support for our argument follows from a classic result by H. Weyl: (we quote this result
from reference [18]): let R ⊂ R3 be a bounded region with piecewise smooth boundary, and let
V(R) =

∫
R
√

g d3x denote its volume with respect to some Riemannian metric on R3. Then,
the eigenvalue equation for the Laplacian on R, ∇2 f = λ f , supplemented with some mild boundary
conditions, has a countable infinity of real eigenvalues λn satisfying 0 ≥ λ1 ≥ λ2 ≥ λ3 ≥ . . .. These
eigenvalues can be arranged into a partition function Z(t),

Z(t) : = Tr exp
(

t∇2
)
=

∞

∑
n=1

exp (tλn) , (10)

and it turns out that the small t asymptotics of Z(t) is given by

Z(t) ' V(R)
(4πt)3/2 , t→ 0. (11)

An analogous result holds within Rd (it is not necessary to assume that d = 3; it is not necessary
that the metric be the Euclidean one; it is also not necessary to assume that R is a sphere). However,
the Euclidean assumption is suggested by the fundamental Equation (6), while the assumption of
spherical symmetry (in no way imposed by the ideal gas) provides a welcome simplification. The volume
V occupied by the ideal gas within Euclidean space is naturally related to the spectrum of the Laplacian operator
within (and on the boundary surface of) V.

We will initially define the Hilbert spaceH of quasistatic quantum mechanics as the space of those
states that minimise the expectation value of the kinetic energy, subject to the constraint that they be
normalised (plus some boundary conditions to be specified below). Thus, introducing a Lagrange
multiplier −λ ∈ R, we need to solve

δ

δ|ψ〉 (〈ψ|K|ψ〉 − λ〈ψ|ψ〉) = 0, 〈ψ|ψ〉 = 1. (12)

Since K is selfadjoint, Equation (12) leads to

K|ψ〉 = λ|ψ〉, (13)

so the Hilbert spaceH is initially defined as

H : = Ker (K− λmin) , (14)

where λmin is the minimal kinetic energy; we have seen that λ ≥ 0. We will presently see how the
inclusion of a potential function U affects the definition (14) of the Hilbert space.
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4.2. Motion along Isoentropic Surfaces

We first analyse motion along a given isoentropic surface, which we take to be the unit sphere S2.
The angular part ∇2

S2 of the Laplacian operator on R3 leads to the kinetic energy operator KS2 :

KS2 ψ := − h̄2

2M
∇2

S2 ψ = − h̄2

2M
1

sin θ

[
∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
sin θ

∂2ψ

∂ϕ2

]
. (15)

Within the space L2(S2), the eigenvalues λ of Equation (13) are h̄2l(l + 1)/(2M), with l ∈ N ;
the least kinetic energy for motion on S2 corresponds to the zeroth spherical harmonic Y00 = (4π)−1/2:

KS2Y00 = 0. (16)

The corresponding particle is completely delocalised on S2, as befits the fact that its momentum
vanishes exactly. The Hilbert spaceHS2 is defined as the linear span of the spherical harmonic Y00; i.e.,

HS2 = Ker
(
∇2

S2

)
. (17)

On a compact connected manifold, the only harmonic functions are the constants; the specific
value (4π)−1/2 is determined by normalisation. Although we have computed dimHS2 explicitly,

the finite dimensionality of Ker
(
∇2

S2

)
⊂ L2(S2) was already guaranteed on the basis of general results

concerning the theory of elliptic operators on compact Riemannian manifolds [19] (in this particular
case, one can more simply apply the Hodge theorem [20]: since the 2–sphere S2 is a compact orientable
Riemannian manifold, we have

dim Ker
(
∇2

S2

)
= b0(S2) = 1,

where b0 is the zeroth Betti number of the manifold in question). A finite dimensional Hilbert space
is a feature of many topological theories [14]: although a metric was initially required to define
a Laplacian operator, the metric dependence is softened in the end, through the requirement of
quasistatisticity (12).

Finally, we can add a potential function U = U(r) depending only on the radial variable r, and the
previous arguments remain entirely valid. We then get back to the situation described in Section 2:
a particle moving quasistatically along the equipotential submanifolds of a certain potential.

4.3. Motion across Isoentropic Surfaces

Next, we analyse motion across isoentropic surfaces. The radial part ∇2
r of the Laplacian operator

on R3 gives rise to the kinetic energy operator Kr:

Krψ : = − h̄2

2M
∇2

r ψ = − h̄2

2M

(
d2ψ

dr2 +
2
r

dψ

dr

)
. (18)

By Equations (13) and (18), we need to solve

d2ψ

dr2 +
2
r

dψ

dr
+ c2ψ = 0, c2 :=

2Mλ

h̄2 ≥ 0; (19)

a fundamental set of solutions is
{

ψ±(r) = r−1 exp(±icr)
}

. A vanishing kinetic energy is attained
when c = 0. However, the corresponding wavefunction, ψ(r) = 1/r, is neither regular at r = 0,
nor square integrable over the interval (0, ∞). Imposing regularity of ψ(r) at r = 0, one is left with
the wavefunctions

ψ(r) =
1
r

sin (cr) , (20)
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while the wavenumber c ∈ R remains undetermined. We can determine c if we recall the relation
between the squared wavefunction |ψ|2 and the entropy [5]:

|ψ|2 = exp
(

S
kB

)
. (21)

Collecting different microstates into a single pure quantum state is reminiscent of Von Neumann’s
density matrix formulation of the entropy of a mixed quantum state. However, even a pure state
embodies a probability distribution; the latter has an associated Shannon entropy. The entropy of
a pure state is not monotonic in time under Schrödinger evolution; this problem remains unsolved.

Let r0 be the radius of the fiducial sphere in Equation (6). When evaluated at r = r0, Equation (21)
becomes (by Equation 20),

1
r0

sin(cr0) = exp
(

S0

2kB

)
. (22)

Now the sine function is bounded between −1 and +1. This requires fine tuning the value of
the fiducial entropy S0 as a function of the fiducial radius r0, or vice versa, if Equation (22) is to have
a real solution for c. The simplest choice is to formally set S0 = −∞. This choice has the added
bonus that Equation (22) admits real solutions for c, without the need to fine-tune r0 as a function
of S0; it corresponds to imposing the additional boundary condition ψ(r0) = 0. Then, the admissible
eigenfunctions, with their corresponding wavenumbers cn ∈ R, are given by

ψn(r) =

√
2
r0

1
r

sin (cnr) , cn =
nπ

r0
n = 1, 2, . . . (23)

We have normalised ψn within L2 ([0, r0]).
The least kinetic energy is attained when n = 1. Therefore, we define the Hilbert space Hr

as the kernel
Hr = Ker

(
∇2

r + c2
1

)
. (24)

This one-dimensional space is generated by the wavefunction ψ1(r). More generally, the finite
dimensionality of Ker

(
∇2

r + c2
n
)
⊂ L2([0, r0]) for all n = 1, 2, . . . is guaranteed by the theory of elliptic

operators on compact Riemannian manifolds [19].
So far, the total Hilbert spaceH is the tensor product of the spaces (17) and (24):

H = HS2 ⊗Hr. (25)

We have up to now considered a free particle. If a potential function U(r) is included, then the
Hilbert space (24) must be redefined to be

Hr = Ker

(
− h̄2

2M
∇2

r −
h̄2

2M
c2

1 + U(r)

)
, (26)

and the latter substituted back into Equation (25). The above kernel remains finite dimensional. This is
because the addition of U(r) does not alter the ellipticity of the Hamiltonian; hence, general theorems
concerning the spectrum of elliptic operators on compact Riemannian manifolds continue to apply [19].
Of course, the presence of a potential on the quantum mechanical side modifies the fundamental
Equation (6) of the corresponding thermostatics.

We close this section with some remarks.

(i) The compact configuration space [0, r0]× S2 has the advantage that, due to energy quantisation,
one can univocally identify a nonvanishing state of least kinetic energy. On the noncompact
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configuration space [0, ∞) × S2, the allowed energy eigenvalues run over [0, ∞), and no
nonvanishing state of least energy exists.

(ii) Results analogous to those presented above would continue to hold if the free quantum particle
were placed in a cubic box of volume L3, with vanishing boundary conditions for the wavefunction
on the sides of the cube. The use of Cartesian coordinates renders isoentropic surfaces (now
cubes) somewhat clumsier to work with than spheres, but the expectation value of the entropy
(see Equation 28 below) remains metric independent, and also the Hilbert space continues to
be one-dimensional.

(iii) Analogous results would also hold if we worked in d–dimensional Euclidean space Rd, viz: finite
dimensionality of the Hilbert space, and metric independence of the expectation of the entropy.

4.4. A Metric Free Entropy

It is instructive to compute the expectation value of the entropy in the state (23). We set
V = 4πr3/3, V0 = 4πr3

0/3, and write the quantum mechanical operator corresponding to the classical
entropy of Equation (6) as

Ŝ(r) = S0 + 3kB ln
(

r̂
r0

)
. (27)

The carets are meant to indicate quantum operators. Subtracting the infinite constant S0 one finds
an expectation value of the entropy

〈ψn|Ŝ|ψn〉 = 3kB

∫ r0

0
r2|ψn(r)|2 ln

(
r
r0

)
dr = 3kB

(
Si(2πn)

2πn
− 1
)

, (28)

where Si(x) :=
∫ x

0 t−1 sin t dt is the sine integral function. In particular, all terms depending on r0 drop
out of Equation (28). This is in perfect agreement with the topological character [14] of our model:
the entropy cannot depend on the radius r0 of the fiducial sphere, because the latter requires a metric
for its definition.

4.5. The Quantum Mechanical Partition Function

The quantum mechanical partition function Zqm(t) is defined by

Zqm(t) = ∑
n

dimHn exp
(
− i

h̄
Ent
)

, (29)

where Hn is the Hilbert eigenspace corresponding to the energy eigenvalue En. The above sum is
usually divergent, but it can be made to converge by Wick rotating the time variable as per

Zqm(τ) = ∑
n

dimHn exp
(
−1

h̄
Enτ

)
. (30)

In the quasistatic limit, the above sum is dominated by the least energy eigenvalue, Emin,
and Zqm(τ) becomes Zqqm(τ), the subindex “qqm” standing for quasistatic quantum mechanics:

Zqqm(τ) = dimHmin exp
(
−1

h̄
Eminτ

)
. (31)

Therefore,
Zqqm(0) = dimHmin, (32)

and the partition function of quasistatic quantum mechanics computes the dimension of the Hilbert space of
quantum states; also a conclusion that is reminiscent of topological models [14].
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5. Conclusions and Outlook

The application of differential and Riemannian geometry to the theory of thermodynamical
fluctuations has turned out to be extremely useful [21–23]. Thus, for example, the classical
thermodynamics of irreversible processes [6,7] requires a metric on phase space for its formulation.
This metric is provided by Onsager’s matrix of kinetic coefficients Lij. The metric enters the quantum
mechanical dual theory [5] through the kinetic term in the mechanical Lagrangian.

On the contrary, the thermostatics of equilibrium processes [8] is genuinely metric free. Therefore,
if thermostatics is to possess any quantum mechanical dual at all, this dual theory should be
a topological theory [14], in the sense that it should be metric independent.

That the classical thermostatics of equilibrium processes should possess a quantum mechanical
dual is suggested by two observations. First, by the claim that quantum mechanics is an emergent
phenomenon [1–5,24]. Second, by the widespread opinion that thermodynamics (be it of equilibrium [8]
or nonequilibrium [6,7]) is the paradigm of all emergent sciences. These conclusions remain unaltered
even if—as argued in reference [25]—the emergent aspects of quantum mechanics can only become
visible at very high energies.

Two guiding principles are at work here: the notion that forces are entropy gradients, and the
requirement that all processes be quasistatic. Entropy gradients, while defining a direction for
evolution, ignore microscopic structures, retaining only coarse-grained averages: this is a feature of
emergent phenomena. Ignoring the metric structure of the underlying manifold amounts to ignoring
the kinetic term in the Lagrangian. Quantum mechanically, due to the uncertainty principle, the effects
of the kinetic term cannot be cancelled completely, unless one accepts a complete delocalisation of
the particle in space. The result of following these two guiding principles is a quasistatic quantum
mechanics, which is dual to the classical thermostatics of equilibrium processes, and shares a number
of key properties in common with topological (i.e., metric free) models.

After completion of this work, there appeared reference [26], where the WKB expansion of
quantum mechanics is developed from the point of view of topological string theory [27]. Reference [26]
provides further evidence of the existing links between topological theories and quantum mechanics.
Some of these links have been analysed in the present paper, from the alternative standpoint of the
approach of emergence of quantum theory; further connections are being studied in an upcoming
publication [28].
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We investigate the φ meson nuclear transparency using some recent theoretical developments on the φ in
medium self-energy. The inclusion of direct resonant φN scattering and the kaon decay mechanisms leads to a φ

width much larger than in most previous theoretical approaches. The model has been confronted with photopro-
duction data from CLAS and LEPS and the recent proton induced φ production from COSY finding an overall
good agreement. The results support the need of a quite large direct φN -scattering contribution to the self-energy.

DOI: 10.1103/PhysRevC.96.034618

I. INTRODUCTION

The light vector meson properties in dense/hot nuclear
matter have been intensively studied the last decades in
the search, among others, of any signal of chiral symmetry
restoration. A good review of the related physics can be
found in Refs. [1,2]. These mesons are particularly appealing
because their dileptonic decays can provide a relatively clean
information of the nuclear medium interior as opposed to
strong decays undergoing a sizable final state interaction
before the detection of the decay products. In addition,
the φ-meson width is very narrow in vacuum and is well
separated from the ρ and the ω mesons what could help in
the experimental analysis and allow for the measurement of
any modifications of its mass or width.

Experimentally, φ production and its decays, both hadronic
and electromagnetic, have been investigated in heavy ion
collisions by the STAR and ALICE collaborations [3,4]. In
cold nuclei, φ production has been studied at Spring8 [5],
KEK [6], Jefferson Laboratory [7], and Jülich [8]. One of
the findings is that, whereas the φ mass in the medium is
scarcely modified if at all, the width is much larger than
in vacuum [5–9]. Actually, the in-medium φ width seems
to be substantially larger than predicted by most theoretical
models.

This width is expected to come mostly from the decay
φ → KK̄ , which is dominant in vacuum. The medium effects
modifying it have been much studied [10–15] and involve a
quite rich dynamics. In nuclear matter, the kaons are just mildly
repelled and will move out of the nucleus. However, antikaons
are attracted by the nuclear medium and can also be absorbed
leading to hyperons and resonances such as �(1405) and
others. These mechanisms are instrumental leading to a large
φ width. For instance, in Ref. [13], we obtain �φ ≈ 30 MeV
at normal nuclear density to be compared to 4 MeV in vacuum.
Still, that result is not large enough to describe the experimental
data. This failure has been the cause for a search for additional
mechanisms which could contribute to the meson decay.

In Ref. [16], we explored the φ self-energy pieces related
to some direct φ-nucleon interaction channels not previously

considered. There, φ-nucleon elastic scattering proceeds via
K∗-hyperon loops which give rise to a self-energy with real and
imaginary parts. Our work was based in some recent studies
analyzing the vector meson scattering with baryons in two
different schemes. Both models account for a relatively strong
φ-nucleon interaction. As a consequence of these mechanisms
the φ meson gets an additional broadening up to 40–50 MeV
and a mild attraction at normal nuclear density. Our purpose
here is to test the results of the model of Ref. [16] comparing
with the available data and check whether a satisfactory
description of the φ self-energy in cold nuclear matter has
been reached. We will focus on its controversial imaginary
part, or equivalently the φ width.

A direct extraction of the in-medium width via the analysis
of the invariant mass of the decay products poses some
difficulties. For instance, in Ref. [6] the dilepton channel was
measured in carbon and copper nuclei for 12 GeV p + A
reactions. With this kinematics, most of the φ mesons move
very fast in the forward direction and escape from the nucleus
before decaying. As a consequence, the observed width is
frequently the free one. Nonetheless, a clear broadening was
observed for the heavier nucleus and when only the slower
φ mesons were selected. On the other hand, the dominant
decay channel, φ → KK̄ , presents some additional challenges
related to the final state interaction. The strong antikaon
absorption restricts the visibility of decays that happen at high
densities far from the surface. Also the real part of the optical
potential, including Coulomb, modifies the kaon trajectories
and distorts the invariant mass of the system.

Another observable, sensitive to the imaginary part of the
φ self-energy is the nuclear transparency ratio given by the
quotient of the cross sections for φ production on nuclei and
on a free nucleon. This quantity depends on the loss of flux
in the medium and thus on the width of the φ meson and its
density dependence. The transparency has been measured in
photoproduction by the LEPS and CLAS collaborations [5,7].
This process had been suggested in Ref. [17] and was also
studied in Ref. [9]. Transparency for the case of proton induced
φ production is more complicated due to the initial state
interaction of the proton beam that leads to some secondary
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production mechanisms such as pN → πNN followed by
πN → φN . This process had been studied in Refs. [18–21]
and has been recently measured at Jülich [8,22].

In this paper, we present a study of the φ nuclear
transparency for both photon and proton induced production
on nuclei using the theoretical model from Ref. [16]. We will
start by giving a brief reminder of the φ self-energy model
and introduce the formalism used in the calculation. Then we
proceed to the comparison with the experimental data.

II. THEORETICAL MODEL

Two sources of φ self-energy in nuclear matter are consid-
ered here, the mechanisms related to the KK̄ decay, that will
be denoted as kaon cloud, and those coming from φN → φN
resonant scattering mediated by hyperon + vector meson and
other intermediate coupled channels.

In vacuum, the largest decay channel (83%) is φ → KK̄ .
At leading order, the φ self-energy is obtained by evaluating
K(K̄) loop and tadpole diagrams. The nuclear medium
effects are incorporated by properly dressing the kaon and
antikaon propagators with their self-energies originating from
the KN (K̄N ) s- and p-wave interactions. Details on the
calculation of this contribution to the φ self-energy can be
found in Ref. [13] and for the kaon/antikaon self-energy we
use the results from Refs. [23,24].

The K self-energy is relatively simple. The KN amplitude
is elastic and given the absence of resonances depends very
slowly on the energy. To a good approximation the self-energy
can be cast in the Tρ form. The K̄ case is more involved. The
p-wave part of the self-energy includes the coupling to several
particle-hole excitations such as �(1115)N−1, �(1195)N−1,
and �∗(1385)N−1. The s-wave part of the self-energy is
calculated in a unitarized chiral model and is dominated by
the excitation of the �(1405) resonance. A specially careful
and self-consistent treatment of the many-body corrections
is required in this case because of the vicinity to the K̄N
threshold. As a result, a quite large width is obtained for the
antikaons. Furthermore, the real part of the optical potential
shows an attraction of −60 MeV at normal nuclear matter
density for antikaons at rest in contrast to the mild repulsion
in the kaon case.

The novelty of Ref. [16] was the calculation of the
contribution to the φ self-energy in the medium related to the
φN elastic scattering amplitude. We relied upon the results
of two different schemes recently developed to describe the
vector meson-baryon scattering. The first one [25–27] obtains
the low-energy vector meson-baryon amplitude within the
hidden local symmetry (HLS) approach. The second one [28]
uses an SU(6) spin-flavor symmetry extension of the SU(3)
chiral perturbation theory Lagrangian. This leads to the
generalization of the Weinberg-Tomozawa interaction between
pseudoscalar and vector mesons, and baryons from the light
octet and decuplet. In both schemes the scattering amplitude
is calculated in a coupled channels unitarized approach. These
models have been successful in reproducing masses and decay
widths of some negative parity resonances and the HLS one
has also been tested and constrained in the analysis of the
γp → K� reaction [27]. At the lowest order, in these models,

there is no direct φN → φN interaction but that process
happens via loops such as φN → K∗� → φN . These loops,
on the other hand, produce an imaginary part for the scattering
amplitude through the opening of some decay channels.

The contribution to the self-energy is then obtained by
summing the scattering amplitude over the initial nucleon
Fermi distribution. Also Pauli blocking is taken into account
by replacing the vacuum nucleon propagators that appear in
the calculation by single-particle propagators in the Fermi
gas approximation. The new mechanisms produce a moderate
momentum dependence of the φ self-energy reflecting the
presence of some resonances on the φN amplitude. Further-
more, the predictions of the two theoretical models differ
significantly at low momenta for both real and imaginary
parts of the optical potentials. Close to threshold the attraction
ranges from 5 to 40 MeV, what could strongly affect the
existence and spectrum of possible φ meson nuclear bound
states [29]. The imaginary part is stronger for the SU(6) model,
though both models provide a larger contribution than the
mechanisms related to the KK̄ decay.

A. Nuclear transparency: Photoproduction

We start discussing the case of φ nuclear photoproduction
reactions. In this case shadowing is negligible. Thus, the
reaction takes place in the whole nucleus and the cross section
can be approximated by

dσA

d�
=

∫
d3r ρ(r)

dσN

d�
FABS, (1)

where dσN

d�
and dσA

d�
are the elementary-nucleon and nuclear

differential cross section, respectively. FABS is an absorption
factor accounting for the φ meson lost flux on its way out of the
nucleus. Here, in the production itself, Fermi motion and Pauli
blocking have not been considered. If we also set FABS = 1,
omitting φ absorption in the nucleus, we would get the trivial
result dσA

d�
= AdσN

d�
, where A is the number of nucleons.1

On the other hand, for energies close to threshold, just
for kinematic reasons, the φ meson goes forwards and is
quite fast. The high momentum means that changes of
trajectory because of the small real part of the optical potential
can be neglected. Also, the quasielastic collisions are very
improbable, as the imaginary part of the self-energy is fully
dominated by inelastic channels according to our theoretical
models. Therefore, to a good approximation, the φ meson will
move forward until it gets out of the nucleus or it is absorbed.
Thus, we can model the absorption factor in an eikonal form
as [17]

FABS = exp

(
−

∫ ∞

0
dl

1

p
Im �(p,ρ(r ′))

)
, (2)

where �(p,ρ(r)) is the φ self-energy as a function of its
momentum p and at the nuclear density ρ, �r is the φ production
point. Finally, �r ′ = �r + l �p/| �p|. As long as the integrand of

1Notice the implicit assumption, supported by the experiment [30],
that the φ production cross section from protons and neutrons is very
similar.
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FIG. 1. Transparencies for the nucleus 20Ne as a function of the
φ momentum with kaon cloud self-energy only or adding the φ self-
energies from the HLS [25,26] or the SU(6) model [28].

Eq. (1) does not depend on the direction of the φ momentum,
other than via dσN

d�
, we can write the following ratio between

the nuclear and the nucleon cross section:

Pout ≡ σA

AσN

= 1

A

∫
d3r ρ(r) exp

(
−

∫ ∞

0
dl

1

p
Im �(p,ρ(r ′))

)
, (3)

which measures the transparency of the nucleus to the φ meson.
The effect on the transparency observable for the φN

resonant scattering is substantial, as expected from its large
contribution to the φ self-energy [16]. In Fig. 1, we show this
ratio between cross sections for 20Ne as a function of the φ
momentum for the theoretical models considered in this paper.

The nuclear density profiles for all cases have been
taken from [31,32]. The inclusion of the new φN scattering
mechanisms leads to a much stronger absorption for the whole
momentum range explored than the kaon cloud alone. Addi-
tionally, the HLS model shows a strong energy dependence at
relatively low (< 600 MeV) momenta. At higher momenta the
nuclear transparency increases for all cases.

The only nuclear effects considered in this result and
in Eq. (3) are those related to φ absorption, incorporated
into the calculation of �, the φ self-energy. Other nuclear
effects affecting the production mechanism, rather than the φ
propagation, are the Fermi motion of the initial nucleon and
the Pauli blocking of the final one on the γN → φN process.
Pauli blocking will imply a reduction of the φ production
cross section. The Fermi motion will distort the distribution
of the final meson and nucleon and affect the Pauli blocking
itself. The flux reduction due to these sources can be estimated
for photon induced reactions by including in the integrand
of Eq. (3) a factor considering a Fermi average of these
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FIG. 2. Transparencies as a function of φ momentum for pho-
toproduction processes, with (θφ = 0 degrees) and without Pauli
blocking for 64Cu.

effects [17,33]:

G(Q,ρ) = 1 − �(2 − Q̃)

(
1 − 3

4
Q̃ + 1

16
Q̃3

)
, (4)

where Q̃ = | �Q|/kF , �Q is the momentum transfer and kF

is the Fermi momentum of the nucleons. In Fig. 2, we
show how the transparency is modified by the Pauli blocking
of the final nucleon. The result depends on the scattering
angle. For the figure we have selected forward φ scattering
that maximizes the change. Opening the angle increases the
transfer momentum and as soon as it is above 2kF , Pauli
blocking becomes ineffective. There is a small reduction at
high φ momentum and practically no change below 1.2 GeV.
This reduction will also affect transparency ratios comparing
different nuclei because of the variation of the average density,
and thus of the Fermi momentum. However, the dependence
of the Pauli blocking correction on the nuclear size, beyond
A ≈ 10, is minimal as shown in Ref. [17].

In Fig. 3, we compare our model with data from LEPS
[5] which measured the transparency detecting the φ mesons
through their KK̄ decay. The transparencies are normalized
to that of lithium, the lightest nucleus measured in the
experiment. In this way, some systematic errors could be
reduced. Our presented results are obtained assuming forward
scattering, thus maximizing the Pauli blocking effects. Remov-
ing Pauli blocking would push up by less than a 5% [5] the
three curves. The photon spectrum had energies ranging from
1.5 to 2.4 GeV. We take an average momentum, pφ = 1.8
GeV as suggested in [5]. We find that the inclusion of the
φN scattering mechanisms improves the agreement for both
models. In principle, the largest absorption corresponding to
the SU(6) model is favored. However, we find that it is very
hard to reproduce the steep change in data from lithium to
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carbon, even when artificially increasing the absorption by a
large factor.

In Fig. 4, we compare our model with data from CLAS [7].
In this case, the φ meson was detected via the e+e− decay
avoiding the complication of the final state kaon interactions
and some other difficulties in the background subtraction and
the experimental analysis. The average φ momentum is 2 GeV,
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FIG. 4. Transparency ratios for φ photoproduction as a function
of the atomic number compared with data from CLAS [7]. Curves to
guide the eye.

only slightly larger than for LEPS. According to our model
the transparencies at such close energies should be similar.
The results here are consistent with data. Lead transparency,
the one with the strongest nuclear effects, favors the inclusion
of the new mechanisms and overall the best fit corresponds to
the HLS model. Nonetheless, the large uncertainties prevent
us from reaching strong conclusions. The much larger σφN

cross section that would be required to accommodate LEPS
data would spoil the agreement with CLAS. Thus, the two
available photoproduction experimental results seem hardly
compatible.

As explained before, the LEPS data correspond to the
KK̄ decay of the φ meson. The complicated final-state
interaction of the kaons could seriously affect the signal:
the K+ could modify its energy and direction because of
quasielastic scattering, while the K− can even be absorbed
leading to hyperons. These effects could be included in a more
complete theoretical calculation. However, there are further
concerns related to the experimental separation of the φp and
the K+�(1520) channels. Both of them could lead to the same
pK+K− final state and thus, there are interferences which
would require a more detailed theoretical and experimental
analysis. There is some recent experimental progress along
this line for the γp → K+K−p reaction [34,35].

B. Nuclear transparency: proton induced production

The theoretical description of proton induced φ production
is more complicated [18–20] even when assuming that the
quasifree mechanism pN → pNφ is dominant. First, we must
consider the initial state interaction of the proton. A simple
approximation is to include an additional factor to account for
the proton flux reduction,

FIN = exp

(
−

∫ �r

∞
σNN ρ(r ′) dl

)
, (5)

where σNN is the full nucleon-nucleon cross section. From here
on, we adapt to the COSY/ANKE setup of Ref. [8]. There, the
protons have a kinetic energy of 2.83 GeV. It is close to the
reaction threshold and thus Pauli blocking is irrelevant for
the primary reaction NN → NNφ because the final nucleons
have a too large momentum. On the other hand, for the initial
distortion both σpn and σpp are around 42 mb [36]. A second
change with respect to the photoproduction process is the
sizable isospin asymmetry in the production cross section.
According to both experimental data and theoretical models
[37–39] the cross section for pn → pnφ is substantially larger
than for pp → ppφ. Also, the pn → dφ process, which
further enhances the relevance of neutrons, is of comparable
size [37]. This isospin asymmetry is taken into account
substituting σN in Eq. (1) by

{N (σpn→pnφ + σpn→dφ) + Zσpp→ppφ}/A (6)

with Z and N the number of protons and neutrons and A =
N + Z. We use for these cross sections the parametrizations
from Ref. [19]. Obviously, this isospin asymmetry leads to a
relatively larger φ production for heavier nuclei which have
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more neutrons than protons. The effect is of the order of 10%
for lead at the energy of Ref. [8].

Including the shadowing factor of Eq. (5) and the isospin
correction from Eq. (6) we compare our results with data from
Ref. [22] in Fig. 5. In the calculation we have taken an average
φ momentum of 1.3 GeV, which approximately corresponds
to the experimental peak of the φ production differential cross
section for all nuclei [8] and also of the phase space distribution
of the elementary NN → NNφ process at the studied energy.

The agreement is fair for all models and a simple χ -squared
analysis favors the HLS one. We should mention that in the pro-
ton induced process, a good part of the cross section reduction
in nuclei comes from the initial state interaction of the proton.
Thus, the process is more peripheral and there is less sensitivity
to the φ meson absorption than in photoproduction [18].

Additionally, there are some caveats to be considered before
giving too much weight to these results. The contribution of
multistep processes to the φ production mechanism could also
be important. For instance, the initial nucleon could undergo
a quasielastic scattering loosing some energy, followed by
φ production in a second step. Another possibility is the
excitation of a � resonance followed by a �N → NNφ
process. These two mechanisms were investigated in Ref. [18]
finding that they were relevant modifying the nuclear cross
sections, but hardly affected ratios such as that of Fig. 5. A
third mechanism, π production followed by πN → Nφ, has
been studied in Ref. [19] leading to some enhancement of the

nuclear transparency ratios. Given the influence of all these
mechanisms, with their large uncertainties, and the smaller
sensitivity to the φ meson absorption, we find that proton
induced production is less adequate than φ photoproduction to
obtain information on the φ self-energy in nuclear matter.

III. CONCLUSIONS

We have investigated the φ meson nuclear transparency
using the φ self-energy model developed in Ref. [16].
This self-energy includes direct φN-scattering mechanisms,
evaluated in two different theoretical approaches, in addition
to the terms due to the supposedly dominant kaon-cloud
interactions. We find that the contribution associated to φN
scattering is stronger than assumed in many previous theoret-
ical calculations. With this self-energy, we reproduce well the
nuclear transparency data obtained from φ photoproduction
reactions at CLAS. Furthermore, the agreement with the
LEPS photoproduction data is clearly improved when the φN-
scattering effects are considered. However, an even stronger φ
absorption would be required in this case. We find that CLAS
and LEPS data are hardly reconcilable, since they seem to
point to different in-medium φ absorption magnitudes.

The results also show a good reproduction of the proton
induced transparency data. However, this case is less sensitive
to the φ meson properties in the nuclear medium. Namely,
large changes of the self-energy lead to small changes of
the transparency which is dominated by shadowing effects.
Furthermore, the theoretical modeling is necessarily more
involved because of the importance of multistep production
mechanisms.

This work supports the relevance of the direct φN-
scattering mechanisms on the description of the φ meson width
in the nuclear medium. However, there are still substantial
uncertainties in the available theoretical models describing φN
scattering. This calls for new, more precise experiments, which
could help discriminating and constraining those theoretical
models. In particular, the measurement of other observables,
such as the spectrum of φ nuclear bound states, if they exist,
would be instrumental to determine both the real and the
imaginary part of the φ self-energy in nuclear matter.
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Abstract: The holographic principle sets an upper bound on the total (Boltzmann) entropy content
of the Universe at around 10123kB (kB being Boltzmann’s constant). In this work we point out
the existence of a remarkable duality between nonrelativistic quantum mechanics on the one
hand, and Newtonian cosmology on the other. Specifically, nonrelativistic quantum mechanics
has a quantum probability fluid that exactly mimics the behaviour of the cosmological fluid,
the latter considered in the Newtonian approximation. One proves that the equations governing the
cosmological fluid (the Euler equation and the continuity equation) become the very equations that
govern the quantum probability fluid after applying the Madelung transformation to the Schroedinger
wavefunction. Under the assumption that gravitational equipotential surfaces can be identified
with isoentropic surfaces, this model allows for a simple computation of the gravitational entropy
of a Newtonian Universe.

Keywords: gravitational entropy; holographic principle; emergent spacetime

1. Introduction

There is a widespread certainty that the continuum description of spacetime as provided by
general relativity must necessarily break down at very short length scales and/or very high curvatures.
A number of very different approaches to an eventual theory of quantum gravity have been presented
in the literature; these candidate theories are too varied and too extensive to summarise here. On the
whole, the picture that emerges is that of a continuum description after some appropriate coarse
graining of some underlying degrees of freedom. Even if the precise nature of the latter is unknown
yet, one can still make progress following a thermodynamical approach: one ignores large amounts
of detailed knowledge (say, the precise motions followed by the atoms of a gas) while concentrating
only on a few coarse-grained averages (say, the overall pressure exerted by the atoms of a gas on the
container walls). This way of approaching the problem has come to be called the emergent approach.

In the emergent approach to spacetime, gravity qualifies as an entropic force. This means that we do
not know the fundamental degrees of freedom underlying gravity, but their overall macroscopic effect
is that of driving the system under consideration in the direction of increasing entropy. If gravitational
forces are entropy gradients, then gravitational equipotential surfaces can be identified with isoentropic
surfaces. We will consider a density of particles representing the (baryonic and dark) matter contents
of a hypothetical Newtonian Universe. This volume density will be identified with the squared
modulus of a nonrelativistic wavefunction ψ satisfying the Schroedinger equation. Let U denote the
gravitational potential. Once dimensions are corrected (using h̄ and kB), the expectation value 〈ψ|U|ψ〉
becomes a measure of the gravitational entropy of the Universe when the matter is described by the
wavefunction ψ.
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2. Methods

In Newtonian cosmology, the Universe is regarded as being subject to a gravitational potential U
satisfying the Poisson equation

∇2U = 4πGρ. (1)

The matter content (baryonic and dark matter) is modelled as an ideal fluid satisfying the
continuity equation and the Euler equation,

∂ρ

∂t
+∇ · (ρv) = 0,

∂v
∂t

+ (v · ∇) v +
1
ρ
∇p− F = 0. (2)

The cosmological principle requires that the velocity field v be everywhere proportional to the
position vector r. This requirement is equivalent to Hubble’s law [1–3], which can be described
phenomenologically by the harmonic potential

UHubble(r) = −
H2

0
2

r2. (3)

Hubble’s constant H0 is an angular frequency; the negative sign implies that this potential is
repulsive. Accordingly, UHubble satisfies the Poisson Equation (1) with a negative mass density.

Schroedinger quantum mechanics can also be understood in terms of an ideal fluid, the quantum
probability fluid. Following Madelung one factorises the nonrelativistic wavefunction ψ into amplitude
and phase:

ψ = exp
(
S

2kB
+ i
I
h̄

)
. (4)

The amplitude exp(S/2kB) is a real exponential; one can invoke Boltzmann’s principle to regard
S as a Boltzmann entropy of the matter described by ψ—not to be confused with the gravitational
entropy Sg in Equation (16) below. It will also be convenient to define a dimensionless Boltzmann
entropy S := S/2kB. The phase exp(iI/h̄) is the complex exponential of the classical-mechanical
action integral I . Substituting the Ansatz Equation (4) into the Schroedinger equation for ψ, one arrives
at a set of two equations. One of them is the continuity equation for the quantum probability fluid,

∂S
∂t

+
1
m
∇S · ∇I + 1

2m
∇2I = 0, (5)

where
v :=

1
m
∇I , ρ = e2S. (6)

The second equation obtained is known as the quantum Hamilton-Jacobi equation:

∂I
∂t

+
1

2m
(∇I)2 + V +Q = 0, (7)

where V is the external potential present in the Schroedinger equation (we recall that the dimensions
of U in Equations (1) and (3) are velocity squared, whereas those of V in Equation (7) are mass times
velocity squared). Above,

Q := − h̄2

2m

[
(∇S)2 +∇2S

]
(8)

is known as the quantum potential.
Finally we need to derive an Euler equation for the quantum probability. This is achieved by

taking the gradient of Equation (7):

∂v
∂t

+ (v · ∇) v +
1
m
∇Q+

1
m
∇V = 0. (9)
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Comparison between Equations (2) and (9) produces a bijective correspondence between the quantum
probability fluid and the cosmological fluid. Which suggests that, given the cosmological fluid in the
Newtonian approximation, we use nonrelativistic quantum mechanics as an equivalent description thereof .
In this description by means of a quantum wavefunction ψ, the amount of mass mV contained within a
volume V equals mV = m

∫
V d3x|ψ|2; the whole observable Universe is regarded as a sphere of radius

R0. Considering the Universe as a sphere with finite radius has the added bonus that the instabilities [4]
due to the negative sign of the potential Equation (3) are avoided naturally.

In view of Hubble’s law Equation (3) it is reasonable to consider the effective Hamiltonian

Heff = −
h̄2

2m
∇2 − keff

2
r2, keff = mH2

0 (10)

as governing the overall expansion of the Universe, at least within the Newtonian limit. As a first
approximation it will also be useful to consider the free Hamiltonian

Hfree = − h̄2

2m
∇2. (11)

Their respective eigenfunctions are readily obtained in spherical coordinates. For Equation (11)
we have the free spherical waves

ψκ00(r, θ, ϕ) =
1√

4πR0

1
r

exp (iκr) , κ ∈ R, (12)

normalised within a sphere of radius R0, and carrying zero angular momentum as required by the
cosmological principle. For the Hubble Hamiltonian Equation (10) one finds the exact eigenfunctions [5]

ψ
(1)
α (r, θ, ϕ) =

N(1)
α√
4π

exp
(

iβ2r2

2

)
1F1

(
3
4
− iα

4
,

3
2

;−iβ2r2
)

(13)

and

ψ
(2)
α (r, θ, ϕ) =

N(2)
α√
4π

1
r

exp
(

iβ2r2

2

)
1F1

(
1
4
− iα

4
,

1
2

;−iβ2r2
)

. (14)

They also carry vanishing angular momentum, N(1)
α and N(2)

α being radial normalisation factors.
Above, 1F1 is the confluent hypergeometric function, and the parameters α, β are given by

α :=
2E

h̄H0
, β4 :=

m2H2
0

h̄2 , (15)

with E the energy eigenvalue in Heffψ = Eψ.

3. Results and Discussion

Our previous reasoning leads naturally to the operator R2 = X2 + Y2 + Z2 as a measure of
the amount of gravitational entropy contained within a Newtonian Universe in which the Hubble
repulsion arises as the net force. Specifically, the operator

Sg := N kBmH0

h̄
R2 (16)

is dimensionally an entropy; a dimensionless factor N is of course left undetermined.We call Sg the
gravitational entropy operator.

We can now compute the expectation value of the entropy Sg in the free eigenstates Equation (12)
and in the Hubble eigenstates Equations (13) and (14). For the free waves Equation (12) one finds
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〈ψκ00|R2|ψκ00〉 =
R2

0
3

. (17)

Substituting the known values [6] of the cosmological data m, H0, R0 into Equations (16) and (17)
we arrive at the estimate [7]

〈ψκ00|Sg|ψκ00〉 = 10123kB. (18)

Above we have set N = 3/2.6. Our result Equation (18) saturates the upper bound set by the
holographic principle. A finer estimate is obtained using the Hubble waves Equations (13) and (14).
After some numerical approximations one finds

〈ψ(1)
α |R2|ψ(1)

α 〉 =
R2

0
2 ln (βR0)

= 〈ψ(2)
α |R2|ψ(2)

α 〉. (19)

This leads to [5]
〈ψ(1)

α |Sg|ψ(1)
α 〉 = 10120kB = 〈ψ(2)

α |Sg|ψ(2)
α 〉 (20)

upon taking N = 1/6. This new theoretical estimate lies three orders of magnitude below the
holographic bound, thus representing a considerable improvement on the estimate obtained from the
free waves.

4. Conclusions

The holographic principle sets an upper bound of approximately 10123kB on the entropy content
of the Universe. Some phenomenological estimates [8] place the actual value at around 10104kB,
gravitational entropy (and, in particular, black holes) representing the largest single contributors to
the entropy budget of the Universe. Although Newtonian cosmology does allow for black holes, the
many simplifications made by our elementary model necessarily leave out some essential physics
of the Universe. Nevertheless, our toy model succeeds in capturing some key elements of reality.
For example, the upper bound set by the holographic principle is always respected, even by such
a crude approximation as the free waves Equation (12). The Hubble waves Equations (13) and (14)
represent a considerable improvement on the free waves, as they reduce the expectation value of the
entropy by three orders of magnitude.
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del Chocó, Colombia
apfernandez@mat.upv.es, bjoissan@mat.upv.es
cmilpecr@posgrado.upv.es

Abstract The emergent nature of quantum mechanics is shown to follow from a precise
correspondence with the classical theory of irreversible thermodynamics.

1 Introduction

The aim of this talk1 is to establish a correspondence between quantum mechanics, on
the one hand, and the classical thermodynamics of irreversible processes, on the other.
This we do in order to provide an independent proof of the statement thatquantum
mechanics is an emergent phenomenon. The emergent aspects of quantum mechanics
have been the subject of a vast literature; a very incompletelist of refs. would include
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 25, 26, 31, 32, 33].

2 Basics in irreversible thermodynamics

We first summarise, for later use, some basic elements of the classical thermodynamics
of irreversible processes in the linear regime [28].

Let a thermodynamical system be given, deviating only slightly from equilibrium.
Assume that its entropyS depends onN extensive variablesy1, . . . , yN , so we can
writeS = S(y1, . . . , yN ). The tendency of the system to seek equilibrium is measured
by thethermodynamic forcesYk, defined to be the components of the gradient of the
entropy:

Yk :=
∂S

∂yk
. (1)

Now our system is away from equilibrium, but not too far away,so we can assume
linearity between the fluxeṡyk and the forcesYj :

ẏi :=
dyi

dτ
=

N
∑

j=1

LijYj , Yi =
N
∑

j=1

Rij ẏ
j , Rij = (Lij)−1. (2)

1Work partially based on ref. [3] by some of the present authors (P. F. de C. and J.M.I.), presented by
J.M.I. at theSixth International Workshop DICE 2012: Spacetime–Matter–Quantum Mechanics: from the
Planck scale to emergent phenomena (Castiglioncello, Italy, September 2012).
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We useτ to denote thermodynamical time, and we suppose the above relation between
forces and fluxes to be invertible. A well–known result is Onsager’s reciprocity theo-
rem: the matrixL is symmetric,

Lij = Lji. (3)

By (2), the rate of entropy production can be written either as a quadratic form in the
fluxes, or as a quadratic form in the forces:

Ṡ =

N
∑

j=1

∂S

∂yj
ẏj =

N
∑

j=1

Yj ẏ
j =

N
∑

i,j=1

Rij ẏ
iẏj =

N
∑

i,j=1

LijYiYj . (4)

We can Taylor expand the entropyS around equilibrium and truncate the series at
second order, to find

S = S0 −
1

2

N
∑

i,j=1

sijy
iyj + . . . , (5)

where the matrixsij = −∂2S/∂yi∂yj|0 (the negative Hessian evaluated at equi-
librium) is positive definite. This truncation has the consequence that fluctuations
around equilibrium are Gaussian. Indeed, by Boltzmann’s principle, the probability
P (y1, . . . , yN ) of finding the valuesy1, . . . , yN of the extensive variables is given by

P (y1, . . . , yN) = Z−1 exp

(

S

kB

)

= Z−1 exp



− 1

2kB

N
∑

i,j=1

sijy
iyj



 , (6)

whereZ is a normalisation factor.
For simplicity we setN = 1 in all that follows. Our aim is to calculate the

probability of any pathy = y(τ) in the thermodynamical configuration space. A

cumulativedistribution functionFn

(

y1

τ1

...

...
yn

τn

)

is defined such that it yields the prob-

ability that the thermodynamical pathy(τ) lie below the barriersy1, . . . , yn at times
τ1 < τ2 < . . . < τn:

Fn

(

y1
τ1

. . .

. . .

yn
τn

)

:= P (y(τk) ≤ yk, k = 1, . . . , n) . (7)

A stationary process is defined to be one such thatFn is invariant under time shiftsδτ :

Fn

(

y1
τ1

. . .

. . .

yn
τn

)

= Fn

(

y1
τ1 + δτ

. . .

. . .

yn
τn + δτ

)

. (8)

In other words, the system that has been left alone long enough that any initial condi-

tions have been forgotten. Anunconditionalprobability density functionfn
(

y1...yn

τ1...τn

)

is defined, such that the product

fn

(

y1 . . . yn
τ1 . . . τn

)

dy1 · · · dyn (9)
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measures the probability that a thermodynamical pathy = y(τ) pass through a gate
of width dyk at instantτk, for all k = 1, . . . n. Similarly, theconditionalprobability

density functionf1
(

yk

τk

∣

∣

∣

yk−1

τk−1

)

is such that the product

f1

(

yk
τk

∣

∣

∣

yk−1

τk−1

)

dyk dyk−1 (10)

gives the probability thaty = y(τ) pass throughdyk atτk, given that it passed through
dyk−1 at τk−1. Finally a Markov process is defined to beone that has a short mem-
ory or, more precisely, one such that its cumulative, conditional probability function
satisfies

F1

(

yn+1

τn+1

∣

∣

∣

y1
τ1

. . .

. . .

yn
τn

)

= F1

(

yn+1

τn+1

∣

∣

∣

yn
τn

)

. (11)

One can prove that, for a Markov process, the following factorisation theorem holds
[28]:

fn

(

y1 . . . yn
τ1 . . . τn

)

= f1

(

yn
τn

∣

∣

∣

yn−1

τn−1

)

· · · f1
(

y2
τ2

∣

∣

∣

y1
τ1

)

f1

(

y1
τ1

)

. (12)

Interesting about this factorisation theorem is the fact that f1
(

y1

τ1

)

is known from

Boltzmann’s principle. Therefore, by stationarity, all weneed to know is

f1

(

y2
τ + δτ

∣

∣

∣

y1
τ

)

, (13)

and solving then–gate problemfn
(

y1...yn

τ1...τn

)

nicely reduces to solving the 2–gate prob-

lemf1

(

y2

τ+δτ

∣

∣

∣

y1

τ

)

.

Now, under the assumption that our irreversible thermodynamical processes is sta-
tionary, Markov and Gaussian, the conditional probabilitydensity (13) has been com-
puted in [28], with the result

f1

(

y2
τ + δτ

∣

∣

∣

y1
τ

)

=
1√
2π

s/kB√
1− e−2γδτ

exp

[

− s

2kB

(

y2 − e−γδτy1
)2

1− e−2γδτ

]

. (14)

Here we have defined the thermodynamical frequencyγ,

γ :=
s

R
, (15)

with R given as in (2) ands = −d2S/dy2|0. Furthermore, one can reexpress the
probability density (14) in terms of path integrals over thermodynamical configuration
space: up to normalisation factors one finds [28]

f1

(

y2
τ2

∣

∣

∣

y1
τ1

)

=

∫ y(τ2)=y2

y(τ1)=y1

Dy(τ) exp

{

− 1

2kB

∫ τ2

τ1

dτ L [ẏ(τ), y(τ)]

}

. (16)

Above we have defined the thermodynamical Lagrangian functionL

L [ẏ(τ), y(τ)] :=
R

2

[

ẏ2(τ) + γ2y2(τ)
]

, (17)

whose actual dimensions are entropy per unit time.
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3 Irreversible thermodynamicsvs. quantum theory

We can now establish a precise map between quantum mechanicsand classical, irre-
versible thermodynamics. Lett denote mechanical time,m the mass of the quantum
particle under consideration, andω the frequency of a harmonic potential experienced
by the particle.

In the first place, the thermodynamical time variableτ must be analytically contin-
ued intoit:

τ ↔ it. (18)

Second, the thermodynamical frequencyγ becomes the mechanical frequencyω of the
harmonic oscillator:

γ ↔ ω. (19)

Next we map the thermodynamical variabley onto the mechanical variablex:

y ↔ x. (20)

As a rule,x will be a position coordinate. Hence there might be some dimensional
conversion factor betweenx andy above, that we will ignore for simplicity. Bearing
this in mind, we will finally make the identification

s

2kB
↔ mω

~
(21)

between thermodynamical and mechanical quantities. We have expressed all the above
replacements with a double arrow↔ in order to indicate the bijective property of our
map between quantum mechanics and classical, irreversiblethermodynamics.

On general grounds, applying the replacements (18), (19), (20) and (21), one ex-
pects thermodynamical conditional probabilities to map onto mechanical conditional
probabilities2,

f1

(

y2
τ2

∣

∣

∣

y1
τ1

)

↔ K(x2, t2|x1, t1), (22)

while thermodynamical unconditional probabilities are expected to map onto mechan-
ical unconditional probabilities:

f1

(y

τ

)

↔ |ψ(x, t)|2. (23)

HereK(x2, t2|x1, t1) denotes the quantum–mechanical propagator, andψ(x, t) is the
wavefunction. As in (20) above, one must allow for possible numerical factors be-
tween probabilities on the thermodynamical and on the mechanical sides; otherwise
bijectivity is perfectly preserved.

Our expectations (22), (23) are borne out by experiment—experiment in our case
being explicit computation. Indeed one finds the following.Forγ → 0, the irreversible
thermodynamics corresponds to the free quantum–mechanical particle:

K(free)(x2, t|x1, 0) =
√

kB
s
f1

(x2
it

∣

∣

∣

x1
0

)

γ→0
, (24)

2While f1 is a probability density,K is a probability density amplitude; see ref. [2] for a discussion of
this issue.
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while, for γ 6= 0, the irreversible thermodynamics corresponds to the quantum me-
chanics of a harmonic oscillator:

f1

(x2
it

∣

∣

∣

x1
0

)

= exp

(

iωt

2
− ∆V

~ω

)

√

2mω

~
K(harmonic) (x2, t|x1, 0) . (25)

Above,V = mω2x2/2 is the harmonic potential, and∆V = V (x2) − V (x1). More-
over, if ψ0(x) = exp

(

−mωx2/2~
)

is the harmonic oscillator groundstate, then it
holds that, up to normalisation,

f1

(x

it

)

= exp
(

−mω
~
x2

)

= |ψ(harmonic)
0 (x)|2, (26)

as expected.
Finally the path–integral representation of quantum–mechanical propagators,

K (x2, t2|x1, t1) =
∫ x(t2)=x2

x(t1)=x1

Dx(t) exp

{

i

~

∫ t2

t1

dt L [x(t), ẋ(t)]

}

, (27)

has a nice reexpression in terms of classical, irreversiblethermodynamics. Indeed,
applying our dictionary (18), (19), (20) and (21) to the mechanical path integral (27),
the latter becomes the thermodynamical path integral already seen in (16). This leads
us to the following relation between the action integralI of the mechanical system and
the entropyS of its thermodynamical counterpart:

i

~
I ↔ 1

kB
S. (28)

It should be remarked that bothI andS independently satisfy an extremum principle.
In the Gaussian approximation considered here, the respective fluctuations (measured
with respect to the corresponding mean values ofI andS as given by their extremals)
are obtained upon taking the exponentials. We thus obtain the quantum–mechanical
wavefunction and the Boltzmann distribution function:

ψ =
√
ρ exp

(

i

~
I

)

, ρB = Z−1 exp

(

1

kB
S

)

. (29)

As usual,Z denotes some normalisation factor. Since, by the Born rule,we must have
ρB = |ψ|2, this provides us with an elegant expression combining thermodynamics
and quantum mechanics into a single equation:

ψ = Z−1/2 exp

(

1

2kB
S

)

exp

(

i

~
I

)

. (30)

Eqs. (28) and (30) are very inspiring, as they reveal a fundamental complementarity
between the mechanical action integral (on the mechanical side) and the entropy (on
the thermodynamical side). We will later on return to the complementarity between
these two descriptions, a feature already foreseen by Prigogine [30]. For the moment
let us simply remark the following consequence of this complementarity, namely, the
symmetrical role played by Planck’s constant~ and Boltzmann’s constantkB. This
latter property, and the ensuing entropy quantisation, have been discussed at length in
refs. [1, 2].
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4 Emergence from irreversibility

It has been claimed thatquantisation is dissipation[3, 4, 5, 6, 7, 8, 10, 18, 19, 31]—
this claim is central to the emergence approach to quantum mechanics. In more precise
terms, the previous statement implies that quantum behaviour can be expected from
certain deterministic systems exhibiting information loss. One could compare this state
of affairs to the relation between (equilibrium) thermodynamics and (classical) statis-
tical mechanics. Namely, information loss in a microscopictheory (statistical mechan-
ics) arises as the result of averaging out over many degrees of freedom; the emergent
theory (thermodynamics) contains less information than its microscopic predecessor.

Thanks to the map established in section 3, the picture presented here features
quantumness as an intrinsic property of dissipative systems. Conversely, by the same
map, any quantum system features dissipation. In our picture, irreversibility and quan-
tumness arise as the two sides of the same coin, thus becomingcomplementaryde-
scriptions of a given system (complementaritybeing understood here in Bohr’s sense
of the word). As opposed to the emergence property discussedabove, the two theo-
ries (quantum mechanics and irreversible thermodynamics)contain exactly the same
amount of information. It is interesting to observe that closely related views regarding
the complementarity between mechanics and thermodynamicswere defended long ago
by Prigogine [30].

Now it has been (rightly) pointed out that correspondence and emergence are not
quite the same concept [23]. This notwithstanding, we can still argue that quantum
mechanics continues to arise as anemergent phenomenonin our picture. This is so
because Boltzmann’s dictum applies:If something heats up, it has microstructure. In
other words, every thermodynamics is the coarse graining ofsome underlying statisti-
cal mechanics. Thus the mere possibility of recasting a given theory in thermodynam-
ical language proves that the given theory is the coarse–grained version of some finer,
microscopic theory.

5 Gaussianity

As a technical remark, we should point out that we have workedthroughout in the
Gaussian approximation. On the thermodynamical side of ourmap this corresponds to
the linear response theory; on the mechanical side this refers to the harmonic approx-
imation. Within the regime of applicability of this assumption we can safely claim to
have provided a rigorous proof of the statement thatquantum mechanics is an emergent
phenomenon, at least in the Gaussian approximation.

Using the fact that any potential can be transformed into thefree potential or into the
harmonic potential by means of a suitable coordinate transformation (as in Hamilton–
Jacobi theory [14, 15]), one would naively state that the Gaussian approximation is
good enough to “prove” that quantum mechanics is an emergentphenomenon also
beyond the Gaussian regime. However, this “proof” overlooks the fact that quantisation
and coordinate changes do not generally commute. Thereforethe previous reasoning
invoking Hamilton–Jacobi can only be seen as a plausibilityargument to support the
statement that quantum mechanics must remain an emergent phenomenonalso beyond
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the Gaussian approximation. There is, however, abundant literature dealing with the
emergent nature of quantum mechanics,regardless ofthe Gaussian approximation,
using techniques that are very different from those presented here, and with a spectrum
of applicability that ranges from the smallest [11, 24] to the largest [27, 29]. We will
therefore content ourselves with the proof of emergence presented here, the expectation
being that some suitable extension thereof (possibly usingperturbative techniques) will
also apply beyond the Gaussian approximation.

AcknowledgementsJ.M.I. would like to thank the organisers of theSixth International
Workshop DICE 2012: Spacetime–Matter–Quantum Mechanics:from the Planck scale
to emergent phenomena(Castiglioncello, Italy, September 2012) for the invitation to
present this talk, for stimulating a congenial atmosphere of scientific exchange, and for
the many interesting discussions that followed.
O muse, o alto ingegno, or m’aiutate;
o mente che scrivesti ciò ch’io vidi,
qui si parrà la tua nobilitate.—Dante Alighieri.
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Abstract It has been argued that gravity acts dissipatively on quantum–mechanical sys- 

tems, inducing thermal fluctuations that become indistinguishable from quantum fluc- 

tuations. This has led some authors to demand that some form of time irreversibility be 

incorporated into the formalism of quantum mechanics. As a tool towards this goal we 

propose a thermodynamical approach to quantum mechanics, based on Onsager’s clas- 

sical theory of irreversible processes and on Prigogine’s nonunitary transformation the- 

ory. An entropy operator replaces the Hamiltonian as the generator of evolution. The 

canonically conjugate variable corresponding to the entropy is a dimensionless evolu- 

tion parameter. Contrary to the Hamiltonian, the entropy operator is not a conserved 

Noether charge. Our construction succeeds in implementing gravitationally–induced 

irreversibility in the quantum theory. 

 

1 Introduction 

It has been known for long that weak interactions violate CP–invariance [10]. By the 

CPT theorem of quantum field theory, time invariance must also be violated in weak 

interactions; recent observations [32] confirm this expectation. Now quantum field 

theory is an extension of quantum mechanics. Since time invariance is naturally imple- 

mented in the latter, it would appear that only CP–violating quantum field theories can 

also violate time invariance, because quantum mechanics as we know it is symmetric 

under time reversal. 

Actually such is not the case. A number of firmly established quantum–gravity 

effects have been shown to be intrinsically irreversible; for background see, e.g., [23, 

30, 51, 52, 55] and references therein. From the independent perspective of statistical 

physics [40] it has also been suggested that time irreversibility should be taken into 

account at the more fundamental level of the differential equations governing mechan- 

ical processes. This is in sharp contrast with standard thinking, where irreversibility is 

thought to arise through time–irreversible initial conditions imposed on the solutions to 

time–reversible evolution equations. In view of this situation, a number of authors have 

called for the due modifications to the standard quantum–mechanical formalism (for a 
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detailed account and original references see, e.g., [38]). Specifically, in this paper we 

tackle the problem of incorporating some form of time irreversibility at the level of the 

differential equation governing evolution [40]. 

Closely related to this viewpoint is the emergent approach to physics. The latter 

has been the subject of a vast literature (see [8] for a comprehensive review), but let us 

briefly mention some noteworthy aspects. The notion of an emergent theory, that is, 

the concept that a given physical theory could be an effective model of some deeper– 

level degrees of freedom, has been postulated of a number of existing theories, most 

notably of gravity and of quantum mechanics. In the particular case of the latter, refs. 

[3, 14, 15, 22, 24, 25, 26, 48] address this issue from a number of different perspec- 

tives. The paradigm that quantisation is dissipation, implicitly present in some of the 

above approaches, has been made precise in [6, 5]. Frequently, these takes on quan- 

tum physics can be completely recast in purely classical terms [4, 29, 53]. An alter- 

native perspective, based on classical nonequilibrium thermodynamics [35], has been 

advocated in [1, 2, 16]. Beyond quantum mechanics, the relevance of nonequilibrium 

physics for quantum gravity and strings has been emphasised recently [18, 27]. 

The basic physical assumption we will make use of posits that spacetime is not a 

fundamental concept, but rather an emergent phenomenon instead. In fact this hypoth- 

esis is not at all new (for references and background see, e.g., [30]), some of its most 

recent incarnations being [36, 37, 50]. Once spacetime is no longer regarded as a fun- 

damental concept, but rather as a derived notion, then every theory that makes use of 

spacetime concepts automatically qualifies as emergent. Such is the case of quantum 

mechanics. For our purposes it will suffice to concentrate on the time variable and 

expose its emergent nature. We will therefore try to express time in terms of thermo- 

dynamical quantities, and explore the consequences for the quantum theory. Again, 

the notion of time as having a thermodynamical origin is not new [7, 11], having reap- 

peared more recently in [19, 41, 44, 43]; see also [13, 17, 20, 21] for related views. New 

to our approach is the notion that an emergent time variable automatically implies that 

quantum theory itself qualifies as an emergent phenomenon. Specifically, the possibil- 

ity of reexpressing the nonrelativistic Schroedinger equation in purely entropic terms 

(instead of its usual Hamiltonian language) implies that quantum mechanics involves 

some degree of coarse graining of microscopic information. In our approach, the very 

existence of an entropy operator replacing the Hamiltonian operator is an inequivocal 

clue of this coarse graining. 

To begin with, we would like to draw attention to the following analogy. On one 

hand we have the quantum–mechanical time–energy uncertainty relation 
 

∆E∆t ” k. (1) 

On the other hand, in the theory of irreversible thermodynamics [34, 35], one computes 

the average product of the fluctuations of the entropy and the temperature for a thermo- 

dynamical system slightly away from equilibrium (this is the linear regime, also called 

the Gaussian approximation). This product turns out to be given by [31] 
 

∆S∆T = kBT, (2) 
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kB being Boltzmann’s constant. The change of variables 

. 
T 
. 

τ := ln 
T0 

, (3) 

where T0 is some reference temperature, reduces (2) to 

∆S∆τ ” kB. (4) 

In (4) we have taken the liberty of replacing the equality sign of (2) with an inequality; 

the latter is saturated in the Gaussian approximation (used in the derivation of (2)). 

Beyond the Gaussian regime, one expects the inequality to hold strictly. As we will 

see, the analogy between (1) and (4) is more than just a happy coincidence—it is in 

fact anything but accidental. 

 

2 Emergent time 

Let t and T respectively denote nonrelativistic time and absolute temperature, as mea- 

sured by an inertial observer that will be kept the same throughout. We posit that t−1 

equals T modulo dimensional factors: 

C kB 

t  
= 

k 

 
T. (5) 

Here C is a dimensionless numerical factor, whose value we will pick presently in order 

to suit our needs. Modulo this C, which will play a prominent role in what follows, the 

relation (5) between time and temperature was postulated long ago by de Broglie [7]. 

A related change of variables has been used more recently in [45]. 

Beyond purely dimensional grounds, there are deeper motivations for Eq. (5). 
Specifically, in [2, 16] we have established a map between quantum mechanics (in 
the Gaussian approximation) and the classical theory of irreversible thermodynamics 

(in the linear regime).1 In this latter theory [35] we have N independent thermodynam- 

ical coordinates y1, . . . , yN on which the entropy S depends, and N conjugate forces 

Yk := ∂S/∂yk. Let t′ denote thermodynamical time. The assumption of linearity 

between the velocities ẏ k  and the forces Yj  amounts to 

ẏ i  = 
dy

 

 
N 

= 
. 

Lij Y , Y 

 
N 

= 
. 

R 
 
ẏ j , R 

 
= (Lij ) 

 
. (6) 

dt′ 
j 

j=1 

i ij ij 

j=1 

Under the assumption that the underlying microscopic dynamics is time–reversible, the 

constant matrix Lij turns out to be symmetric (Onsager’s reciprocity theorem) [34]. By 

(6), the time rate of entropy production can be written either as a quadratic form in the 

velocities, or as a quadratic form in the forces: 

 

Ṡ = 

 
N 
. 

Rij ẏ 
iẏ j  = 

i,j=1 

 
N 
. 

Lij YiYj. (7) 

i,j=1 
 

 

1As argued in [2, 16], the linear regime in irreversible thermodynamics is the analogue of the semiclassi- 

cal, or Gaussian, approximation to quantum mechanics. 

i 
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We see that it is not the entropy S, but its time rate of production Ṡ , that plays the role 

of a (harmonic) Hamiltonian, because2
 

Ṡ = 
dS 

 
N 

1 . .
R

  ẏ iẏ j  + Lij Y Y 
 

. (8) 

dt′  
= 

2 ij 

i,j=1 

i  j 

.
 

Here again we see that inverse time can be regarded as temperature.   In Eqs.       (6)– 

(8) above, the thermodynamical time t′ and the mechanical time t are related as per the 

Wick rotation, t′ = it [2, 16]. Thus we expect a thermodynamical approach to quantum 

mechanics to involve the complexification of time. Multiplying (5) through by H/T , 
one realises that (5) is roughly equivalent to 

dS kB 
C 

dt  
= 

k 

 
H, (9) 

which bridges the gap between the mechanical point of view (the right–hand side of (9)) 

and the thermodynamical point of view (the left–hand side). The above is a handwaving 

argument to justify equating the time variation of the entropy with the energy (modulo 

dimensional constants); we will actually derive Eq.  (9) later on (see (26)).  Eq.  (9)   

is also important because it holds beyond its Gaussian limit given in (8). In what 

follows we will work out in detail the relationship between the mechanical and the 

thermodynamical points of view expressed above. 

 

3 Entropy vs. energy 

3.1 The energy picture 

For reasons that will become apparent presently let us call quantum mechanics, in its 

standard formulation, the energy picture of quantum mechanics; we will also use the 

term H–picture.3 The evolution of pure quantum states is governed by the Schroedinger 

equation, 

ik
dψ 

= Hψ. (10) 
dt 

The general solution to the above reads ψ(t) = U(t)ψ(0), where 

. 
i 
¸ t . 

U(t) := T exp − 
k 

H(t̃)dt̃  
0 

, (11) 

and T denotes the ordering operation along the evolution parameter t̃ . When t ∈ R, 

the time–evolution operators U(t) define a 1–parameter group of unitary operators that 
ensure the reversibility of time flow in the H–picture. 

2Lij  is positive definite for a dissipative process, hence also Rij . 
3We use the term picture instead of its synonym representation in order to avoid confusion with the 

technical meaning of the latter term in quantum–mechanical contexts such as choice of basis in Hilbert 

space, or group representation, or similar. Expressions such as Schroedinger picture, or Heisenberg picture, 

or related terms used in standard quantum mechanics should also not be confused with our use of the word 

picture. 
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3.2 The entropy picture 

The purpose of this section is to develop the entropy picture of quantum mechanics, or 

the S–picture for short. 

Under the combined changes of variables (5) and (3), the evolution equation  (10) 
becomes 

− 
ikB dψ = Sψ, (12) 
C  dτ 

where we have defined the entropy operator S 

H 
S := 

T 

 

 
. (13) 

The new evolution parameter τ is dimensionless, while S carries the dimension of an 
entropy. Our time variable τ coincides with the thermal time of [11, 41, 44], the latter 
specified to the nonrelativistic limit correponding to the Schroedinger wave equation. 

We will see presently that C ∈ C, so our evolution variable τ will actually be a com- 
plexified (or Wick–rotated), nonrelativistic, dimensionless, thermal–time variable. 

The solution to the evolution equation (12) can be written as 

ψ(τ ) = SC (τ )ψ(0), τ ≥ 0, (14) 

where 
 
 

SC (τ ) := T exp 

. 
iC 

¸ τ
 

 
 k 

 

. 

S(τ̃)dτ̃  

 
 

(15) 
B    0 

and T denotes the ordering operation along the the evolution parameter τ̃ . If we now 

pick C ∈ R, the evolution operators {SC (τ ), τ ∈ R} in (15) form a 1–parameter group 
of unitary operators. 

As long as C remains real, Eqs. (12)–(15) above simply restate standard quantum 

mechanics using the alternative set of variables (τ, S).  It is only for C  ∈/  R that time 
evolution can become irreversible. For this purpose let us set, dropping an irrelevant 
real normalisation, 

C := eiϕ, ϕ ∈ R. (16) 

On the complex plane, (16) corresponds to Wick–rotating the time axis by an angle 
ϕ. Now certain special values of ϕ are known to correspond to specific physical situa- 

tions. For example, ϕ = 0 corresponds to standard quantum mechanics, while ϕ = π 

implements the time reverse of ϕ = 0. The value ϕ = −π/2 gives a positive real ar- 
gument within the exponential of (15); we will see in section 3.3 that this corresponds 
to the case of maximal entropy production, or maximal dissipation. Finally, the value 

ϕ = π/2 gives a negative real argument within the exponential of (15); this will turn out 
to correspond to the unphysical situation of maximal antidissipation. All other values 
of ϕ therefore correspond to intermediate situations between exactly unitary evolution 

(eventually, time–reversed) and maximal dissipation (eventually, antidissipation). For 
obvious reasons we must pick the quadrant corresponding to the forward time direction 

and positive dissipation, i.e., ϕ ∈ [−π/2, 0]. Let the dimensionless variable x ∈ R be a 
measure of the external gravitational field acting on the particle of mass m described by 

the Hamiltonian H, such that x = 0 describes the absence of gravitation, and x → ∞ 
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2 

 

 

 

describes the case of a strong gravitational field acting on m. From what is known 

concerning the effects of gravitational fields on the quantum mechanics of particles we 

expect the phase ϕ to depend on x roughly as follows: 
π 

ϕ(x) = − 
.
1 − e−x

. 
, x ≥ 0. (17) 

2 

Indeed, for x = 0 we have a perfectly unitary evolution (ϕ = 0) as befits quantum 

particles in the absence of gravitation, while for strong gravitational fields (x → ∞) 

we have ϕ → −π/2, and unitarity gives way to dissipation. Of course, the precise 
profile (17) for the function ϕ(x) is just one out of many possible, but it captures   the 

right physical behaviour, namely, that gravitational fields induce thermal dissipative 

effects in the quantum theory, in such a way as to render quantum uncertainties in- 

distinguishable from statistical fluctuations [46, 47]. In the absence of a gravitational 

field, any inertial observer perceives a clear–cut separation between these two types of 

fluctuations. 

Altogether, (16) and (17) yield 

 

C(x) = exp 

. 
iπ 

− 
2 

.
1 − e−x 

.

 
 
. (18) 

For the rest of this paper we will concentrate on the limiting case of a weak gravitational 

field. So we have4
 

C(ε) ≃ 1 + iε, ε = − 
πx

, x ≥ 0. (19) 
2 

It remains to identify a dimensionless variable x that can provide a physically rea- 

sonable measure of a weak gravitational field acting on the quantum particle.5 It is 

standard to parametrise such a field by the metric gµν = ηµν + hµν , where ηµν is the 

Minkowski metric, and hµν a small correction. It is also convenient to introduce the 
quantities hλ := ηλαhµα and h := hα = ησλhσλ. The linearised Einstein equations 

µ 

read 
α 

− 16πT ν  = ησλ ∂ 
.  

ν  − 
1 

ηνh

. 

, (20) 

µ 
∂xσ∂xλ 

hµ 2 µ
 

and we can take x = (h) as a variable that satisfies our needs, at least in the weak field 

limit considered here. The angular brackets in (h) stand for the average value of the 

function h over the spacetime region of interest. That (h) is nonnegative follows from 
the fact that [49] 

h = 4 

¸ 
[Tα ] dxdydz, T α ≥ 0. (21) 

r α 

The square brackets around the trace T α stand for the evaluation at a time earlier than 

that of interest by the interval needed for a signal to pass with unit velocity from the 

element dxdydz to a point a distance r  apart. 

Substitution of (19) into (15) leads to 
 

S1+iε(τ ) := T exp 

. 
i − ε 

¸ τ
 

k 

. 

S(τ̃)dτ̃  
 
, (22) 

B 0 

4We will henceforth drop terms of order ε2 and higher. 
5In a sense, the situation analysed here is complementary to that described in ref. [28]. 
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and the set {S1+iε(τ ), τ ≥ 0} forms a 1–parameter semigroup of nonunitary operators. 

In the limit ε = 0, the set {S1 (τ ), τ ∈ R} becomes again the 1–parameter group of 
unitary operators given in (15) (with C = 1). The parameter ε allows for a continuous 

transition between the unitary (ε = 0) and the nonunitary (ε ƒ= 0) regimes. 
Our choice (19) yields in (12) 

 

dψ 

− (i + ε)kB 
dτ 

= Sψ. (23) 

It makes sense to call (23) the entropic Schroedinger equation.      Again, in the limit 

ε = 0 we recover a Schroedinger–like equation, 
 

dψ 

− ikB 
dτ  

= Sψ. (24) 

The ε term on the left–hand side of (23) can be regarded as a perturbative correction 

to the derivative term in (24). We see that it breaks unitarity explicitly, already at the 

level of the differential equation governing evolution. The physical reason for this 

breakdown of unitarity is the presence of an external gravitational field, the strength of 

which is parametrised by ε. 

Altogether, Eqs. (22) and (23) define the S–picture of quantum mechanics. 

 

3.3 S rather than H 

One might argue that there is no need for the S–picture because the H–picture suffices. 

Indeed it has been known for long that a simple, “phenomenological” implementation 

of nonunitarity within the H–picture consists in the addition of a nonvanishing imagi- 

nary part to the time variable t in (10): 

(i + ε′)k
dψ 

= Hψ. (25) 
dt 

Here ε′ ∈ R is a small (dimensionless) perturbation. What distinguishes (25) from its 
entropic partner (23), and why is the latter to be preferred over the former? 

In terms of the variables (t, H), invariance under translations in t is reflected in 

the conservation of the Noether charge H. There exists no preferred origin t = 0 for 
time. While (25) certainly leads to energy dissipation, the natural physical quantity to 

describe dissipation is the entropy, where one expects to find dS/dt ≥ 0 instead of a 
conservation law.  In the variables (τ, S) of (23), one expects to have no conservation 

law at all; one actually finds6
 

 

dS kB 

dt  
= 

k (1 − iε)H, (26) 

as anticipated in (9). Now, from (8) and the Wick rotation t′ = it, we conclude that it 

is Im (dS/dt), and not Re (dS/dt), that accounts for dissipation. Indeed, recalling (5), 

the real part of (26) is the usual thermodynamical definition of temperature, ∂S/∂E = 

6Here we are assuming dH/dt = 0 for simplicity. 
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1/T . In other words, even if Re (dS/dt) = kBH/k ƒ= 0, this latter equation 
alone does not account for dissipation. Since 

 

. 
dS 

. 
Im 

dt 
= −ε 

kB 
H, (27) 

 

there  will  be  no  conservation  law  for  S  under  evolution  in  t  if  ε  ƒ=  0.   The 
same conclusion applies to evolution in τ . Furthermore, dissipation vanishes in the 

limit ε = 0 as had to be the case. Finally, for Eq. (27) to be consistent with the  

second law of thermodynamics, we need to choose ε < 0, as anticipated in (19). This 
latter point is obvious in the Gaussian approximation (8), where H is a positive–
definite quadratic form, but it also holds true beyond that approximation, because H  
is bounded  from 

below (if needed, one adds a constant to shift the energy of the groundstate, to make it 

nonnegative). 

As already remarked, the operators (22) are unitary iff ε = 0. Here we see that their 

nonunitarity differs considerably in the two cases ε > 0 and ε < 0.  Since τ  ≥ 0, had  

ε been positive, this would have turned the S1+iε(τ ) into a semigroup of contraction 
operators [54],  which would describe an unphysical antidissipative world.   On    the 

contrary, the choice ε < 0 of (19) leads to the opposite behaviour, dilatation, which is 

in agreement with the second law of thermodynamics. 

In the H–picture, whenever the Hamiltonian is time–independent, there exist en- 

ergy eigenstates φ satisfying Hφ = Eφ; the wavefunction ψ then factorises as ψ = φ 

exp(−iEt/k).  A similar property holds in the S–picture, assuming that H remains t–
independent, hence also τ –independent. In this latter case one can readily check that 
the factorised wavefunctions 

ψ = φ e(i−ε)τs, (28) 

where φ does not depend on τ , lead to the eigenvalue equation 
 

Sφ = skBφ, (29) 

with s ∈ R playing the role of a dimensionless entropic eigenvalue. Again, eqs. (28) 
and (29) above are in perfect agreement with the second law of thermodynamics. 

To summarise, unitarity is violated in the S–picture, where ε < 0 appears, but not 

in the H–picture, where the evolution equations (10) and (11) remain strictly valid. As 

such, this “change of picture” between H and S is an instance of Prigogine’s nonuni- 

tary transformation [40]. The apparent dilemma, “Is unitarity violated or not?”, will 

be resolved in section 3.6. 

 
3.4 Uncertainty vs. the second law 

It is common lore that, at least for large enough temperatures, quantum fluctuations 

are negligible compared to thermal statistical fluctuations [31]. When stating that, in 

the presence of a gravitational field, quantum fluctuations are inextricably linked with 

thermal statistical fluctuations, one is postulating a new kind of uncertainty principle: 

the indistinguishability between quantum and statistical fluctuations [9, 46, 47]. Here 
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we will provide an example of this indistinguishability. A look at Eq. (1) and a com- 

parison of (23) with (10) leads one to conclude the following uncertainty relation: 

∆S∆τ ” kB. (30) 

It is rewarding to see the product of thermal fluctuations found in (4) nicely matched 

by the product of quantum–mechanical uncertainties (30). This is more than just a 

coincidence—it is an expression of the fact that, in the presence of a gravitational 

field, quantum uncertainties can be understood as statistical fluctuations possessing a 

thermal origin [46, 47]. The above uncertainty relation leads to the factor 2kB replacing 

the quantum of action k, in perfect agreement with the results of [45]. 

Since τ is dimensionless, we can safely set ∆τ = 1 in (30) with the certainty that 

this numerical value will not change upon changing units. This leads to 

∆S ≥ kB  > 0, (31) 

which becomes the familiar second law of thermodynamics when written as 

∆S ≥ 0. (32) 

Strictly speaking, the equality in (32) is never attained, as kB > 0. However, in the 

limit kB  →  0 we  can saturate the inequality in (32) and have ∆S  =  0.   The limit   

kB → 0 has been argued to correspond to the semiclassical limit k → 0 of quantum 
mechanics [1].7 

We conclude that the quantum–mechanical uncertainty principle provides the re- 
finement (31) of the second law of thermodynamics (32), to which it becomes strictly 

equivalent in the semiclassical limit kB  → 0. 

 

3.5 Commutators vs. fluctuations 

In the standard quantum–mechanical formalism, nonvanishing commutators account 

for uncertainties. Fortunately for us, uncertainties can arise from fluctuations just as 

well as from commutators. In keeping with our previous arguments, here we will take 

statistical fluctuations as our starting point, in order to arrive at commutators. 

We will illustrate our point by means of an example. Consider a thermodynamical 

system described by the temperature T , the pressure p, the volume V  and the entropy 

S.  Now,  in the Gaussian approximation, the probability P  of a fluctuation ∆p,   ∆V , 

∆T , ∆S is given by [31] 

P = Z−1 exp 

.

− 
1
 

2kBT 

. 

(−∆p∆V + ∆T ∆S) 

 
. (33) 

If we have an equation of state F (p, V, T ) = 0 we can solve for the temperature to 

obtain T = g(p, V ). This allows us to rewrite (33) as 

 
− 

P  = Z 

 
exp 

. 
1
 

− 
2kB 

. 
∆p∆V 

− + 
g(p, V ) 

∆T ∆S 
..

 
 

 

T 

 
. (34) 

 
 

7In order to conform to the conventions of ref. [50], in ref. [1] we have normalised the quantum of 

entropy to the value 2πkB  instead of the value 2kB  used  here. 

1 
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This somewhat clumsy expression can be further simplified if we assume our system 

to be an ideal gas, pV  = S0T :8 
 

P = Z−1 exp 

.

− 
1
 

2kB 

. 

−S0 

∆p∆V 

pV 

∆T ∆S 
..

 
+ 

T 

 

. (35) 

Finally define the dimensionless variables 
 

p1 := − ln 
. 

p 
. 

 
 

p0 

 

, q1 := ln 
. 

V 
. 

 
 

V0 

 

, p2 := ln 
. 

T 
. 

 
 

T0 

S 
, q2 := 

0 

 

, (36) 

where p0, V0 , T0, S0 are fixed reference values, to arrive at 
 

 
− 

P  = Z 

 

exp 
. 

S0
 

− 
2kB 

. 

(∆p1∆q1 + ∆p2∆q2 ) 
 

. (37) 

The argument of the above exponential is very suggestive. Indeed, let q1, q2 be coordi- 

nates on the thermodynamical configuration space Y , and consider the (dimensionless) 

symplectic form on the cotangent bundle T ∗Y given by 

Ω = dp1 ∧ dq1 + dp2 ∧ dq2. (38) 

We have 
 

Ω = dθ, θ := p1 dq1 + p2 dq2 . (39) 

Now ∆p1∆q1 + ∆p2∆q2 equals the (symplectic) area of a 2–dimensional open surface 

D within T ∗ Y , 
 

∆p1∆q1 + ∆p2∆q2 = 

¸

 
D 

(dp1 ∧ dq1 + dp2 ∧ dq2 ) = 

¸

 
D 

dθ, (40) 

the boundary of which is ∂D  ƒ= 0 (the surface D can be taken to be open     
precisely because D is caused by a fluctuation). Applying Stokes’ theorem we can 
thus write for the probability (37) 

P = Z−1 exp 

.

 
S0 

2kB 

¸ . 

Ω (41) 
D 

= Z−1 
 

exp .

− 
S0

 

2kB 

¸   

dθ

.

 
D 

= Z−1 
 

exp .

− 
S0

 

2kB 

¸ 

θ

. 

. 
∂D 

Starting from fluctuations, which render commutators unnecessary in the thermody- 

namical description, we have arrived back at a mechanical description in terms of a 

symplectic form. The inverse of the latter gives Poisson brackets and, upon quantisa- 

tion, commutators. This simple example illustrates the thermodynamical analogue of 

quantum commutators. 

8Here S0 is the mole number n times the gas constant R. Whether or not our system is an ideal gas is 

immaterial, as the change of variables (36) can be modified appropriately without altering our conclusions. 

S 

1 
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3.6 Quantumness vs. dissipation 

To round up our presentation of quantum theory in thermodynamical terms, let us see 

how suggestive Eq. (5) is of a closely related geometric construction. 

Assume being given two copies of the complex plane C, one parametrised by the 
complex coordinate z, the other by ω. Then the set formed by the two coordinate 

charts {z ∈ C} and {w ∈ C} defines an (analytic) atlas covering the Riemann sphere 
S2, where z  = 0 (respectively, w  = 0) corresponds to    the north pole (respectively, 

south pole). The transition between these coordinates is w = −1/z, which coincides 
with (5) up to dimensional constants. 

In this way it is very tempting to identify (t, T ) with (z, w); of course, the latter are 
real 2–dimensional variables, while the former are real 1–dimensional. We may thus 

regard the pair “time, temperature” as coordinates on a copy of the circle S1 that one 
might call the circle of time, or the circle of temperature just as well [12]. Since the 

circle S1 is a compact manifold, charting it smoothly requires at least two coordinate 
charts (in our case T and t). In physical terms, temperature is the physical variable that 

compactifies time, and viceversa [33]. The rotation (by 2π radians) of any circle S1 

joining the north and south poles spans the whole sphere S2. This same geometrical 
rotation (now by an angle ε) corresponds to the Wick rotation of (19). Thus Wick– 

rotating the circle of time S1 by all possible angles generates the whole sphere S2. 

Now, the H–picture discussed in section 3.1 corresponds to viewing quantum me- 
chanics in the absence of dissipation. As already observed, this situation corresponds 

to the absence of a gravitational field. On the Riemann sphere S2, the H–picture de- 
scribes quantum mechanics with respect to an evolution parameter t that runs over the 

real axis Im(z) = 0 within the coordinate chart {z ∈ C} around the north pole. Dis- 
sipation appears when Wick–rotating this axis by ε < 0 as done in (19) and  changing 

variables as per (5), in order to work in the coordinate chart {w ∈ C} around the south 
pole; this is how the S–picture of section 3.2 arises. The H–picture is purely conserva- 
tive (because it satisfies the conservation law dH/dt = 0), the S–picture is dissipative 

(because it satisfies the second law Im(dS/dt) ≥ 0) . We realise that the S–picture 
involves dissipation/gravity, while the H–picture involves neither. This is analogous to 

the equivalence principle of gravitation, whereby the action of a gravitational field can 

be (locally) turned off by an appropriate change of coordinates. 

The foregoing arguments implement a relativity of the notion of quantumness vs. 

dissipation by means of U(1)–transformations. However this U(1) symmetry of Wick 

rotations is broken the very moment one selects a specific value for ε. Hence the dis- 

tinction between quantumness and dissipation (falsely) appears to be absolute, while 

in fact it is not. In particular, just as gravity can be (locally) gauged away, so can dissi- 

pation. Turn this argument around to conclude that quantumness, or alternatively dis- 

sipation, can be gauged away, although never the two of them simultaneously. Quan- 

tumness is gauged away in the limit ϕ → −π/2, while dissipation is gauged away in 

the limit ϕ → 0.9 Moreover, our statement concerning the relativity of dissipation is 
equivalent to our statement concerning the relativity of quantumness. A concept closely 

related to this latter notion was put forward in [42]. Compare now the concept relativ- 

9Since we have systematically dropped terms of order ε2 and higher, some of our expressions may need 

amendments before taking the limit ϕ → −π/2, but this does not invalidate our reasoning. 
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ity of quantumness with its transpose quantum relativity, or quantum gravity as usually 

called: beyond the pun on words, these two concepts appear to be complementary, in 

Bohr’s sense of the term “complementarity”. 

 

4 Discussion 

Our approach to quantum mechanics is an attempt to meet the requirement (demanded 

e.g. in [39, 46, 47], among others) that gravity be incorporated into the foundations  

of quantum theory. The absence of a link between quantum and gravitational effects 

in the standard formulation of quantum theory is a feature that has been claimed to lie 

at the heart of some of the conceptual difficulties facing the foundations of quantum 

mechanics. 

Specifically, in this paper we have presented a thermodynamical approach (follow- 

ing the classical theory of irreversible thermodynamics [34, 35, 40]) that provides a 

viable answer to this request, at least in a certain limit to be specified below. The incor- 

poration of gravitational effects in a discussion of the principles of quantum mechanics 

is being addressed here through the appearance of dissipation as a gravitational effect. 

In this way the time–reversal symmetry of quantum mechanics is destroyed. Nonuni- 

tarity is implemented here by means of a Wick rotation; the latter is a consequence   

of gravitation. In fact Wick rotations of the time axis are the quantum–mechanical 

counterpart to the equivalence principle of gravitation. Just as gravity can be (locally) 

gauged away, so can dissipation/quantumness. 

For ease of reference, below we present Eqs. (5), (22), (23), (27) and (30) again  

in order to summarise the relevant expressions of the S–picture of quantum mechanics 

developed in this paper. We have 

eiε 
= 

t 

kB 

k 
T, τ  = ln 

. 
T 
. 

 
 

T0 

 
, (42) 

which relates inverse time and temperature through a Wick rotation by a small, dimen- 

sionless parameter ε < 0. The latter encodes the strength of an external gravitational 

field; in the absence of gravitation we have ε = 0. Applying the change of variables 

(42), the usual Schroedinger equation and the uncertainty principle become 

dψ H 

kB 
dτ  

= (i − ε)Sψ, S = 
T 

, ∆S∆τ ” kB, (43) 

where the Hamiltonian operator H is replaced with the entropy operator S. This en- 

tropic Schrodinger equation is solved by ψ(τ ) = S(τ )ψ(0), where the evolution oper- 

ators S(τ ) in the dimensionless parameter τ , defined as 
 

S(τ ) := T exp 
. 

i − ε 
¸ τ

 
. 

S(τ̃)dτ̃  
 
, (44) 

kB 0 

satisfy a 1–parameter semigroup of nonunitary operators (above, T denotes operator 

ordering along the parameter τ˜  ≥ 0). Finally the expression 
. 
dS 

.
 

Im 
dt 

kB 

= −ε 
k
 

 
H (45) 
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relates the rate of entropy production to the Hamiltonian operator, while at the same 

time fixing the sign of ε to be negative, in compliance with the second law of thermo- 

dynamics. 

The previous equations hold in the limiting case of a weak gravitational field acting 

on a quantum particle described by the same equations. In view of the smallness of ε in 

(44), it is only for large values of τ that one can hope to measure the appearance of uni- 

tarity loss. It is important to realise that, by just switching back and forth between the 

energy picture (standard quantum mechanics) and the entropy picture (as summarised 

in Eqs. (42), (43), (44) and (45)), either quantumness or dissipation can be gauged 

away, though never the two of them simultaneously. This fact we take as a reflection 

of the equivalence principle of relativity, whereby gravitational fields can be (locally) 

gauged away by means of coordinate changes. 

The postulate (5) (first presented long ago by de Broglie [7] without the Wick rota- 

tion eiε) leads to considering time as emergent a property as temperature itself . In this 

way unitarity violation can also be regarded as an emergent phenomenon. 
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Abstract We elaborate on the existing notion that quantum mechanics is an emergent
phenomenon, by presenting a thermodynamical theory that isdual to quantum me-
chanics. This dual theory is that of classical irreversiblethermodynamics. The linear
regime of irreversibility considered here corresponds to the semiclassical approxima-
tion in quantum mechanics. An important issue we address is how the irreversibility
of time evolution in thermodynamics is mapped onto the quantum–mechanical side of
the correspondence.

1 Introduction

In his Nobel Prize Lecture, Prigogine advocated an intriguing type of “complementar-
ity between dynamics, which implies the knowledge of trajectories or wavefunctions,
and thermodynamics, which implies entropy” [18]. Another Nobel Prize winner, ’t
Hooft, has long argued that quantum mechanics must emerge from some underlying
deterministic theory via information loss [11]. Entropy isof course intimately related
to information loss, hence one expects some link to exist between these two approaches
to quantum theory.

In an apparently unrelated venue, the Chapman–Kolmogorov equation [6]

F (z1)F (z2) = F (z1 + z2), (1)

is a functional equation in the unknownF , wherez1, z2 are any two values assumed
by the complex variablez. It has the general solution

Fa(z) = eza, (2)

with a ∈ C an arbitrary constant. Implicitly assumed above is the multiplication rule
for complex numbers. In other words, (2) solves (1) within a space of number–valued
functions. If we allow for a more general multiplication rule such as matrix multi-
plication (possibly infinite–dimensional matrices), thenthe general solution (2) of the
functional equation (1) can be allowed to depend parametrically on az–independent,
constantmatrix or operatorA acting on some linear space:

FA(z) = ezA. (3)
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The functional equation (1), in its different guises, will play an important role in what
follows. We see that its solutions are by no means unique, depending as they do on the
space where one tries to solve the equation. Moreover, we will see that the question of
specifying one solution space or another will bear a close relation to the question posed
at the beginning—namely, the duality between thermodynamics and mechanics, on the
one hand, and the emergence property of quantum mechanics, on the other.

LetX andY respectively stand for the configuration spaces of a mechanical system
and a thermodynamical system, the latter taken slightly away from equilibrium. We
will be interested in the quantum theory based onX , and in the theory of irreversible
thermodynamics in the linear regime based onY [16]. There exist profound analo-
gies between these two theories [1, 8, 15, 19, 20]. Furthermore, seeming mismatches
between the two actually have a natural explanation in the context of the emergent ap-
proach to quantum theory [2, 4]; closely related topics wereanalysed long ago in [3]
and more recently in [5, 7, 9, 10, 12, 14, 17, 21, 22]. One of these mismatches concerns
the irreversibility of time evolution in the thermodynamical picture, as opposed to its
reversibility in the quantum–mechanical picture.

The standard quantum formalism is invariant under time reversal. This is reflected,
e.g., in the fact that the Hilbert space of quantum statesL2(X ) is complex and self-
dual [23], so one can exchange the incoming state|φ〉 and the outgoing state〈ψ| by
Hermitean conjugation, without ever stepping outside the given Hilbert spaceL2(X ).
On the other hand, the thermodynamical space of states is thecomplex Banach space
L1(Y) of complex–valued, integrable probability densitiesφ : Y → C. This is in
sharp contrast to the square–integrable probability density amplitudesof quantum the-
ory. Now the topological dual space toL1(Y) is the Banach spaceL∞(Y) [23]. These
two spaces fail to qualify as Hilbert spaces. In other words,for any |φ) ∈ L1(Y) and
any (ψ| ∈ L∞(Y),1 the respective norms||φ||1 and||ψ||∞ are well defined, but nei-
ther of these derives from a scalar product. All there existsis a nondegenerate, bilinear
pairing

( ·|· ) : L∞(Y) × L1(Y) −→ C (4)

taking the covector(ψ| and the vector|φ) into the number(ψ|φ):

(ψ|φ) :=
∫

Y

ψ∗φ. (5)

Under these circumstances there is no exchanging the incoming state|φ) ∈ L1(Y) and
the outgoing state(ψ| ∈ L∞(Y), as they belong to different spaces. Therefore time
reversal symmetry is lost. We see thatdispensing with the scalar product in quantum
theory is the same as dispensing with time reversal symmetry.

We have in [1, 8] tocuhed on several basic issues concerning athermodynamical
formalism for quantum theory. Specifically, a map has been constructed between the
quantum mechanics of a finite number of degrees of freedom, onthe one hand, and the
theory of irreversible processes in the linear regime, on the other. The current paper
elaborates further on the properties of athermodynamical dual theoryfor emergent

1We follow the notations of ref. [1]. In particular, the roundbrackets in|φ) and(ψ| refer toL1(Y) and
its topological dualL∞(Y), respectively, while the angular brackets of the quantum–mechanical ket|φ〉 and
bra〈ψ| refer toL2(X ) and its topological dualL2(X ). Concerning the measure onX andY , see below.
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quantum mechanics. The underlying logic might be briefly summarised as follows:
i) it has been claimed that thermodynamics is complementary, or dual, to mechanics;
ii) mechanics is symmetric under time reversal while thermodynamics is not;
iii) dispensing with time reversal symmetry is the same as dispensing with the scalar
product in quantum theory;
iv) the representation of the Chapman–Kolmogorov equation (1)on the quantum me-
chanical Hilbert spaceL2(X ) makes decisive use of the scalar product;
v) here we construct representations of (1) on the thermodynamical Banach spaces
L1(Y) andL∞(Y), where no scalar product is present.

For simplicity we will henceforth assumeX andY both equal toR, the latter en-
dowed with the Lebesgue measure.

The aim of our paper is not to reformulate the theory of irreversible thermodynam-
ics as originally developed in [16]. Rather,we intend to exhibit irreversibility as a key
property of quantum–mechanical behaviour.

2 Different representations for Chapman–Kolmogorov

2.1 The quantum–mechanical representation

In quantum mechanics it is customary to write (1) as

U(t1)U(t2) = U(t1 + t2), t ∈ R, (6)

and to call it thegroup propertyof time evolution. IfH denotes the quantum Hamilto-
nian operator (assumed time–independent for simplicity),then (6) is solved by matrices
such as (3), here called time–evolution operators and defined as

U(t) := exp

(

− i

~
tH

)

. (7)

The solutions of (6) satisfy the differential equation

i~
dU

dt
= HU(t), H = i~

dU

dt

∣

∣

∣

t=0
. (8)

Comparing (7) with (3) we havez = t andA = −iH/~. TheU(t) are unitary on
L2(R). In a basis of position eigenfunctions|x〉, the matrix elements ofU(t) equal the
Feynman propagator:〈x2|U(t2 − t1)|x1〉 = K (x2, t2|x1, t1). In terms of the latter,
one rewrites the group property (6) as

K (x3, t3|x1, t1) =
∫

dx2K (x3, t3|x2, t2)K (x2, t2|x1, t1) . (9)

There is a path integral for the Feynman propagatorK:

K (x2, t2|x1, t1) =
∫ x(t2)=x2

x(t1)=x1

Dx(t) exp

{

i

~

∫ t2

t1

dt L [x(t), ẋ(t)]

}

, (10)

whereL is the classical Lagrangian function.
To summarise, the operators (7) provide a unitary representation of the commuta-

tive group (6) on the Hilbert spaceL2(R).

3



2.2 Intermezzo

Here we recall some technicalities to be used later; a good general reference is [23].
L1(R) is the space of all Lebesgue measurable, absolutely integrable functions

φ : R −→ C, i.e., functions such that
∫

R
|φ(y)|dy < ∞. This is a complex Banach

space with respect to the norm||ψ||1 :=
∫

R
|φ(y)|dy.2 A a denumerablebasis (a

Schauder basis) exists forL1(R).
The topological dual space toL1(R) is L∞(R), a duality between the two being

given in Eqs. (4), (5).L∞(R) is the space of all Lebesgue measurable functions
ψ : R −→ C that are essentially bounded,i.e., functions that remain bounded on all
R except possibly on a set of measure zero.L∞(R) is a Banach space with respect to
the norm|| · ||∞, defined as follows. A nonnegative numberα ∈ R is said to be an
essential upper bound ofψ whenever the set of pointsy ∈ R where|ψ(y)| ≥ α has
zero measure. The norm||ψ||∞ is the infimum of all thoseα:

||ψ||∞ := inf
{

α ∈ R
+ : α essential upper bound of ψ

}

. (11)

A key property is that one can pointwise multiplyψ ∈ L∞(R) with φ ∈ L1(R) to
obtainψφ ∈ L1(R) because

∫

R
|ψφ|dy <∞; this is used decisively in the pairing (5).

Another key property ofL∞(R) is that it admits no Schauder basis.
The spaceL1(R) is canonically and isometrically embedded into its topological

bidual, i.e., L1(R) ⊂ L1(R)∗∗. SinceL1(R) is nonreflexive, this inclusion is strict, a
property that will be used later on.3 Finally, the absence of a scalar product onL1(R)
andL∞(R) does not prevent the existence of unitary operators on them,the latter being
defined as those that preserve the corresponding norm.

2.3 The representation in irreversible thermodynamics

In statistics, the Chapman–Kolmogorov equation (1) was well known before the advent
of quantum theory [6]. Here one is given a certain measure spaceY (here assumed
equal toR endowed with the Lebesgue measure) and the corresponding Banach spaces
L1(R) and its topological dualL∞(R). These two will become carrier spaces for
representations of the Chapman–Kolmogorov equation (1).

One callsf1
(

y2

τ2

∣

∣

∣

y1

τ1

)

theconditionalprobability that the random variabley ∈ R

takes on the valuey2 at timeτ2 provided that it took on the valuey1 at timeτ1. Then
one usually writes the Chapman–Kolmogorov equation (1) in amanner similar to (9),

f1

(

y3
τ3

∣

∣

∣

y1
τ1

)

=

∫

dy2 f1

(

y3
τ3

∣

∣

∣

y2
τ2

)

f1

(

y2
τ2

∣

∣

∣

y1
τ1

)

, (12)

which expresses the Bayes rule for conditional probabilities. A representation of this
equation by means of linear operatorsU(τ) onL1(R) and onL∞(R) would thus have
to satisfy the algebra

U(τ1)U(τ2) = U(τ1 + τ2), (13)

2Just for comparison, the norm on the Hilbert spaceL2(R) is ||φ||2 :=
(∫

R
|φ(y)|2dy

)

1/2.
3The topological complementary space toL1(R), i.e., the spaceZ such thatL1(R)∗∗ = L1(R)⊕Z, is

known in the literature, but it will not be necessary here.
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which is again a presentation of (1). We can immediately readoff the matrix elements
of U(τ):

(y2|U(τ2 − τ1)|y1) = f1

(

y2
τ2

∣

∣

∣

y1
τ1

)

. (14)

As opposed to the quantum–mechanical case, the carrier space for the representation of
the algebra (13) is Banach but not Hilbert. The reason for this is that one deals directly
with probabilities rather than amplitudes.

The question arises: if one were to express the matrix (14) inthe form given by the
general solution (3), then clearly one would havez = τ , but what would the operator
A be? It is mathematically true, though physically unsatisfactory, to claim thatA
would be (proportional to) the logarithm ofU(τ). One of the purposes of this paper
is to determine the operatorA explicitly, and to interpret it in the terms stated in the
introduction. However, in order to do this, a knowledge of the conditional probabilities

f1

(

y2

τ2

∣

∣

∣

y1

τ1

)

is needed.

There are a number of instances in which thef1
(

y2

τ2

∣

∣

∣

y1

τ1

)

are known explicitly.

An important example is that ofclassical, irreversible thermodynamics of stationary,
Markov processes in the linear regime. For such processes one has [16]

f1

(

y2
τ2

∣

∣

∣

y1
τ1

)

=
1√
2π

s/kB√
1− e−2γ(τ2−τ1)

exp

[

− s

2kB

(

y2 − e−γ(τ2−τ1)y1
)2

1− e−2γ(τ2−τ1)

]

. (15)

The notation used here is that of [1]. Specifically,kB is Boltzmann’s constant, the
entropyS is a function of the extensive parametery, and we expandS in a Taylor
series around a stable equilibrium point. Up to quadratic terms we have

S = S0 −
1

2
sy2 + . . . , s := −d2S

dy2

∣

∣

∣

0
> 0. (16)

Moreover, the assumption of linearity implies the following proportionality between
the thermodynamical forceY := dS/dy and the fluxẏ := dy/dτ it produces [16]:

ẏ = LY, L > 0. (17)

The Onsager coefficientL must be positive for the process to be dissipative. Finally
γ := sL. Sometimes one also usesR := L−1, soγ = s/R.

The following path–integral representation for the conditional probabilities (15) of
these models is noteworthy [16]:

f1

(

y2
τ2

∣

∣

∣

y1
τ1

)

=

∫ y(τ2)=y2

y(τ1)=y1

Dy(τ) exp

{

− 1

2kB

∫ τ2

τ1

dτ L [ẏ(τ), y(τ)]

}

. (18)

The above exponential contains thethermodynamical LagrangianL, defined as

L [ẏ(τ), y(τ)] :=
R

2

[

ẏ2(τ) + γ2y2(τ)
]

, ẏ :=
dy

dτ
. (19)
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The path integral (18) is the thermodynamical analogue of (10). The corresponding
thermodynamical momentumpy equalsRdy/dτ , whereR plays the role of a mass,
and thethermodynamical HamiltonianH corresponding to (19) reads

H =
1

2R
p2y −

Rγ2

2
y2. (20)

It must be borne in mind, however, that the dimensions ofL andH are entropy per unit
time. With this caveat, we will continue to callH a Hamiltonian.

2.4 Mapping irreversible thermodynamics into quantum mechan-
ics

For the processes considered in (15) we claim that one can define operators onL1(R)
and onL∞(R)

U(τ) := exp

(

− 1

2kB
τH

)

(21)

with H suitably chosen, such that their matrix elements coincide with those given in
(14). Hence theU(τ) will provide a representation of the algebra (13). In what follows
we constructU(τ) explicitly, but one can already expect the argumentH of the expo-
nential (21) to be someoperatorversion of the thermodynamical Hamiltonianfunction
given in (20). For this reason we have not distinguished notationally between the two.
This operatorH will also turn out to be (proportional to) the unknown operatorAmen-
tioned after eq. (14). From (21) it follows that the thermodynamical analogue of the
quantum–mechanical equation (8) is

− 2kB
dU(τ)
dτ

= HU(τ), H = −2kB
dU(τ)
dτ

∣

∣

∣

τ=0
. (22)

We can resort to our previous work [1] in order to identify theoperatorH in its
action onL1(R) and onL∞(R). In [1] we have established a map between quantum
mechanics in the semiclassical regime, on the one hand, and the theory of classical,
irreversible thermodynamics of stationary, Markov processes in the linear regime, on
the other hand. In the mechanical picture, the relevant Lagrangian and Hamiltonian
functions are

L =
m

2

(

dx

dt

)2

− mω2

2
x2, H =

1

2m
p2x +

mω2

2
x2. (23)

Comparing them with their thermodynamical partners (19) and (20), we see that the
mechanical and the thermodynamical functions can be transformed into each other if
we apply the replacements4

ω ↔ γ,
mω

~
↔ s

2kB
, x↔ y, (24)

4While the first two replacements of (24) are dimensionally correct without any further assumptions, the
third identification also requires thatx andy have the same dimensions. Since this need not always be the
case, a dimensionful conversion factor must be understood as implicitly contained in the replacementx↔ y,
whenever needed.
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as well as the Wick rotation
τ = it. (25)

Furthermore, Boltzmann’s constantkB is the thermodynamical partner of Planck’s con-
stant~ multiplied by 2 [19]:

~ ↔ 2kB. (26)

As a consistency check one can apply all the above replacements to (7) in order to
arrive at

U(t) = exp

(

− i

~
tH

)

↔ exp

(

− 1

2kB
τH

)

= U(τ). (27)

However, we still have to identify the operatorH in its action on thermodynamical
states. This will be done in section 3.1.

2.5 Incoming statesvs. outgoing states

In principle, thermodynamical states are normalised probability densities, hence ele-
ments ofL1(R). However, as we will see shortly, this viewpoint must be extended
somewhat. For this purpose let us call the elements ofL1(R) incoming states. Incom-
ing linear operatorsOin are defined

Oin : L1(R) −→ L1(R), (28)

so as to map incoming states|φ) ∈ L1(R) into incoming statesOin|φ) ∈ L1(R).
Incoming states are postulated to evolve in time according to

− 2kB
d|φ)
dτ

= Hin|φ), (29)

whereHin is an incoming linear operator, to be identified presently.
The space of outgoing states is the topological dual ofL1(R), henceL∞(R). Out-

going linear operatorsOout are similarly defined

Oout : L
∞(R) −→ L∞(R), (30)

in order to map outgoing states(ψ| ∈ L∞(R) into outgoing states(ψ|Oout ∈ L∞(R).
The operatorOT

in that is transpose to an incoming operatorOin is defined on the topo-
logical dual space:

OT
in : L∞(R) −→ L∞(R). (31)

In this wayOT
in is actually an outgoing operatorOout.5 By definition the transpose

satisfies

(ψ|OT
in|φ) = (ψ|Oin|φ), ∀ (ψ| ∈ L∞(R), ∀ |φ) ∈ L1(R). (32)

5Since the topological bidual(L1(R))∗∗ contains more than justL1(R), we stop short of stating that
“The transposeOT

out
to an outgoing operatorOout is an incoming operatorOin”. The previous statement,

trivially true in finitely many dimensions and still true onL2(R), no longer holds in our context, with the
consequence that twice transposing does not give back the original operator. We will see in section 3.2 that
this fact has far–reaching implications.
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What equation should govern the time evolution of outgoing states? Clearly it can
only be

− 2kB
d(ψ|
dτ

= (ψ|HT
in = (ψ|Hout, (33)

therefore

− 2kB
d

dτ
(ψ|φ) = (ψ|HT

in|φ) + (ψ|Hin|φ). (34)

The right–hand side of the above is generally nonzero: it expresses the irreversibil-
ity property of time evolution in thermodynamics. This is a far cry from the time–
symmetric case of standard quantum mechanics, wherei~d(〈ψ|φ〉)/dt = 0.

One further point deserves attention. In standard quantum mechanics onL2(R),
the matrix element〈ψ|O|φ〉 =

∫

dxψ∗(x)Oφ(x) naturally carries the dimensions of
the operatorO; here bothψ∗(x) andφ(x) have the dimension[x]−1/2 of a probability
amplitude onR. In the thermodynamical dual to quantum theory, the incoming state
|φ) ∈ L1(R) carries the dimension[y]−1 because it is a probabilitydensity, while the
outgoing state(ψ| ∈ L∞(R) is dimensionlessbecause it isnot meant to be integrated
on its own. It is only upon taking the pairing (5) that(ψ| will be integrated against
O|φ). So the dimensions of(ψ|O|φ) are again correct, although the dimensional bal-
ance between incoming and outgoing states that existed inL2(R) has disappeared.

Altogether, dispensing with the scalar product in quantum theory is the same as
dispensing with time reversal symmetry. Moreover, dispensing with the scalar prod-
uct has the consequence that, as thermodynamical states, one must regard not just the
elements ofL1(R) but also those of its topological dualL∞(R).

3 The harmonic oscillator representation of irreversible
thermodynamics

For mechanics we use thedimensionlesscoordinatex ∈ R. Then the quantum har-
monic oscillator equation onL2(R) reads

(

− d2

dx2
+ x2

)

w(x) = εw(x), ε ∈ R, (35)

whereε is a dimensionless energy eigenvalue.

3.1 The oscillator on the Banach spacesL1(R) and L
∞(R)

For thermodynamics we use thedimensionlesscoordinatey ∈ R. Then the dimension-
less thermodynamical momentum is represented as−id/dy, and the equation for the
thermodynamical oscillator reads

−
(

d2

dy2
+ y2

)

w(y) = σw(y) σ ∈ R. (36)

Above,σ is a dimensionless eigenvalue (entropy per unit time), which we require to be
real for physical reasons. With respect to (35), the only change in (36) is the sign of
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the potential term (see (19) and (20)). Eq. (36) identifies the operatorH explicitly in
its action onL1(R) andL∞(R), a question posed in section 2.4. Specifically, for the
action of the Hamiltonian on the initial states we have

Hin = − d2

dy2
− y2 : L1(R) −→ L1(R). (37)

The operatorHout is formally the same asHin, but it acts on the dual space:

Hout = − d2

dy2
− y2 : L∞(R) −→ L∞(R). (38)

In order to solve (36) we first look for a factorisation ofw(y) in the form

w(y) = h(y) exp(αy2), α ∈ C, (39)

whereα is some constant to be picked appropriately. With (39) in (36) one finds

d2

dy2
h(y) + 4αy

d

dy
h(y) +

[

(2α+ σ) + (4α2 + 1)y2
]

h(y) = 0. (40)

The choiceα = i/2 simplifies (40) considerably:

d2

dy2
h(y) + 2iy

d

dy
h(y) + (i + σ)h(y) = 0. (41)

Finally the change of variablesz = ei
3π

4 y reduces (41) to

d2

dz2
h̃(z)− 2z

d

dz
h̃(z)− (1 − iσ)h̃(z) = 0, (42)

where we have defined̃h(z) := h
(

e−i 3π
4 z

)

= h(y). Now (42) is a particular instance

of the Hermite differential equation on the complex plane,

H ′′(z)− 2zH ′(z) + 2νH(z) = 0, ν ∈ C. (43)

In our case we have2ν = −1+ iσ with σ ∈ R, soν /∈ N. Whenν /∈ N two linearly in-
dependent solutions to the Hermite equation are given by theHermite functionsHν(z)
andHν(−z), where [13]

Hν(z) =
1

2Γ(−ν)

∞
∑

n=0

(−1)nΓ
(

n−ν
2

)

n!
(2z)n. (44)

The above power series defines an entire function ofz ∈ C for any value ofν ∈ C. Its
asymptotic behaviour is [13]:

Hν(z) ∼ (2z)ν −
√
πeiπν

Γ(−ν) z
−ν−1 ez

2

, |z| → ∞, π/4 < arg(z) < 5π/4. (45)
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In (45) we have dropped subdominant terms, keeping only the leading contributions;
the angular sector π/4 < arg(z) < 5π/4 is imposed on us by the change of variables
z = ei

3π

4 y made above fory ∈ R.
Altogether, two linearly independent solutions to (36) corresponding to the eigen-

valueσ ∈ R are given byw±
σ (y), where

w±
σ (y) := H− 1

2
+ iσ

2

(

±ei
3π

4 y
)

eiy
2/2. (46)

By (45), their asymptotic behaviour for|y| → ∞ is

w±
σ (y) ∼

(

±2ei
3π

4 y
)− 1

2
+ iσ

2

eiy
2/2−

√
πe−π(σ+i)/2

Γ
(

1−iσ
2

)

(

±ei
3π

4 y
)− 1

2
− iσ

2

e−iy2/2. (47)

We are looking for eigenfunctions withinL1(R) and/orL∞(R). Eqn. (47) proves that
w±

σ (y) ∈ L∞(R) butw±
σ (y) /∈ L1(R).

3.2 The spectrum

Summarising, the operator−d2/dy2 − y2 onL∞(R) has an eigenvalue spectrum con-
taining the whole real lineR.6 This spectrum is twice degenerate, the (unnormalised)
eigenfunctions corresponding toσ ∈ R being given in Eq. (46). The same opera-
tor acting onL1(R) has a void spectrum. This latter conclusion is not as tragic as it
might seem at first sight—on the contrary, everything fits together once one realises
that evolution in thermodynamical timeτ is irreversible, and that the spaceL1(R),
which admits a Schauder basis, has a topological dualL∞(R) admitting no Schauder
basis. Let us analyse these facts from a physical and from a mathematical viewpoint.

Physically, an empty spectrum onL1(R) just means thatthere can be no incoming
eigenstates. Moreover, no incoming state can ever evolve into an incoming eigenstate
under thermodynamical evolution. This is an expression of irreversibility. However, as
a result of evolution inτ , one can perfectly well obtainoutgoingeigenstates. The latter
remain outgoingeigenstatesunder thermodynamical evolution.

Mathematically, in standard quantum mechanics onL2(R) one is used to taking
the transpose of a matrix by exchanging rows with columns. Implicitly understood
here is the existence of Schauder bases in the space ofL2(R) and in its topological
dual (againL2(R)). Once one diagonalises an operator, how can it be that its transpose
is not diagonal as well? While this cannot happen inL2(R), this can perfectly well
be the case when dealing with the spacesL1(R) andL∞(R), becauseL1(R) admits
a Schauder basis whileL∞(R) does not. In turn, this is a consequence of the fact
that we are renouncing probability densityamplitudes(elements ofL2(R)) in favour
of probabilitydensities(elements ofL1(R)), as befits a thermodynamical description
of quantum theory.

One would like to identify the thermodynamical analogue of the quantum mechan-
ical vacuum state; one expects to somehow map the quantum–mechanical state of least
energy, or vacuum, into the thermodynamical state of maximal entropy. Let us recall

6Actually the eigenvalue spectrum of this operator onL∞(R) also contains nonreal eigenvalues (see
(48)), but here we are only interested in real eigenvalues.
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that the (unnormalised) quantum–mechanical vacuum wavefunction is exp(−x2/2).
The Wick rotation (25) introduces the imaginary unit, giving us the termexp(iy2/2) in
(46). Nowν = −1/2 + iσ/2 = 0 only whenσ = −i, a possibility we have excluded
per decree. Let us temporarily sidestep this decree and observe that

−
(

d2

dy2
+ y2

)

e±iy2/2 = ∓i e±iy2/2 (48)

is very reminiscent of the equation governing the quantum–mechanical vacuum. The
thermodynamical density corresponding to the stateexp(±iy2/2) equals the constant
unit function onR, which is nonnormalisable under|| · ||1 in L1(R) but carries fi-
nite norm under|| · ||∞ in L∞(R). As a perfectly uniform probability distribution,
exp(±iy2/2) is the thermodynamical state that maximises the entropy. All the eigen-
states in (46) are thermodynamical excitations thereof, hence they carry less entropy.
Of course, we cannot allow the eigenvaluesσ = ±i within our spectrum, but the above
discussion is illustrative because, by (47), all our thermodynamical eigenstates (46)
tend asymptotically to a linear combination of the statesy−1/2 exp

[

± i
2

(

σ ln(y) + y2
)]

.
In other words, all our thermodynamical eigenstates can be interpreted asfluctuations
around a state of maximal entropy.

3.3 Irreversibility vs. nonunitarity

A key consequence of irreversibility is nonunitarity. Contrary to the operatorsU(t) of
(7), which are unitary onL2(R), the operatorsU(τ) of (21) arenonunitary onL∞(R).

Nonunitarity is readily proved. Letwσ ∈ L∞(R) be such thatHoutwσ = σwσ.
Sinceσ ∈ R we have, by (21),

U(τ)wσ = exp

(

− τσ

2kB

)

wσ, τσ ∈ R, (49)

hence

||U(τ)wσ ||∞ = exp

(

− τσ

2kB

)

||wσ ||∞, τσ ∈ R, (50)

which proves our assertion. To summarise: combining (21), (37) and (38) we find,
after reinstating dimensional factors, that the operators

U(τ) = exp

[

τ

2kB

(

1

2R

d2

dy2
+
Rγ2

2
y2
)]

, τ ≥ 0, (51)

provide anonunitary, infinite–dimensional representation of the Chapman–Kolmogorov
semigroup (13) onL∞(R). The spaceL1(R) also carries an infinite–dimensional rep-
resentation of (13) on which the operators (51) act.

It is interesting to observe that the eigenfunctions in (48), which we have discarded
for reasons already explained, circumvent the above proof because their eigenvalues
are purely imaginary. Each one of them actually provides a 1–dimensional,unitary
representation of (13) onL∞(R).
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4 Discussion

Classical thermodynamics is the paradigm of emergent theories. It renounces the de-
tailed knowledge of a large number of microscopic degrees offreedom, in favour of a
small number of macroscopic averages that retain only some coarse–grained features
of the system under consideration. It has been claimed in theliterature that quantum
mechanics must be an emergent theory [2, 4, 11]. As one further piece of evidence in
support of this latter statement, in this paper we have developed a thermodynamical
formalism for quantum mechanics.

In the usual formulation of quantum theory, one is concernedwith the matrix el-
ements〈ψ|O|φ〉 of some operatorO, where the incoming state|φ〉 belongs toL2(R)
and the outgoing state〈ψ| belongs to the topological dual space, againL2(R).

In the thermodynamical theory that is dual to quantum mechanics one is again
concerned with matrix elements of the type(ψ|O|φ). However, now the incoming
state is not square integrable but just integrable,|φ) ∈ L1(R), while the outgoing state
(ψ| ∈ L∞(R) belongs to a totally different space. NeitherL1(R) nor its topological
dualL∞(R) qualify as a Hilbert space, because their respective norms do not derive
from a scalar product; they are just Banach spaces. The absence of a scalar product
is the hallmark of irreversibility. Indeed the thermodynamics that is dual to quantum
mechanics is that of irreversible processes (considered here in the linear regime).

One is often interested in the case when the operatorO is the time evolution opera-
torU connecting the incoming and the outgoing states. Not being allowed to exchange
the incoming and the outgoingstatesin the transition probability(ψ|U|φ), because they
belong to different spaces, emphasis falls on theprocessU connecting these two. Ir-
reversibility manifests itself through the nonunitarity of the representation constructed
here for the Chapman–Kolmogorov equation. The latter is thefunctional equation sat-
isfied byU .

Incoming states|φ) ∈ L1(R) are probability densities, as opposed to the probability
densityamplitudes|φ〉 ∈ L2(R) of standard quantum theory. Outgoing states(ψ| ∈
L∞(R) have a different physical interpretation. The norm|| · ||∞ can be regarded
as a probability density that isnot meant to be integrated. Indeed a general function
ψ ∈ L∞(R) need not be normalisable under the norms|| · ||1 and|| · ||2 onL1(R) and
L2(R) respectively. There is nothing unusual about this—scattering states in standard
quantum theory also give rise to nonnormalisable probability densities.

As an example, in section 3.1 we have worked out the spectrum for the thermody-
namical harmonic oscillator. This implies solving the Schroedinger equation for the
repulsivepotentialV (y) = −y2, the wrong sign being due to the Wick rotation con-
necting irreversible thermodynamics to mechanics. Not surprisingly, the spectrum is
empty when diagonalising the Hamiltonian on the spaceL1(R), while exhibiting rich
features on the spaceL∞(R). In particular, all our eigenstates turn out to be nonnor-
malisable under the norms|| · ||1 and|| · ||2 onL1(R) andL2(R) respectively, hence
they all are analogous to scattering states in standard quantum theory. However all our
eigenstates are normalisable under the norm|| · ||∞ of L∞(R).

An apparently striking feature is the reluctance of incoming states to buildeigen-
statesof the Hamiltonian, as seen in section 3.2. This apparent difficulty disappears
once one realises thatoutgoingstates make perfectly good eigenstates. Furthermore,
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the existence of outgoing states that cannot be reached by the time evolution of any
incoming state whatsoever is another sign of irreversibility. We cannot renounce ir-
reversibility because we have programatically dispensed with time reversal symmetry.
Hence incoming eigenstates must go.

Exeunt omnes.
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Abstract: Quantum mechanics has been argued to be a coarse-graining of some underlying
deterministic theory. Here we support this view by establishing a map between certain solutions
of the Schroedinger equation, and the corresponding solutions of the irrotational Navier–Stokes
equation for viscous fluid flow. As a physical model for the fluid itself we propose the quantum
probability fluid. It turns out that the (state-dependent) viscosity of this fluid is proportional to
Planck’s constant, while the volume density of entropy is proportional to Boltzmann’s constant.
Stationary states have zero viscosity and a vanishing time rate of entropy density. On the other hand,
the nonzero viscosity of nonstationary states provides an information-loss mechanism whereby
a deterministic theory (a classical fluid governed by the Navier–Stokes equation) gives rise to an
emergent theory (a quantum particle governed by the Schroedinger equation).

Keywords: quantum mechanics; irreversible thermodynamics

1. Introduction

Interaction with an environment provides a mechanism whereby classical behaviour can emerge
from a quantum system [1]. At the same time, however, dissipation into an environment can change
this picture towards the opposite conclusion. Indeed certain forms of quantum behaviour have
been experimentally shown to arise within classical systems subject to dissipation [2,3]. Now systems
in thermal equilibrium are well described by classical thermostatics, while small deviations from
thermal equilibrium can be described by the classical thermodynamics of irreversible processes [4].
It is sometimes possible to model long-wavelength dissipative processes through the dynamics of
viscous fluids. Fluid viscosity provides a relatively simple dissipative mechanism, a first deviation
from ideal, frictionless behaviour. Two relevant physical quantities useful to characterise viscous
fluids are shear viscosity η and the entropy per unit 3-volume, s [5]. In a turn of events leading back
to the Maldacena conjecture [6] it was found that, for a wide class of thermal quantum field theories
in 4 dimensions, the ratio η/s for the quark–gluon plasma must satisfy the inequality [7]

η

s
≥ h̄

4πkB
. (1)

The predicted value of the ratio η/s for the quark-gluon plasma has found experimental
confirmation [8]. The simultaneous presence of Planck’s constant h̄ and Boltzmann’s constant kB
reminds us that we are dealing with theories that are both quantum and thermal.

One might be inclined to believe that these two properties, quantum on the one hand, and thermal
on the other, are separate. One of the purposes of this paper is to show that this predisposition must
be modified, at least partially, because the terms quantum and thermal are to a large extent linked

Entropy 2016, 18, 34; doi:10.3390/e18010034 www.mdpi.com/journal/entropy
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(see, e.g., [9–11] and refs. therein). In fact, that these two properties belong together follows from the
analysis of refs. [1,3], even if the conclusions of these two papers seem to point in opposite directions.

In this article we elaborate on a theoretical framework that can accomodate the ideas of
the previous paragraph. In plain words, this framework can be summarised in the statement
quantum = classical + dissipation, although of course this somewhat imprecise sentence must be made
precise. To begin with, we will restrict our analysis to quantum systems with a finite number of
degrees of freedom. So we will be dealing not with theories of fields, strings and branes, but with
plain quantum mechanics instead.

In the early days of quantum mechanics, Madelung provided a very intuitive physical
interpretation of the Schroedinger wave equation in terms of a probability fluid [12]. Decomposing
the complex wavefunction ψ into amplitude and phase, Madelung transformed the Schroedinger
wave equation into an equivalent set of two: the quantum Hamilton–Jacobi equation, and the
continuity equation. Further taking the gradient of the phase of ψ, Madelung arrived at a velocity
field satisfying the Euler equations for an ideal fluid. In Madelung’s analysis, the quantum potential
U is interpreted as being (proportional to) the pressure field within the fluid. It is important to stress
that Madelung’s fluid was ideal, that is, frictionless. Independently of this analogy, Bohm suggested
regarding the quantum potential U as a force field that the quantum particle was subject to, in
addition to any external, classical potential V that might also be present [13].

There exists yet a third, so far unexplored alternative to Madelung’s and Bohm’s independent
interpretations of the quantum potential. In this alternative, explored here, the quantum potential is
made to account for a dissipative term in the equations of motion of the probability fluid. The velocity
field no longer satisfies Euler’s equation for an ideal fluid—instead it satisfies the Navier–Stokes
equation for a viscous fluid. It is with this viscosity term in the Navier–Stokes equation, and its
physical interpretation as deriving from the Schroedinger equation, that we will be concerned with
in this paper.

It has long been argued that quantum mechanics must emerge from an underlying classical,
deterministic theory via some coarse-graining, or information-loss mechanism [14–20]; one refers
to this fact as the emergence property of quantum mechanics [21]. Many emergent physical theories
admit a thermodynamical reformulation, general relativity being perhaps the best example [22,23].
Quantum mechanics is no exception [24,25]; in fact our own approach [9,26] to the emergence
property of quantum mechanics exploits a neat correspondence with the classical thermodynamics of
irreversible processes [4].

In this article, the dissipation that is intrinsic to the quantum description of the world will
be shown to be ascribable to the viscosity η of the quantum probability fluid whose density equals
Born’s amplitude squared |ψ|2. Moreover, the viscosity η will turn out to be proportional to h̄,
thus vanishing in the limit h̄ → 0. Now mechanical action (resp. entropy) is quantised in units of
Planck’s constant h̄ (resp. Boltzmann’s constant kB), and Equation (1) contains these two quanta.
(Concerning Boltzmann’s constant kB as a quantum of entropy, see refs. [23,27]). Hence an important
implication of our statement quantum = classical + dissipation is that quantum and thermal effects are
inextricably linked.

Some remarks on conventions are in order; we follow ref. [5]. The viscosity properties of a fluid
can be encapsulated in the viscous stress tensor σ′ik,

σ′ik := η

(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
δik

∂vl
∂xl

)
+ ζδik

∂vl
∂xl

, (2)

where η (shear viscosity) and ζ (bulk viscosity) are positive coefficients, and the vi are the components
of the velocity field v within the fluid. Then the Navier–Stokes equation reads

∂v
∂t

+ (v · ∇) v +
1
ρ
∇p− η

ρ
∇2v− 1

ρ

(
ζ +

η

3

)
∇ (∇ · v) = 0. (3)
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Here p is the pressure, and ρ the density of the fluid. In the particular case of irrotational flow
considered here, the Navier–Stokes equation simplifies to

∂v
∂t

+ (v · ∇) v +
1
ρ
∇p− η′

ρ
∇2v = 0, η′ := ζ +

4η

3
. (4)

For notational simplicity, in what follows we will systematically write η for the viscosity
coefficient η′ just defined, bearing in mind, however, that we will always be dealing with Equation (4)
instead of Equation (3).

The above must be supplemented with the continuity equation and the equation for heat flow.
If T denotes the temperature and κ the thermal conductivity of the fluid, then the equation governing
heat transfer within the fluid reads

ρT
(

∂s
∂t

+ (v · ∇)s
)
− σ′ik

∂vi
∂xk
−∇ · (κ∇T) = 0. (5)

We will use the notations I and S for mechanical action and entropy, respectively, while the
dimesionless ratios I/h̄ and S/2kB will be denoted in italic type:

I :=
I
h̄

, S :=
S

2kB
. (6)

The factor of 2 multiplying kB, although conventional, can be justified. By Boltzmann’s principle,
the entropy of a state is directly proportional to the logarithm of the probability of that state. In turn,
this is equivalent to Born’s rule:

(Boltzmann) S = kB ln
(∣∣∣ ψ

ψ0

∣∣∣2)⇐⇒ |ψ|2 = |ψ0|2 exp
(
S
kB

)
(Born). (7)

Above, |ψ0| is the amplitude of a fiducial state ψ0 with vanishing entropy. Such a fiducial state is
indispensable because the argument of the logarithm in Boltzmann’s formula must be dimensionless.
It is convenient to think of ψ0 as being related to a 3-dimensional length scale l defined through

l := |ψ0|−2/3. (8)

One can also think of ψ0 as a normalisation factor for the wavefunction.

2. The Physics of Navier–Stokes from Schroedinger

2.1. Computation of the Viscosity

Our starting point is Madelung’s rewriting of the Schroedinger equation for a mass m subject to
a static potential V = V(x),

ih̄
∂ψ

∂t
+

h̄2

2m
∇2ψ−Vψ = 0, (9)

by means of the substitution

ψ = ψ0 exp
(

S +
i
h̄
I
)
= ψ0 A exp

(
i
h̄
I
)

, A := eS. (10)

This produces, away from the zeroes of ψ, an equation whose imaginary part is the continuity
equation for the quantum probability fluid,

∂S
∂t

+
1
m
∇S · ∇I + 1

2m
∇2I = 0, (11)
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and whose real part is the quantum Hamilton–Jacobi equation:

∂I
∂t

+
1

2m
(∇I)2 + V + U = 0. (12)

Here

U := − h̄2

2m
∇2 A

A
= − h̄2

2m

[
(∇S)2 +∇2S

]
(13)

is the quantum potential [13]. Next one defines the velocity field of the quantum probability fluid

v :=
1
m
∇I . (14)

Then the gradient of Equation (12) equals

∂v
∂t

+ (v · ∇) v +
1
m
∇U +

1
m
∇V = 0. (15)

The flow (14) is irrotational. We will sometimes (though not always) make the assumption
of incompressibility, ∇ · v = 0. This reduces to the requirement that the phase I satisfy the
Laplace equation,

∇2I = 0. (16)

We will see in Equation (23) that the above Laplace equation is an equivalent restatement of the
semiclassicality condition.

At this point we deviate from Madelung’s reasoning and compare Equation (15) not to Euler’s
equation for an ideal fluid, but to the Navier–Stokes equation instead, Equation (4). For the
correspondence to hold, we first identify (∇p)/ρ with (∇V)/m. Second, it must hold that

1
m
∇U +

η

ρ
∇2v = 0. (17)

That is, the gradient of the quantum potential must exactly compensate the viscosity term in the
fluid’s equations of motion. Thus frictional forces within the fluid are quantum in nature. Altogether,
we have established the following:

Statement 1. Whenever condition (17) holds, the gradient of the quantum Hamilton–Jacobi equation, as given
by Equation (15), is a Navier–Stokes equation for irrotational, viscous flow:

∂v
∂t

+ (v · ∇) v− η

ρ
∇2v +

1
ρ
∇p = 0. (18)

Here the pressure p of the quantum probability fluid and the mechanical potential V are related as per

1
ρ
∇p =

1
m
∇V, (19)

while the density ρ of the fluid is given by

ρ = m|ψ|2 =
m
l3 e2S =

m
l3 A2. (20)

Given V, m and ρ, the equation (∇p)/ρ = (∇V)/m defines a vector field p = ρ∇V/m, that
however need not be a gradient field ∇p. We will see later (statement 4) that, at least in the classical
limit, the above equation is integrable, thus defining a scalar function p such that p = ∇p.

The order of magnitude of the viscosity coefficient η can be inferred from Equations (13), (14)
and (17): since U is O(h̄2) and I is O(h̄), we conclude:
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Statement 2. Whenever condition (17) holds, the viscosity coefficient η of the quantum probability fluid is
proportional to Planck’s constant:

η =
1
l3 O (h̄) . (21)

It is worthwhile stressing that Equation (21) only provides an order of magnitude for η as
a function of h̄—namely, η is a linear function of h̄. The denominator l3 has been included for
dimensional reasons, while a dimensionless factor multiplying the right–hand side of Equation (21) is
allowed. (This dimensionless factor is undetermined, in the sense that our argument does not provide
its precise value—not in the sense that the viscosity η is undetermined.) Moreover, this dimensionless
factor will generally depend on the quantum state under consideration, because both U and I
are state-dependent. Although the viscosity of the quantum probability fluid depends, through
an undetermined dimensionless factor, on the quantum state, the order of magnitude provided by
Equation (21) is universal.

2.2. Viscous States vs. Dissipation–Free States

Condition (17) need not be satisfied by all wavefunctions, as the functions S and I are already
determined by the quantum Hamilton–Jacobi equation and by the continuity equation. Thus our next
task is to exhibit a class of quantum-mechanical wavefunctions for which condition (17) is indeed
satisfied, either exactly or at least approximately.

2.2.1. Exact Solutions

Equation (17) integrates to

U +
η

ρ
∇2I = C0(t), C0(t) ∈ R, (22)

where the integration constant C0(t) may generally depend on the time variable. Let us for simplicity
set C0(t) = 0. Using (13) and (20) the above becomes

2ηl3

h̄2 ∇
2I = e2S

[
(∇S)2 +∇2S

]
. (23)

One can regard (23) as a Poisson equation ∇2Φ = $, where the role of the electric potential
Φ is played by the phase I and that of the charge density $ is played by the right-hand side
of Equation (23). The bracketed term, (∇S)2 + ∇2S, is actually proportional to the Ricci scalar
curvature of the conformally flat metric gij = e−S(x)δij, where δij is the Euclidean metric on R3.
Equation (23) has been dealt with in ref. [28], in connection with the Ricci-flow approach to emergent
quantum mechanics; it will also be analysed in a forthcoming publication. For the moment we will
relax the requirement that Equation (17) hold exactly, and will satisfy ourselves with approximate
solutions instead.

2.2.2. Approximate Solutions

Under the assumption that ρ is spatially constant, Equation (17) integrates to

U(x, t) = C1(t), C1(t) ∈ R, (24)

where Equations (14) and (16) have been used; the integration constant C1(t) may however be
time-dependent. Equivalently, one may assume that S in Equation (23) is approximately constant as a
function of the space variables, hence I is an approximate solution of the Laplace Equation (16). Still
another way of arriving at Equation (24) is to assume the flow to be approximately incompressible,
∇ · v ' 0. Of course, ρ = mA2/l3 is generally not spatially constant. However, in the semiclassical
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limit, the amplitude A = eS is a slowly-varying function of the space variables. Under these
assumptions, Equation (24) holds approximately:

Statement 3. In the semiclassical limit, the sufficient condition (17) guaranteeing the validity of the Navier–
Stokes equation is equivalent to Equation (24).

We can now consider the effect of taking the semiclassical limit in the identification
(∇p)/ρ = (∇V)/m made in Equation (19). In this limit ρ is approximately constant, and the above
identification defines an integrable equation for the scalar field p. Therefore:

Statement 4. In the semiclassical limit, the identification (∇p)/ρ = (∇V)/m made in Equation (19)
correctly defines a scalar pressure field p within the probability fluid.

In the stationary case, when ψ = φ(x) exp(−iEt/h̄), the quantum potential becomes
time-independent, and condition (24) reduces to the requirement that U be a constant both in space
and in time:

U(x) = C2, C2 ∈ R. (25)

Statement 5. In the semiclassical limit of stationary eigenfunctions, the sufficient condition (17) guaranteeing
the validity of the Navier–Stokes equation is equivalent to Equation (25).

One expects semiclassical stationary states to possess vanishing viscosity because, having a
well-defined energy, they are dissipation-free. This expectation is borne out by a simple argument:
Equation (17) and the (approximate) spatial constancy of U imply η∇2v = 0. This reduces the
Navier–Stokes Equation (4) to the Euler equation for a perfect fluid. Therefore:

Statement 6. All semiclassical stationary states have vanishing viscosity: η = 0.

Thus, as far as dissipation effects are concerned, the combined assumptions of stationarity and
semiclassicality lead to a dead end. Furthermore, we cannot lift the requirement of semiclassicality
because stationarity alone does not guarantee that the sufficient condition (17) holds. Even if
we per decree assign a non-semiclassical but stationary state η = 0, that state need not satisfy
condition (17)—the very assignment of a viscosity η would be flawed.

A physically reasonable assumption to make is that viscosity must be proportional to the density
of the fluid:

η = C3ρ. (26)

Here C3 is some dimensional conversion factor that does not depend on the space variables:
C3 6= C3(x). Then Equation (17) integrates to

U + mC3 (∇ · v) = C4, C4 ∈ R. (27)

When the flow is incompressible, ∇ · v = 0, and Equation (27) reduces to the case already
considered in Equations (24) and (25). Thus the proportionality assumption (26) provides an
independent rationale for the semiclassical approximation made earlier, and viceversa. In turn, this
shows that the semiclassicality condition can be recast as done in Equation (16). We conclude:

Statement 7. In the semiclassical limit, the viscosity η is proportional to the density ρ of the quantum
probability fluid. In particular, the viscosity η is approximately spatially constant for semiclassical states.
Moreover, the proportionality factor C3 in Equation (26) is linear in Planck’s constant h̄:

C3 =
h̄
m

f . (28)
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Here f ≥ 0 is an arbitrary dimensionless factor. By what was said previously, f = 0 when the
state considered is an energy eigenstate, while f > 0 on all other states. Hence f is best thought of as
a function f : H → R on the Hilbert spaceH of quantum states.

Having exhibited the existence of approximate solutions to condition (17), whenever dealing
with dissipation effects we will restrict our discussion to nonstationary states.

2.3. The Ratio of Viscosity to Entropy Density

We have interpreted dissipation as a quantum effect within the probability fluid. Hence
the increase ds/dt in the volume density of entropy of the probability fluid also qualifies as a
quantum effect. Here we will compute ds/dt in the semiclassical regime, both for stationary and
nonstationary states.

Considering a stationary state first, we expect ds/dt = 0 because η = 0. This expectation is
confirmed by the following alternative argument. We see that Equation (5) reduces to

ds
dt

=
∂s
∂t

+ (v · ∇)s = κ

ρ

∇2T
T

, (29)

because the dissipation term σ′ik vanishes. On the other hand, by Boltzmann’s principle (7) we can
write the entropy S in terms of the amplitude A = eS as

S = 2kB ln
(∣∣∣ ψ

ψ0

∣∣∣) = 2kB ln A. (30)

This is reminiscent of the expression for the entropy of an ideal gas as a function of its
temperature, viz. S = gkB ln(T/T0), with g a dimensionless number and T0 some fixed
reference temperature. This suggests identifying the quantum-mechanical amplitude A with the
thermodynamical temperature T, at least in the absence of friction—as is indeed the case for
stationary states and for the ideal gas. So we set

A =
T
T0

. (31)

Thus ∇2 A = 0 implies ∇2T = 0. In the semiclassical approximation, A is a slowly-varying
function, and one can approximate ∇2 A by zero. Thus substituting Equation (31) into Equation (29),
we arrive at a counterpart to statement 5:

Statement 8. In the semiclassical approximation, the entropy density of any stationary state is constant in
time: ds/dt = 0.

Our next task is to obtain an estimate for the order of magnitude of the entropy density s. This
is readily provided by Equation (30):

Statement 9. In the semiclassical approximation, the volume density of entropy s of the quantum probability
fluid is proportional to Boltzmann’s constant:

s =
1
l3 O (kB) . (32)

As already mentioned regarding Equation (21), the denominator l3 has been included for
dimensional reasons, and an undetermined, dimensionless factor multiplying the right–hand side
is allowed. Finally combining Equations (21) and (32) together we can state:
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Statement 10. For the quantum probability fluid in the semiclassical approximation, the order of magnitude of
the ratio of viscosity to entropy density is

η

s
= O

(
h̄

kB

)
. (33)

Again an undetermined, dimensionless factor multiplying the right–hand side is allowed, but
the dependence on the length scale l has dropped out.

2.4. NonstationaRy States: Emergent Reversibility

Nonstationary states can be readily constructed as linear combinations of stationary eigenstates
with different energy eigenvalues. The ratio η/s of the viscosity to the entropy density of a
nonstationary state is important for the following reason. Any nonstationary state thermalises to a
final equilibrium state. The time required for this transition is of the order of the Boltzmann time τB,

τB :=
h̄

kBT
, (34)

where T is the temperature of the final equilibrium state [29]. In Equation (31) we have related the
temperature T to the amplitude A = |ψeq| of the equilibrium state wavefunction ψeq. Therefore:

Statement 11. For semiclassical, nonstationary states of the quantum probability fluid, the Boltzmann time
is directly proportional to the ratio η/s of the viscosity to the entropy density of the initial state, and inversely
proportional to the amplitude of the final equilibrium state.

Out of this analysis there arises a nice picture of the thermalisation process, whereby a
nonstationary state decays into a final stationary state. In this picture we have a slow dynamics
superimposed on a fast dynamics. The latter corresponds to nonstationary states; the former, to
stationary states. Viscous states correspond to the fast dynamics, while dissipation-free states pertain
to the slow dynamics. Time reversibility emerges as a conservation law that applies only to the
emergent, slow dynamics.

2.5. Stationary States: Emergent Holography

Turning now our attention to stationary states, let us see how an emergent notion of holography
arises naturally in our context. For stationary states we first set ∂S/∂t = 0 in the continuity
Equation (11), then apply the semiclassicality condition (16), next divide through by h̄ and finally
switch from I to I as per Equation (6). This establishes:

Statement 12. For semiclassical stationary states we have

∇I · ∇S = O
(

l−2
)

. (35)

For such states, Equations (25) and (35) are equivalent.

In the limit l → ∞ we have ∇I · ∇S = 0, and the foliation I = const (This is abuse of language.
Strictly speaking, the equation I = const defines only one leaf of the foliation. The foliation itself
is the union of all the leaves obtained by letting the constant run over the corresponding range.)
intersects orthogonally the foliation S = const. That the length scale l, in our case of semiclassical
stationary states, can be regarded as being sufficiently large, follows from Equation (8). Indeed a
classical, perfectly localised state around x = x0 carries a wavefunction δ(x− x0), the amplitude of
which is almost everywhere zero. As this localised state spreads out, ceasing to be perfectly classical,
its width can be taken as an inverse measure of its localisation. In other words, the limit h̄ → 0 is
equivalent to the limit l → ∞. Thus neglecting the right–hand side of Equation (35) we arrive at:
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Statement 13. Semiclassical stationary states provide two independent foliations of 3-dimensional space by two
mutually orthogonal families of 2-dimensional surfaces, respectively defined by I = const and by S = const.

The foliation I = const is well known since the early days of quantum theory. On the other
hand the foliation S = const was little used in mechanical contexts until the groundbreaking
contributions of refs. [22,23] to the notion of emergent spacetime. Specifically, in ref. [23], isoentropic
surfaces S = const are taken to be holographic screens, while also qualifying as equipotential surfaces
V = const of the gravitational field. We see immediately that:

Statement 14. Under the above assumptions of stationarity and semiclassicality,

(i) the vector field ∇I is parallel to the foliation S = const;
(ii) the vector field ∇S is parallel to the foliation I = const;
(iii) whenever ∇I 6= 0 6= ∇S, the vector fields ∇I and ∇S define an integrable 2–dimensional distribution
on R3.

The integrability of the distribution defined by the vector fields ∇I and ∇S follows from the
semiclassicality property ∇I · ∇S = 0. Then Frobenius’ theorem guarantees the existence of a family
of 2-dimensional integral manifolds for the distribution. (A purely differential-geometric proof of
this statement can be found in ref. [30]; a related theorem by Liouville, in the context of classical
integrability theory, can be found in ref. [31].) Each leaf of this integral foliation, that we denote by
F = const, is such that its two tangent vectors ∇S and ∇I point in the direction of maximal increase
of the corresponding quantities, S and I. Therefore:

Statement 15. Under the above assumptions of stationarity and semiclassicality, the foliation F = const is
orthogonal to the two foliations S = const and I = const simultaneously.

According to ref. [23], the leaves S = const are holographic screens, enclosing that part of space
that can be regarded as having emerged. We see that the leaves I = const play an analogous role
with respect to the time variable. Now the wavefunction contains both amplitude and phase. Hence
the two foliations S = const and I = const must appear on the same footing—as is actually the case.
Taken together, these facts can be renamed as the holographic property of emergent quantum mechanics.
To be precise, this holographic property has been analysed here in the semiclassical regime only; we
defer a full analysis until a forthcoming publication.

3. Discussion

To first order of approximation, any viscous fluid can be characterised by its viscosity coefficients
and by its volume density of entropy. In this paper we have obtained an estimate for the order of
magnitude of these quantities, in the case of irrotational flow, for the quantum probability fluid. Our
analysis makes decisive use of Madelung’s factorisation of the quantum wavefunction into amplitude
and phase. However, we deviate substantially from Madelung on the following key issue: Madelung’s
probability fluid is ideal, while our is viscous. Correspondingly, Madelung’s fluid satifies Euler’s equation
for a perfect fluid, while ours satisfies the Navier–Stokes equation. Consequently, the pressure
within the fluid is also different: in Madelung’s analysis, pressure is (proportional to) the quantum
potential U, while our pressure is (proportional to) the external potential V in the Schroedinger
equation. In our alternative approach, the quantum potential is responsible for the appearance of viscosity.
Thus classical friction in the fluid can be regarded as the origin of quantum effects. Moreover, the
dissipation that is inherent to quantum phenomena, under the guise of viscosity in our case, is a
nonstationary phenomenon.

By letting the quantum potential account for the viscosity of the probability fluid, our analysis
lends support to the emergent paradigm of quantum mechanics: the resulting theory, once dissipation
has been taken into account, is no longer classical but quantum. We regard viscosity as the dissipation,
or information-loss mechanism, whereby the fluid described by the Navier–Stokes equation
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(a classical process) becomes the quantum wavefunction satisfying the Schroedinger equation
(a quantum process). This mechanism illustrates the statement quantum = classical + dissipation made
in the introductory section.
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Abstract We present a map of standard quantum mechanics onto a dual theory, that
of the classical thermodynamics of irreversible processes. While no gravity is present
in our construction, our map exhibits features that are reminiscent of the holographic
principle of quantum gravity.
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1 Introduction

The holographic principle [3, 30, 31] has permeated wide areas of theoretical physics
over the last twenty years. Stepping outside its initial quantum–gravity framework, it
reached string theory [21, 33] as well as more established domains such as QCD [18]
and condensed matter theory [15], to name but a few.

Another theoretical development of recent years is the recognition that gravity
arises as an emergent phenomenon[24, 25, 32], a fact that has far–reaching conse-
quences for our understanding of spacetime. Added to the dissipative properties al-
ready known to be exhibited by gravity [16, 26, 28, 29], this opens the gate to the
application of thermodynamics to (supposedly) nonthermalphysics. Indeed, thermo-
dynamics is the paradigm of emergent theories. It renouncesthe knowledge of a vast
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amount of detailed microscopic information, keeping just ahandful of macroscopic
variables such as volume, pressure and temperature—sufficient to state robust physical
laws of almost universal applicability. These macroscopicvariables are coarse–grained
averages over the more detailed description provided by some underlying, microscopic
degrees of freedom. Which brings us to yet another theoretical breakthrough of recent
times that is worthy of mention: the notion ofemergence[7].

The property of emergence has been postulated not only of gravity, but also of
Newtonian mechanics [32] and of quantum mechanics [10, 17];a key concept here is
that of anentropic force. Equipped with thermodynamical tools as befits any emergent
theory, we have in refs. [11, 12, 13] developed a framework that maps semiclassical
quantum mechanics onto the classical thermodynamics of irreversible processes in the
linear regime, the latter as developed by Onsager, Prigogine and collaborators [23,
27]. Within this framework, the statement often found in theliterature,quantisation is
dissipation[4], can be given a new interpretation.

In this paper we elaborate further on the above–mentioned map of semiclassical
quantum mechanics onto the classical theory of linear, irreversible processes (sections
2 and 3); we call these two theoriesdual to each other. From there we move on to
the nonlinear regime of the thermodynamics or, equivalently, to the quantum regime
beyond the Gaussian approximation (section 4). Next we formulate a holographic–like
principle for quantum mechanics (section 5) and place it in correspondence with the
second law of thermodynamics (section 6)). The termholographic–likeis meant to
stress that, while it is true that no gravity is present in ourframework, an undeniable
conceptual similarity with the holographic principle of quantum gravity underlies the
principle postulated here. We summarise our conclusions insection 7.

A word on notation is in order. Rather than using natural units, we will explicitly
retain Planck’s constant~ and Boltzmann’s constantkB in our expressions, in order to
better highlight the properties of the map presented here between quantum mechanics
and irreversible thermodynamics. In particular, the role that~ plays on the mechanical
side of our correspondence will be played bykB on the thermodynamical side. If we
were to set~ = 1 = kB , the fact that they are counterparts under our correspondence
[8, 19] would be somewhat obscured.

2 Basics in irreversible thermodynamics

The following is a very brief summary of some notions of irreversible thermodynamics
[23, 27] that we will make use of.

Let an irreversible thermodynamical system be characterised by its entropy func-
tionS. Assume that the thermodynamical state of the system is determined by just one
extensive variablex = x(τ), whereτ is time variable. We can thus writeS = S(x(τ)).
At any instant of time, the probabilityP of a state is given by Boltzmann’s principle,

kB lnP = S + const. (1)

LetS0 denote the maximum (equilibrium) value ofS, and let us redefine the coordinate
x so it will vanish when evaluated at equilibrium:S0 = S(x = 0). Irreversible thermo-
dynamics [23] analyses the response of the system when driven away from equilibrium.
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For this purpose one introduces thethermodynamical forceX ,

X =
dS

dx
, (2)

which measures the tendency of the system to restore equilibrium. Nonequilibrium
causes fluxes to appear in the system, that is, nonvanishing time derivativesdx/dτ and
dS/dτ . Further one supposes that the irreversible process considered islinear. This
amounts to the assumption that the flux is proportional to theforce,

dx

dτ
= LX, L > 0, (3)

whereL is a positive constant, independent ofx andτ . One also writes (3) under the
form

X = R
dx

dτ
, R = L−1 > 0, (4)

where the dimensions ofR are time× entropy× x−2. Eq. (4) is often termed a
phenomenological law. Indeed numerous dissipative phenomena, at least to first order
of approximation, take on the form of a linear relation between a driving forceX and
the corresponding fluxdx/dτ : Ohm’s law in electricity, Fourier’s law of heat transfer,
etc, are familiar examples. In linear irreversible thermodynamics, the time rate of
entropy production is the product of those two:

dS

dτ
= X

dx

dτ
. (5)

On the other hand, Taylor–expanding the entropy around its (maximum) equilib-
rium value and keeping terms up to second–order we have

S = S0 −
1

2
sx2 + . . . , s := −

(

d2S

dx2

)

0

> 0. (6)

Three consequences follow from truncating the expansion (6) at second order. First,
the forceX is a linear function of the coordinatex:

X = −sx. (7)

Second, in conjunction with Boltzmann’s principle (1), theexpansion (6) implies that
the probability distribution for fluctuations is a Gaussianin the extensive variablex:

P (x) = Z−1 exp

(

S

kB

)

= Z−1 exp

(

−
1

2kB
sx2

)

, (8)

whereZ is some normalisation.1 Third, the phenomenological law (4) specifies a linear
submanifold of thermodynamical phase space:

R
dx

dτ
+ sx = 0. (9)

1We will henceforth omit all normalistion factors, bearing in mind that all probabilites are to be nor-
malised at the end.
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Fluctuations around the deterministic law given by Eq. (9) can be modelled by
the addition of a random forceFr. This turns the deterministic equation (9) into the
stochastic equation

R
dx

dτ
+ sx = Fr. (10)

We are interested in computing the pathx = x(τ) under the influence of these random
forces, under the assumption thatFr has a vanishing average value. While mimicking
random fluctuations, this assumption ensures that the net force continues to be given
as in the deterministic Eq. (9). Now our aim is to calculate the probability of any path
in configuration space. For this purpose we need to introducesome concepts borrowed
from ref. [9].

The unconditional probability density functionf
(

x
τ

)

, also calledone–gate func-
tion, is defined such that the productf

(

x
τ

)

dx equals the probability that the random
trajectoryx = x(τ) pass through a gate of widthdx aroundx at the instantτ . The

conditional probability density functionf
(

x2

τ2

∣

∣

∣

x1

τ1

)

, also called thetwo–gate function,

is defined such thatf
(

x2

τ2

∣

∣

∣

x1

τ1

)

dx2 dx1 equals the probability that a thermodynamical

path pass through a gate of widthdx2 aroundx2 at timeτ2, giventhat it passed through
a gate of widthdx1 aroundx1 at timeτ1. The assumption that our stochastic process

(10) satisfies the Markov property ensures that the unconditional probabilityf
(

x2

τ2

)

can be obtained from the conditional probabilityf
(

x2

τ2

∣

∣

∣

x1

τ1

)

by letting τ1 = −∞ in

the latter and setting a fixed value ofx1, sayx1 = 0. Informally speaking: Markov
systems have a short–lived memory.

Let us consider a time interval(τ1, τn+1) , which we divide inton subintervals
of equal length. Then the conditional probabilities obey the Chapman–Kolmogorov
equation,

f

(

xn+1

τn+1

∣

∣

∣

x1
τ1

)

=

∫

dxn · · ·

∫

dx2 f

(

xn+1

τn+1

∣

∣

∣

xn
τn

)

· · · f

(

x2
τ2

∣

∣

∣

x1
τ1

)

, (11)

where alln− 1 intermediate gates atx2, x3, . . . , xn are integrated over. In particular,
the unconditional probability densityf

(

x
τ

)

propagates according to the law

f

(

x2
τ2

)

=

∫

dx1 f

(

x2
τ2

∣

∣

∣

x1
τ1

)

f

(

x1
τ1

)

. (12)

It turns out that, for a Markovian Gaussian process, the conditional probability function

f
(

x2

τ2

∣

∣

∣

x1

τ1

)

that solves the Chapman–Kolmogorov equation is given by [23]

f

(

x2
τ2

∣

∣

∣

x1
τ1

)

=
s

2kB

es(τ2−τ1)/2R

√

π sinh [s(τ2 − τ1)/R]
(13)

× exp

{

−
s

2kB

[

es(τ2−τ1)/2R x2 − e−s(τ2−τ1)/2R x1
]2

2 sinh [s(τ2 − τ1)/R]

}

.
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As a consistency check we observe that, in the limitτ2 → ∞, the conditional probabil-
ity (13) reduces to the unconditional probability (8). Using the Chapman–Kolmogorov
equation (11) one can reexpress the conditional probability (13) as

f

(

xn+1

τn+1

∣

∣

∣

x1
τ1

)

= exp

[

−
1

4kB

∫ τn+1

τ1

dτ R

(

dx

dτ
+ γx

)2
]

min

, γ :=
s

R
, (14)

subject to the boundary conditionsx(τ1) = x1 andx(τn+1) = xn+1. Above,γ carries
the dimension of inverse time, while the subscriptmin reminds us that the integral is to
be evaluated along that particular path which minimises theintegral.

Now f
(

x2

τ2

)

can be obtained fromf
(

x2

τ2

∣

∣

∣

x1

τ1

)

by lettingτ1 = −∞ andx1 = 0 in

the latter. In order to take this limit in Eq. (14) we first define thethermodynamical
LagrangianS to be

S :=
R

2

(

dx

dτ
+ γx

)2

, (15)

or, dropping a total derivative,

S =
R

2

[

(

dx

dτ

)2

+ γ2x2

]

. (16)

The dimensions ofS are entropy per unit time. The corresponding Euler–Lagrange
equation reads

d2x

dτ2
− γ2x = 0, (17)

while
x(τ) = x2e

γ(τ−τ2) (18)

is the particular solution to (17) that satisfies the boundary conditionsx(τ = −∞) = 0
andx(τ = τ2) = x2. Thus evaluating (14) along this extremal path yields

f

(

x2
τ2

∣

∣

∣

0

−∞

)

= f

(

x2
τ2

)

= exp

[

−
s

2kB
(x2)

2

]

. (19)

This is again in agreement with Boltzmann’s principle (1) inthe Gaussian approxima-

tion (6). Moreover, the conditional probability densityf
(

x2

τ2

∣

∣

∣

x1

τ1

)

admits the path–

integral representation [23]2

f

(

x2
τ2

∣

∣

∣

x1
τ1

)

=

∫ x(τ2)=x2

x(τ1)=x1

Dx(τ) exp

{

−
1

2kB

∫ τ2

τ1

dτ S

}

. (20)

In fact, a saddle–point evaluation of the path integral (20)is readily seen to yield the
two–gate function (14).

The above Eqs. (2)–(20) have obvious generalisations to a case withD independent
thermodynamical coordinates.

2What quantum theorists call the Feynman path integral was independently developed in ref. [23] by
Onsager and collaborators, who appear to have arrived at thenotion of a path integral all by themselves,
without previous knowledge of Feynman’s earlier work [14].
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3 Quantum mechanics vs. irreversible thermodynam-
ics

The attentive reader will have noticed the striking similarity between Eqs. (2)–(20) and
the quantum mechanics of the harmonic oscillator. The corresponding Lagrangian is

L =
m

2

(

dx

dt

)2

−
k

2
x2. (21)

Mechanical time is denoted by the variablet; it is related to thermodynamical timeτ
through the Wick rotation

τ = it. (22)

We define as usual the angular frequencyω throughω2 = k/m. Let us for simplicity
assume that the thermodynamical extensive coordinatex of the dual irreversible ther-
modynamics is a length. In this way no dimensionful factor isneeded to reinterpret it
as the coordinate of the harmonic oscillator in the mechanical dual theory. Then the
Wick rotation (22) and the replacements3

mω

~
=

s

2kB
, ω = γ (23)

provide us with a dictionary to establish a 1–to–1 map between the linear, irreversible
thermodynamics of section 2 and the quantum mechanics of theharmonic oscillator.

Specifically, let us spell out the entries of this map, one by one [2]. The mechanical
Lagrangian (21) is readily obtained from its thermodynamical counterpart (16) upon
application of the replacements (22), (23):

S

2kB
= −

L

~
. (24)

The above also makes it clear that the thermodynamical analogue of Planck’s constant~
is twice Boltzmann’s constant,2kB. In this way the thermodynamical path integral (20)
becomes its usual quantum–mechanical expression. Unconditional probabilitiesf

(

x
τ

)

in thermodynamics become wavefunctions squared|ψ(x, t)|2 in quantum mechanics.
Thus the 1–gate distribution function (19) gives the squared modulus of the oscillator
groundstate,

f
(x

it

)

= exp
(

−
mω

~
x2

)

. (25)

The thermodynamical conditional probabiliy (13) becomes proportional to the quantum–
mechanical Feynman propagator. Away from the caustics, thelatter is given by

K (x2, t2|x1, t1) =

√

mω

2πi~ sin (ω(t2 − t1))
(26)

3Implicit in the replacements (23) is the assumption that thethermodynamical extensive variablex, and
the mechanical variablex, both have units of length. A dimensionful conversion factor is to be understood
in case the dimensions do not match.
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× exp

{

im

2~

ω

sin (ω(t2 − t1))

[

(x22 + x21) cos (ω(t2 − t1))− 2x2x1
]

}

and one actually finds

f
(x2
it

∣

∣

∣

x1
0

)

= exp

(

iωt

2
−

∆V

~ω

)

√

2mω

~
K (x2, t|x1, 0) , (27)

where∆V = V (x2) − V (x1), with V (x) = kx2/2 the harmonic potential. The
Chapman–Kolmogorovequation (11) becomes the group property of propagators, while
the propagation law (12) exactly matches that for wavefunctionsψ under propagators
K. Altogether, the promised 1–to–1 map is complete.

Our Eqs. (21)–(27) have obvious generalisations to higher dimensions. Since the
concept ofequipotential submanifoldswill play a key role in our duality between quan-
tum mechanics and irreversible thermodynamics, it will be useful to consider the lowest
dimension in which equipotential manifolds are2–dimensional surfaces. Configuration
space is then 3–dimensional, which we take to beR3, coordinatised byx, y, z. For sim-
plicity we will assume the harmonic potential to be isotropic, so the harmonic force is
Fh = −k(x, y, z). On the thermodynamical side of our correspondence, this translates
into the fact that Onsager’s (inverse) coefficientsRx, Ry, Rz in Eq. (4) are all equal,
so the dissipative force acting on the system isFd = R(dx/dτ, dy/dτ, dz/dτ). We
then have a thermodynamical Lagrangian

S =
R

2

[

(

dx

dτ

)2

+

(

dy

dτ

)2

+

(

dz

dτ

)2

+ γ2(x2 + y2 + z2)

]

(28)

and a mechanical Lagrangian

L =
m

2

[

(

dx

dt

)2

+

(

dy

dt

)2

+

(

dz

dt

)2

− ω2(x2 + y2 + z2)

]

. (29)

The latter has the family of 2–dimensional spheresx2 + y2 + z2 = ρ2 as equipotential
surfaces within the mechanical configuration spaceR3. We claim that the thermody-
namical counterpart of this family of spheres is the family of 5–dimensional submani-
folds

(

dx

dτ

)2

+

(

dy

dτ

)2

+

(

dz

dτ

)2

+ γ2(x2 + y2 + z2) = ρ2 (30)

within the thermodynamical phase spaceR
6; we may call the above hypersurfaces

isoentropic submanifolds. Although we seem to have a dimensional mismatch between
isoentropic submanifolds and equipotential surfaces, this mismatch disappears if we
restrict to those thermodynamical trajectories that satisfy the equation of motion of the
thermodynamical Lagrangian (28). This equation was given in (17) and solved in (18);
we see that,on shell, the velocitydx/dτ is proportional to the coordinatex. This
property effectively allows us to replace the term(dx/dτ)2 + (dy/dτ)2 + (dz/dτ)2

in Eq. (30) with a constant multiple ofx2 + y2 + z2. In turn, this reduces the family of
5–dimensional submanifolds (30) to a family of 2–dimensional spheres—exactly as in
the mechanical case.
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We conclude thatequipotential surfaces for the mechanical problem become isoen-
tropic surfaces for the thermodynamical problem, and viceversa. This is in nice agree-
ment with the results of ref. [32] for the gravitational potential, in the context of a
theory of emergent spacetime.

4 Beyond the harmonic approximation

While explicit expressions for our map between quantum mechanics and irreversible
thermodynamics are difficult to obtain beyond the harmonic approximation considered
so far, some key physical ideas can be extracted from the previous analysis and gen-
eralised to an arbitrary potential. On the thermodynamicalside, this generalisation
implies going beyond the Gaussian approximation made in Eq.(6) or, equivalently,
beyond the assumption (7) of linearity between forces and fluxes.

Let a mechanical system be described by a Lagrangian functionL = L(qi, q̇i). For
simplicity we assume our configuration space to beRD; an additionalR stands for the
time axis. The mechanical time variablet, initially real, will be complexified presently.

We will equate certain spacetime concepts (on the left–handside of the equations
below) to certain thermodynamical quantities (on the right). To begin with, we observe
that the two physical constants~ andkB allow one to regard timet and temperatureT
as mutually inverse, through the combination

1

t
=
kB
~
T. (31)

Admittedly, this observation is not new [5].
Corresponding to the mechanical system governed by the LagrangianL(qi, q̇i)

there will be a thermodynamical system whose dynamics will be governed by an en-
tropy S =

∫

Sdt. Following our previous result (24), let us postulate the following
differential relation between the two of them:

1

~
Ldt =

C

2kB
dS =

C

2kB
Sdt, C ∈ C. (32)

Again, dimensionality arguments basically fix the two sidesof the above relation, but
leave room for a dimensionless numberC. Agreement with the Wick rotation (22)
requires that we setC = −i. Now Eq. (32) overlooks the fact that the right–hand side
contains the exact differentialdS, while the differentialLdt on the left–hand side is
generallynot exact. In other words, while there exists a well–defined entropy function
S =

∫

Sdt, the line integralI =
∫

Ldt generally depends on the trajectory inRD

being integrated along.
The mechanical actionI, however,candefine a path–independent function of the

integration endpoint if we restrict to a certain class of trajectories inRD. Let us see
how this comes about. LetV = V (qi) be the potential function of the mechanical
system under consideration. The equation

V (qi) = const (33)
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defines, as the constant on the right–hand side is varied, a family of (D−1)–dimensional,
equipotential submanifoldsof RD. An elementary example, whenD = 3, is the case
of the Newtonian potential generated by a point mass locatedat the originO. Then
the above family of equipotential surfaces is a family of concentric spheresSρ of in-
creasing radiiρ > 0, all centred atO. This family of equipotentials, singular only at
O, defines a foliation ofR3 − {O}, so the latter space equals the union∪ρ>0Sρ of all
leavesSρ. This foliation can also be used to define a coordinate systemonR3 − {O}.
Namely, one splitsR3−{O} into 2 tangential directions to the spheres of the foliation,
and 1 normal direction. For example, the standard sphericalcoordinatesρ, θ, ϕ centred
atO qualify as such a coordinate system,ρ being the normal coordinate andθ, ϕ the
tangential coordinates.

Returning now to the general case when bothD andV (qi) are arbitrary, Eq. (33)
defines, for each particular value of the constant on the right–hand side, one equipoten-
tial leafLn of a foliation∪nLn of RD. Here the subindexn stands for a certain (local)
coordinaten onRD that is normal to all the leaves. TheD − 1 tangential coordinates
thus span the(D − 1)–dimensional leavesLn, each one of them being located at a
specific value of the normal coordinaten. We will assume that all the leavesLn are
compact.

Trajectories withinRD that run exclusively along this normal coordinaten, thus be-
ing orthogonal to the leaves, are such that the action integral I doesdefines a function
In of the integration endpoint; the subindexn reminds us of the restriction to these nor-
mal trajectories. Independence of path is merely a consequence of the 1–dimensionality
of the normal directions to the equipotential leavesLn. This is the particular class of
trajectories mentioned above: along them,Ldt defines an exact differential,dIn. For
these normal trajectories, the differential equation (32)makes perfect sense as an equal-
ity between two exact differentials. For these normal trajectories we can write

1

~
In −

C

2kB
S = const. (34)

Now the sought–for thermodynamicscannotbe the standard thermodynamics of
equilibrium processes as presented in any standard textbook, say, ref. [6]. Among
other reasons for this not being the case, standard equilibrium thermodynamics does
not include time as one of its variables. We have already in section 3 produced evi-
dence that it must in fact be theexplicitly time–dependent, classical thermodynamics
of irreversible processesas developed by Onsager, Prigogineet al [23, 27]. We will
present arguments in section 5, to the effect that quantum states arise through a dissi-
pative mechanism. For completeness the thermodynamical dual to quantum mechanics
must be supplemented with the relation

1

T
=
∂S

∂U
, (35)

which must always be satisfied. So we take (35) todefinethe internal energyU of the
thermodynamical theory, given thatT andS have already been defined.
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5 Quantum states as equivalence classes of classical tra-
jectories

A key consequence of using normal and tangential coordinates inRD is that quantum
statesψ, to be constructed presently, will factorise as

ψ = ψtψn, (36)

or sums thereof. Here, the normal wavefunctionψn depends exclusively on the nor-
mal coordinaten, while ψt is a function of the tangential coordinates. For example,
in the case of the Coulomb potential, the wavefunctionψt would be a spherical har-
monicYlm(θ, ϕ), whileψn would be a radial wavefunctionRnl(ρ). This construction
contains elements that are very reminiscent of those present in ref. [32]. In this latter
paper,equipotential surfaces of the gravitational potential areidentified as isoentropic
surfaces. Our equipotential leaves are the counterpart of theholographic screensof
ref. [32].

Moreover, the classical mechanics exhibits a precise mechanism wherebydifferent
classical trajectories coalesce into a single equivalenceclass that can, following ref.
[17], be identified as a single quantum stateψ. So the presence of Planck’s constant~

in Eq. (32) obeys not just dimensional reasons—it is the suresign of an information–
loss mechanism, a dissipative processs that is truly quantum in nature.

Let us see how this dissipation comes about. In order to do this we need to explain
why many different classical trajectories coalesce into one single quantum stateψ. A
quantum of area on the leafLn measuresL2

P , whereLP denotes the Planck length.
According to the holographic principle, at most 1 bit of information fits into this quan-
tum of areaL2

P . One classical trajectory traversing this quantum of area corresponds
to 1 bit of information. Classically one can regard the surface density of trajectories as
being correctly described by a smooth distribution function: there fit some1.4 × 1069

classical trajectories into each square meter of area on theleaf Ln[3]. Although this
is a huge number, it sets an upper limit on the potentially infinite number of classical
trajectories that can traverse one quantum of areaL2

P .
The holographic principle alone would suffice to account forthe lumping together

of many different classical trajectories into one equivalence class. One equivalence
class, or quantum state, would be comprised by all those different classical trajectories
crossing one given quantum of areaL2

P .
Of course, theactual number of quantum particles traversing one square meter

of area on the leafLn is much smaller than the above1.4 × 1069. The reason is
simple: quantum effects become nonnegligible on matter well before quantum–gravity
effects become appreciable on the geometry. Again, the existence of a (now particle–
dependent) quantum of area is responsible for this. This canbe seen as follows.

Let m be the mass of the particle under consideration. Its Comptonwavelength
λC = ~/(mc) imposes a fundamental limitation on its position, that we can call a
quantum of length, denotedQ1. ThisQ1, which is particle–dependent, is of a funda-
mentally different nature than thegeometricquantum of lengthLP . On configuration
spaceRD, this gives rise to a quantumQD−1 of (D − 1)–dimensional volume within

10



the leafLn, with measure (proportional to)λD−1
C , and to a quantum of lengthQ1 along

the normal coordinate.
In the presence of more than one particle species with different masses, each mass

mi defines one value of the quantumQ(i)
D−1. Then a quantum of volume that remains

valid for all particles is the largest value of all thoseQ(i)
D−1. This is the quantum of

volume determined by the lightest particle.
Let us now elucidate how quantum statesψ can arise as equivalence classes of

different classical trajectories. By Eq. (36) we have to account for the appearence of
the normal wavefunctionψn and of the tangential wavefunctionψt.

Starting withψt, let us consider all the different classical trajectories traversing any
one quantum of volumeQD−1 within a leafLn. The allowed values of the momentum
carried by those trajectories are those compatible with theuncertainty principle. Since
the particle has been spatially localised to an accuracy ofλC along each tangential
coordinate, the corresponding momentum can be specified to an accuracy of~/λC .
Therefore, corresponding to a spatial quantum of volumeQD−1 in the leaf, we have a
quantum of volumePD−1 = (~/λC)

D−1 in momentum space.
We are now in a position to state a postulate:
All the different classical trajectories traversing any quantum of volumeQD−1 in

the leafLn, and simultaneously traversing a quantumPD−1 in tangential momentum
space, are to be regarded as different representatives of just one tangential stateψt.

An analogous postulate for the normal coordinate reads:
All classical trajectories traversing any quantum of length Q1 along the normal

coordinaten, and simultaneously traversing the corresponding quantumP1 in normal
momentum space, make up one normal stateψn.

In support of the above postulate, let us return to Eq. (23), where the mechanical
combinationmω/~ has been identified with the thermodynamical quotients/(2kB).
The constants, defined in Eq. (6), carries the dimensions of entropy× x−2, sos/(2kB)
has the dimensionsx−2. Thuss/(2kB) is homogeneous to the inverse square of the
Compton wavelength,λ−2

C .
On the other hand, the constants (and the frequencyγ in (23)) are all the data

one needs in order to univocally specify the irreversible thermodynamics that is dual
to the given quantum mechanics. The previous statement, which holds exactly true in
the harmonic approximation of section 3, is raised to the category of a principle in the
above postulate. Indeed, let us assume going beyond the harmonic approximation in
mechanics. In the thermodynamical dual theory, this is equivalent to considering terms
beyond quadratic in the Taylor expansion (6). Higher derivativesd3S/dx3, d4S/dx4,
etc, evaluated at the equilibrium point, simply introduce new constantss3, s4, etc,
which can be dimensionally accounted for in terms of just twophysical constants,
namelykB andλC . Up to a set ofdimensionlesscoefficients, all the data we need in
the irreversible thermodynamics can be constructed in terms ofkB and powers ofλC .

These arguments render our above postulate a very plausiblestatement. Moreover,
they provide an estimate of the entropy increase (i.e., of the amount of information loss)
involved in the lumping together of many classical trajectories into just one quantum
state. Namely,the increase in entropy∆S due to the formation of one equivalence

11



class of classical trajectories is a positive multiple ofλ2C times the coefficients,

∆S = nsλ2C , n > 0, (37)

wheren is a dimensionless number. (Admittedly, our arguments leaven undetermined,
although one could resort to Landauer’s principle [20] in order to argue thatn must be
of order unity). More importantly, the surface density of entropy s can be naturally
identified, via Eq. (37), with the entropy increase∆S due to the formation of quantum
states as equivalence classes [16, 17]. In other words,the dissipation that is inherent to
irreversible thermodynamics has a natural counterpart in quantum mechanics.

Having described the dissipative mechanism whereby classical trajectories organise
into quantum states, we go next to a counting of the number of quantum states. Since
the leafLn has been assumed compact, it encloses a finite numberNn of volume quanta
QD−1. Tentatively identifying this numberNn with the (complex) dimension of the
tangential Hilbert spaceHt, we immediately realise that the quantum of momentum
PD−1 is contained an infinite number of times within tangential momentum space (this
is however acountablenumber of times). Indeed the momenta may grow to arbitrarily
large values. Therefore, the tangential Hilbert spaceHt is infinite–dimensional, and
separable.

On the other hand, the dimension of the normal Hilbert spaceHn is infinite already
from the start (again a countable infinity, henceHn is separable). The reason for this is
the noncompactness ofRD: the normal coordinaten must cover an interval of infinite
length.4 This implies that the normal coordinate encloses an infinite(though countable)
number of length quantaQ1. Multiplication by the number of independent momentum
quantaP1 does not alter this separable, infinite–dimensionality ofHn.

Altogether, the complete Hilbert spaceH of quantum states is the tensor product
Ht ⊗ Hn. However, because it singles out the normal coordinaten, one might worry
that our construction depends on the particular choice of a leafLn within the foliation.
Now the only possible difference between any two leavesLn1

andLn2
is the value of

their (D − 1)–dimensional volume. Hence the numbers of volume quantaNn1
and

Nn2
they enclose may be different—but they are both finite. This possible difference

is washed away upon multiplication by the (countably infinite) number of momentum
quantaPD−1 corresponding to each leaf. The dimension ofHt is therefore countably
infinite regardless of the point,n1 orn2, along the radial coordinate—that is, regardless
of which leaf is considered.5

As explained in ref. [1], determining the tangential wavefunctionsψt does not
require a knowledge of the specific dynamics under consideration. Instead, this tan-
gential dependence is univocally fixed by the geometry of theleavesLn. In more

4In case more than just one normal coordinate is needed, this statement is to be understood as meaning
the sum of all the lengths so obtained.

5We should remark that the assumption of compactness of the leavesLn can be lifted without altering our
conclusions. A noncompact leaf encloses an infinite (yet countable) number of volume quantaQD−1. Upon
multiplication by an infinite (yet countable) number of momentum–space quantaPD−1, the dimension of
the tangent Hilbert spaceHt remains denumerably infinite. This form of holography in which the leaves
are noncompact replaces the notion ofinside vs. outsidethe leaf with the equivalent notion ofone side of
the leaf vs. the other side. One should not dismiss this possibility as unphysical: theconstant potential, for
example, can be regarded as having either compact or noncompact equipotential submanifolds.
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technical terms, the wavefunctionsψt must provide a complete orthonormal set for a
unitary, irreducible representation of the isometry groupof the leavesLn. Moreover,
as argued in ref. [1], the modulus squared|ψ|2, evaluated at the valuen, is proportional
to the surface density of entropy flux across the leafLn.

6 Quantum uncertainty vs. the second law

Just as Planck’s constant~ represents a coarse–graining of phase space into cells of
minimal volume, or quanta of action, so does Boltzmann’s constantkB represent a
quantum of entropy. This implies that any process must satisfy the condition

∆S = NkB, N ∈ N. (38)

The above expresses a quantised form of the second law of thermodynamics. The
extreme smallness of the numerical value ofkB in macroscopic units makes this quan-
tisation macroscopically unobservable. In particular, unlessN = 0, the second law
becomes

∆S ≥ kB. (39)

In this form, the second law is actually a rewriting of the quantum–mechanical uncer-
tainty principle for the canonical pairE, t:

∆E∆t ≥
~

2
. (40)

Of course, this derivaton of the uncertainty relation∆E∆t ≥ ~/2 is heuristic, because
time is a parameter in quantum mechanics. It is only in the limit kB → 0 that the
second law (39) reduces to its classical formulation∆S ≥ 0. The limit kB → 0 is
the thermodynamical counterpart of the usual semiclassical limit ~ → 0 of quantum
mechanics.

We conclude that the equivalence between Eqs. (39) and (40) is a consequence
of our basic postulate (32). In other words, the second law (39) expresses, in the
thermodynamical theory, the same statement as the uncertainty principle (40) expresses
in the quantum–mechanical theory.

Our correspondence implies that, while one needs two canonical variablesE, t in
order to express the uncertainty principle in the quantum theory, just one variableS
is needed in order to write the second law. An equivalent way of saying this is that
entropy is a selfconjugate variable: one does not have to multiply it with a canonical
variable (say,ξ) in order to obtain a productξS carrying the dimensions of the quantum
kB. The variableS already carries the dimensions of its corresponding quantum kB .

7 Discussion

The holographic principle of quantum gravity states that there fits at most 1 bit of
information into each quantum of areaL2

P in configuration space, whereLP is Planck’s
length. For quantum mechanics, in section 5 we have postulated that
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There fits at most 1 quantum state into each quantum of volume(λC)
2D in phase

space, whereby the Compton lengthλC of the particle in question extends once along
each coordinateq and once along each conjugate momentump in a 2D–dimensional
phase space.

Thus our postulate is conceptually analogous to the holographic principle of quan-
tum gravity. We should stress, however, that our postulate does not follow from, nor
does it imply, the holographic principle of quantum gravity.

We can summarise our construction as follows. Let a quantum–mechanical system
be given in configuration spaceRD. Let this latter space be foliated as per∪nLn, where
each leafLn is an equipotential submanifold, in dimensionD−1, of the given mechani-
cal potential functionV (qi). Assume that each leafLn encloses a finiteD–dimensional
volumeVn, so ∂Vn = Ln. Then quantum states inVn are equivalence classes of
different classical trajectories. These equivalence classes comprise all those classical
trajectories that fit into one given quantum of volume in configuration space, with the
corresponding momenta inside the corresponding quantum inmomentum space. No
quantum particle can be located to an accuracy better than its Compton wavelength.6

Hence a physically reasonable unit for defining this quantumof length (and thus areas
and volumes) is the Compton wavelength. Configuration spaceis subdivided into many
such elementary volume quanta, each one of them (with the corresponding quanta in
momentum space) defining one different quantum state.

The quantisation of phase–space area by Planck’s constant~ proceeds along lines
that are somewhat similar to ours, although not exactly identical. We recall that, semi-
classically, the (symplectic) area elementdp ∧ dq, divided by~, gives the number of
different quantum states fitting into that area element. However, the coordinate width
dq may be arbitrarily squeezed, provided the momentumdp is correspondingly en-
larged, and viceversa.

On the contrary, our construction makes use of the Compton wavelengthλC as
a fundamental quantum of length (for the specific particle considered), below which
no sharper localisation is possible: there is no squeezing the particle below this lower
limit. This gives rise to an arrangement of different classical trajectories into equiv-
alence classes that, following ref. [17], we identify with quantum states. This is an
irreversible, dissipative mechanism that exhibits the emergent nature of quantum me-
chanics. The Hilbert space of quantum states is determined as described in section
5.

Under our correspondence, an irreversible thermodynamicscan be mapped into a
quantum mechanics, and viceversa. This correspondence maybe regarded asdictio-
nary that allows one to switch back and forth between aquantum–mechanical picture
and athermodynamical pictureof one and the same physics.

A key point to remark is the following. Thermodynamical approaches to quan-
tum theory are well known [5, 22]. In particular, the link between (complex–time)
quantum mechanics, on the one hand, and theequilibriumstatistical mechanics of the
Gibbs ensemble, on the other, has been known for long. We should stress that we
havenotdwelled on this long–established connection. Rather, the new correspondence

6Unless, of course, one is willing to allow for pair creation out of the vacuum, thus quitting quantum
mechanics and entering field theory.
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explored here is that between (complex–time) quantum mechanics, and theclassical
thermodynamics ofirreversibleprocesses.Classicalityof the thermodynamics means
that~ does not appear on the thermodynamical side of the correspondence, its role be-
ing played instead by Boltzmann’s constantkB. Irreversibility implies the existence of
dissipation, as befits the presence of quantum effects.
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Abstract: We present a brief overview of some key concepts in the theory of generalized
complex manifolds. This new geometry interpolates, so to speak, between symplectic
geometry and complex geometry. As such it provides an ideal framework to analyze
thermodynamical fluctuation theory in the presence of gravitational fields. To illustrate the
usefulness of generalized complex geometry, we examine a simplified version of the Unruh
effect: the thermalising effect of gravitational fields on the Schroedinger wavefunction.
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1. Introduction

The theory of thermodynamical fluctuations provides a solid link between macroscopic and
microscopic physics. Classical fluctuation theory [1] often sheds light on counterintuitive
quantum-mechanical phenomena, thus helping to bridge the gap between the classical world and the
quantum world. For example, Heisenberg’s uncertainty principle can be nicely illustrated resorting to
the theory of Gaussian fluctuations around thermal equilibrium [2].

On the other hand, the theory of thermodynamical fluctuations can be recast using the geometric
language of differential manifolds [3–9]. This reexpression of a physical discipline in more abstract
mathematical language goes a long way beyond a mere rewriting of the concepts involved. It renders
the theory more versatile, enlarging its scope. Moreover, since the advent of Einstein’s general relativity
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a century ago, (pseudo) Riemannian geometry belongs to the technical skills that any physicist has to
master (at least at a working level). This places (pseudo) Riemannian geometry at a vantage point.
In the opposite direction (i.e., thermodynamics as applied to geometry) one should mention at least two
developments. The first one is a whole body of knowledge on the thermodynamics of black holes [10,11].
More recently, the reexpression of Einstein’s relativity as a thermodynamics [12,13] has had far-reaching
consequences for our understanding of spacetime.

Here we would like to report on another recent development in geometry with implications on the
thermodynamics of fluctuations: the theory of generalized complex manifolds [14,15].

In trying to understand the thorny relationship between gravity and the quantum [16–19] it has
been argued that gravity acts dissipatively on quantum systems [20]. Specifically, in the presence of
a gravitational field, thermal fluctuations become indistinguishable from quantum fluctuations [21–23].
This raises the fundamental question: How is one to treat thermal and quantum fluctuations on the
same footing? Is it altogether possible? We will see here that generalized complex manifolds provide
one viable answer to this question, one that appears not to have been explored yet in the geometrical
approach to thermodynamics.

2. Geometry and Fluctuations

2.1. Riemannian Geometry

As a very elementary example, consider a thermodynamical system in an equilibrium state described
by the following variables: temperature T , pressure P and volume V . In the Gaussian approximation,
choosing T and V as independent variables, the probability W of a fluctuation ∆T , ∆V around
equilibrium is given by [24]

W = W0 exp

[
− CV

2kBT 2
∆T 2 +

1

2kBT

(
∂P

∂V

)
T

∆V 2

]
(1)

The thermodynamic inequalities CV > 0 and (∂P/∂V )T < 0 ensure that the argument of the above
exponential is negative definite. This suggests considering the following (positive definite) Riemannian
metric on the 2-dimensional manifold coordinatised by T, V :

ds2 :=
CV

2kBT 2
dT 2 − 1

2kBT

(
∂P

∂V

)
T

dV 2 =: gijdx
idxj (2)

The metric coefficients gij are of course (T, V )-dependent functions. This Riemannian structure encodes
all the relevant information. For example, the average value 〈f(T, V )〉 of an arbitrary function f =

f(T, V ),

〈f(T, V )〉 = Z−1
∫
f(T, V ) exp

(
−gTTT

2 − gV V V
2
)√

g dTdV (3)

where Z :=
∫ √

g exp (−gTTT
2 − gV V V

2) dTdV , naturally involves the metric. The role of
Riemannian geometry in fluctuation theory is well known and has been reviewed at length in [8].
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2.2. Symplectic Geometry

As our starting point here we will consider a certain thermodynamical system in equilibrium, in order
to arrive at a corresponding symplectic structure.

Again in the Gaussian approximation, the probability W of a fluctuation ∆P , ∆V , ∆T , ∆S is given
by [24]

W = W0 exp

[
− 1

2kBT
(−∆P∆V + ∆T∆S)

]
(4)

Assume an equation of state F (P, V, T ) = 0 that can be solved for the temperature to obtain
T = g(P, V ). For simplicity let us consider an ideal gas, PV = S0T :

W = W0 exp

[
− 1

2kB

(
−S0

∆P∆V

PV
+

∆T∆S

T

)]
(5)

It is convenient to define the dimensionless variables

p1 := − ln

(
P

P0

)
, q1 := ln

(
V

V0

)
, p2 := ln

(
T

T0

)
, q2 :=

S

S0

(6)

where P0, V0 and T0 are reference values. Then Equation (5) becomes

W = W0 exp

[
− S0

2kB
(∆p1∆q1 + ∆p2∆q2)

]
(7)

We can regard q1 and q2 as coordinates on a thermodynamical configuration space S, with p1 and p2 as
their conjugate momenta. Thus the q1, p1, q2, p2 are Darboux coordinates for the symplectic form

ω = dp1 ∧ dq1 + dp2 ∧ dq2 (8)

In this way we identify ∆p1∆q1 + ∆p2∆q2 in Equation (7) as the symplectic area of a 2-dimensional
surface F induced by the fluctuation:

∆p1∆q1 + ∆p2∆q2 =

∫
F

(dp1 ∧ dq1 + dp2 ∧ dq2) (9)

Finally substituting Equation (9) into Equation (7) we find

W = W0 exp

(
− S0

2kB

∫
F

ω

)
(10)

i.e., the probability of this thermal fluctuation is proportional to the exponential of the symplectic area
of the fluctuation surface F.

The importance of symplectic structures in classical mechanics is widely recognized and need hardly
be recalled [25]. In fact not just Riemannian geometry, but also symplectic geometry, pertains to the
realm of thermal fluctuations: the first law of thermodynamics endows the thermodynamic phase space
with a contact structure, which includes symplectic geometry as a sub-case [3,4,6,7].

A real 2n-dimensional manifold M is symplectic if there exists a closed, non-degenerate, rank 2
antisymmetric tensor field ωij defined everywhere on M. Let xi be local coordinates around x ∈M, so
ω = 1

2
ωijdx

i ∧ dxj with ωji = −ωij . Since the matrix ωij is nonsingular, an inverse πjk exists such that
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ωijπ
jk = δki . The Poisson brackets of two functions f, g are defined as {f, g} := πjk∂jf∂kg, and the

integrability condition dω = 0 turns out to be equivalent to the Jacobi identity for these Poisson brackets.
In this way the following symplectic analogue of Equation (3) allows one to compute the average

value 〈f〉 of the function f on M:

〈f〉 = Z−1
∫
M

f exp (−ω) (11)

Above, the exponential e−ω is defined by Taylor expansion, powers being taken with respect to the
wedge product. Then the 2n-dimensionality of the symplectic manifold picks out just one differential
form that can be integrated against M, namely the 2n-form (−1)nωn/n!; all other terms in the Taylor
expansion give a vanishing contribution when integrated. The factor (−1)n/n! has been included in
the normalization Z. As had to be the case, this average involves the data concerning the symplectic
structure on M.

One can also regard a symplectic structure as providing an isomorphism from the tangent space
TxM into the cotangent space T ∗xM at each x ∈ M. Specifically, the tangent vector X = X i∂i is
mapped into the 1-form ω(X) = ξ = ξidx

i, with ξi = ωijX
j . This viewpoint motivates the following

definition (equivalent to the above, but more useful for later applications): a symplectic structure over
a 2n-dimensional manifold M is an isomorphism ωx between the tangent and the cotangent fibers over
each point x ∈M,

ωx : TxM −→ T ∗xM (12)

such that, under the operation of taking the linear dual (denoted by an asterisk),

ω∗x = −ωx, ∀x ∈M (13)

Moreover, the integrability condition dω = 0 must be satisfied.

2.3. Complex Geometry and Kähler Geometry

Informally one could say that the imaginary unit is the hallmark of quantum mechanics. That
i =
√
−1 pertains to the quantum world has been very interestingly argued recently in [26,27]. More

standard arguments have been known for long; such are the heat equation in imaginary time it, or the
fact that quantum commutators [· , ·] formally equal

√
−1 times classical Poisson brackets {· , ·}. Here

we will briefly recall the role played by complex structures in the theory of coherent states [28,29].
Let M be a real 2n-dimensional phase space endowed with the symplectic form ω. For simplicity

let us also assume that M admits a holomorphic atlas compatible with the symplectic structure (this
compatibility condition is called the Kähler property). In plain words, the real and imaginary parts of the
holomorphic coordinates zj are Darboux coordinates for ω (here assumed dimensionless for simplicity):

zj =
1√
2

(
qj + ipj

)
, j = 1, . . . , n (14)

Upon quantisation, the Darboux coordinates qj and pj become operators Qj and Pj on Hilbert space
satisfying the Heisenberg algebra [Qj, Pk] = iδjk. Creation and annihilation operators are defined in the
standard fashion: A†j := (Qj − iPj)/

√
2, Aj := (Qj + iPj)/

√
2, and quantum excitations are measured
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with respect to a vacuum state |0〉 satisfying Aj|0〉 = 0, for all j = 1, . . . , n. Coherent states |zj〉 are
eigenvectors of Aj , the eigenvalues being the holomorphic coordinates (14):

Aj|zj〉 = zj|zj〉, j = 1, . . . , n (15)

(No sum over j implied). In order to illustrate our point let us consider a 1-dimensional harmonic
oscillator. The expectation value of the Hamiltonian operator H = A†A + 1/2 in the state |z〉 equals
〈z|H|z〉 = |z|2 + 1/2. Since the energy fluctuation in the state |z〉 equals

(∆H)z = |z|, z ∈ C (16)

the relative fluctuation goes, for large enough |z|, like

(∆H)z
〈z|H|z〉

' 1

|z|
, |z| → ∞ (17)

But 1/|z| is the inverse of the square root of the Kähler potential K(z, z̄) := |z|2 for the Euclidean
metric on the complex plane C. This simple example illustrates the important role played by complex
manifolds in the quantum theory.

Every complex manifold M admits a (positive definite) Hermitian metric hijdz̄idzj that is compatible
with the complex structure [30]. Then an analogue of Equations (3) and (11) gives us the average value
〈f〉 of a function f on M:

〈f〉 = Z−1
∫
M

f exp
(
−hij z̄izj

)√
h

n∏
k=1

dz̄k ∧ dzk (18)

The normalization Z includes all factors of i =
√
−1 coming from the volume element, and h :=

| dethij|. As had to be the case, this average involves the data concerning the complex structure on M.
Formally, a complex structure J over a real 2n-dimensional manifold M is an endomorphism of the

tangent fibre over each point x ∈M

Jx : TxM −→ TxM (19)

satisfying
J2
x = −1, ∀x ∈M (20)

as well as the integrability condition that the Nijenhuis tensor N vanish identically. (We will
not write down the Nijenhuis tensor explicitly; see reference [30] for details). Roughly speaking,
Equation (20) expresses the existence of the imaginary unit i =

√
−1 locally around the point x ∈ M.

The integrability condition N = 0 ensures that the complex coordinates thus constructed locally truly
transform holomorphically across different coordinate patches on the manifold M. (The Kähler property
assumed in Equation (14) above is an additional hypothesis, that an arbitrary complex manifold may, but
need not, satisfy in general).
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2.4. Generalized Complex Geometry

Our original motivation was the statement [21–23] that, in the presence of a gravitational field,
quantum fluctuations become indistinguishable from thermal fluctuations. We have argued that thermal
fluctuations are associated with symplectic structures, while quantum fluctuations come along with
complex structures. How, then, is one to treat thermal and quantum fluctuations on the same footing?
This is trivially achieved by those phase spaces M that qualify as Kähler manifolds. However, the Kähler
condition is very restrictive: not only does M have to be simultaneously complex and symplectic; these
two independent structures also have to be compatible.

In references. [3,4] the geometry of the thermodynamic phase space (including fluctuations) results in
a para-Sasakian manifold, which is the contact-geometry equivalent of a Kähler manifold in symplectic
geometry. This means that if one restricts to a proper even-dimensional subspace, the geometry is indeed
that of a Kähler manifold. This geometry achieves the goal of treating thermal and quantum fluctuations
on the same footing.

Generalized complex structures (GCS) also achieve the goal of providing a unified framework for
thermal and quantum fluctuations. The following is a brief summary of GCS extracted from [14], duly
tailored to meet our needs. For simplicity we prefer to work locally around a point x ∈ M. Global
issues can be taken care of by the corresponding integrability conditions, to be mentioned along the way
whenever necessary. For our purposes the 2n-dimensional manifold M is assumed to be a phase space,
that is, M = T ∗S, for a certain n-dimensional configuration space S.

Rather than considering the fibres TxM or T ∗xM separately, in generalized complex geometry one
considers their direct sum: over each point x ∈M one erects the fibre TxM⊕ T ∗xM. The total space of
the bundle so constructed is 6n-dimensional: 2n dimensions for the base M, 4n dimensions for the fibre.

An inner product is defined on the fibre TxM⊕ T ∗xM:

〈X + ξ, Y + η〉 :=
1

2
(ξ(Y ) + η(X)) (21)

Above,X, Y ∈ TxM are tangent vectors, while ξ, η ∈ T ∗xM are 1-forms, all evaluated at x ∈M. It turns
out that this inner product is pseudo-Riemann with signature (2n, 2n). Hence the Lie group SO(2n, 2n)

acts on TxM ⊕ T ∗xM by isometries. It is convenient to block-decompose the Lie algebra so(2n, 2n) as
follows: (

A β

B −A∗

)
(22)

The diagonal blocks A and A∗ are endomorphisms of their respective (sub)fibers, A ∈ End(TxM) and
A∗ ∈ End(T ∗xM), while the offdiagonal blocks B and β connect these two (sub)fibers as per

B : TxM −→ T ∗xM, β : T ∗xM −→ TxM (23)

Moreover, upon taking the dual we have B∗ = −B, β∗ = −β. This antisymmetry allows us to regard
the block B as a 2-form in Λ2T ∗xM if we set

B(X) = iXB (24)

For illustrative purposes let us express Equation (24) in local coordinates xi around a point x ∈ M, so
B becomes the matrix Bij . Given the vector X = Xj∂j ∈ TxM, the object iXB is defined to be the
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covector whose components are BijX
j ∈ T ∗xM. We see that this is exactly the way a symplectic form ω

behaves. Since ω can be regarded as an element of Λ2T ∗xM, so can B. (Contrary to ω, however, B need
neither be closed nor non-degenerate).

The particular isometries of the fibre TxM ⊕ T ∗xM obtained by setting A = 0 = β in Equation (22)
and exponentiating,

exp

(
0 0

B 0

)
=

(
1 0

B 1

)
(25)

are the pseudo-orthogonal transformations

X + ξ −→ X + ξ + iXB (26)

The isometries (26), called B-transformations, will play an important role.
A generalized complex structure over M, denoted J , is an endomorphism of the fibre over each

x ∈M,
Jx : TxM⊕ T ∗xM −→ TxM⊕ T ∗xM (27)

such that the following two conditions hold. First,

J 2
x = −1, ∀x ∈M (28)

Second,
J ∗x = −Jx, ∀x ∈M (29)

The above two conditions are formulated locally around any x ∈ M; as usual they need not be
compatible with changes of coordinate charts on M. The Courant integrability condition, whose validity
we will henceforth assume without stating its contents explicitly, ensures this compatibility; see [14,15]
for details.

Comparing now Equations (29) and (13), we are led to the particular case when J at x ∈ M is
given by

Jωx =

(
0 −ω−1x

ωx 0

)
(30)

where ω is a symplectic form. One says that this Jω defines a GCS of symplectic type.
Similarly, the comparison of Equations (28) and (20) suggests the particular case of a GCS given by

JJx =

(
−Jx 0

0 J∗x

)
(31)

where J is a complex structure. We say that the above JJ defines a GCS of complex type.
Furthermore, GCS succeed at interpolating between the above opposite types, the symplectic type and

the complex type; let us explain this more carefully. A point x ∈M is said to be regular if it possesses
a neighborhoodNx on which there exists a Poisson structure ω−1 with constant rank. In a neighborhood
Nx of any regular point x ∈M one can define a diffeomorphism and a B-transformation, the combined
action of which maps Nx into the product Cx ×Rx ⊂ Ck ×R2n−2k. Here Cx is an open set within the
standard complex manifold Ck, and Rx is an open set within the standard symplectic manifold R2n−2k.
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The nonnegative integer k is called the type of the GCS J , the limiting cases of Equations (30) and (31)
respectively corresponding to k = 0 and k = n. As described in [14,15], the type k need not be constant
across M: it may vary from one point to another in M.

In plain words, any generalized complex manifold factorizes locally as the product of a complex
manifold times a symplectic manifold.

Finally assume that M is a linear space. Then any generalized complex structure of type k = 0 is the
B-transform of a symplectic structure. This means that any generalized complex structure of type k = 0

can be written as

e−BJωeB =

(
−ω−1B −ω−1

ω +Bω−1B Bω−1

)
(32)

for a certain 2-formB; use has been made of Equations (25) and (30). Similarly any generalized complex
structure of type k = n over a linear manifold M is the B-transform of a complex structure,

e−BJJeB =

(
−J 0

BJ + J∗B J∗

)
(33)

after using Equations (25) and (31). When M is an arbitrary smooth manifold, not necessarily a linear
space, statements (32) and (33) remain basically true, with some minor modifications required; see
references [14,15] for details.

The consequences of the above become immediately apparent. Let us for simplicity assume that the
type k is constant across M. Then any GCS with an extremal value of k, i.e., either k = 0 or k = n, can
always be reduced to the corresponding canonical form (30) or (31) by means of a B-transformation.
Thus k = 0 corresponds to a thermal description of phenomena, while k = n corresponds to a quantum
description of phenomena, no interpolation existing between the two descriptions. Nonextremal values
of the type, i.e., such that 0 6= k 6= n, contain both thermal and quantum descriptions simultaneously.

Average values 〈f〉 of functions f on generalized complex manifolds are defined by an obvious
modification of the product of the right-hand sides of Equations (11) and (18).

3. When “Quantum” Becomes “Thermal”

Any gravitational field is locally equivalent to an accelerated frame. In an accelerated frame, quantum
becomes thermal; this is basically the content of the Unruh effect [31] (in an admittedly lax formulation
that is however precise enough for our purposes). Without using the full apparatus of relativistic
quantum field theory, let us see how quantum can become thermal in the simplified setup of the quantum
mechanics of a nonrelativistic particle. This understood, we will analyse the role played by the GCS on
phase space under the passage from an inertial frame to an accelerated frame. We will conclude that the
transformation law for the Schroedinger wavefunction under the passage to a noninertial frame (as in the
Unruh effect) is governed by a B-transformation of the GCS on phase space.

A remark is in order. The gravitational field considered here must be weak in order to rule out effects
such as, e.g., relativistic speeds, or the likely breakdown of standard quantum mechanics in the presence
of very strong gravitational fields [20]. Such phenomena lie beyond our scope.
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3.1. Inclusion of a Gravitational Field

In flat Euclidean space R3, let K denote an inertial frame with origin O and axes Ox, Oy and Oz.
Let K ′ denote a uniformly accelerated frame, with origin O′ and axes O′x′, O′y′ and O′z′ respectively
parallel to Ox, Oy and Oz. For simplicity we will assume that, at t = 0, the two origins O and O′

coincide, their relative velocity also vanishing at t = 0. Let the acceleration ~α of K ′ with respect to
K be (α, 0, 0), with α a constant. Coordinates (x, y, z) with respect to K are related to coordinates
(x′, y′, z′) with respect to K ′ as per

x = x′ +
1

2
αt2, y = y′, z = z′, t = t′ (34)

We consider a point particle of massm fixed to the originO′, thus at rest with respect toK ′. IfH denotes
the Hamiltonian of the particle as seen from the inertial frame K, then the Hamiltonian H ′ in K ′ reads

H ′ = H − pxαt+
m

2
α2t2 (35)

with the momenta px and p′x related as per p′x = px−mαt. In the inertial frameK we have a Schroedinger
equation ih̄∂ψ/∂t = Hψ. Our aim is to derive a transformation law for the wavefunction ψ such that, in
the accelerated frame K ′, the Schroedinger equation will read ih̄∂ψ′/∂t = H ′ψ′. For this purpose let us
make the Ansatz

ψ′ = ψ exp [f(t)] (36)

f(t) being an undetermined function of the time variable. In this way we arrive at the following
differential equation for the unknown function f :

ih̄
df

dt
= −pxαt+

1

2
mα2t2 (37)

Dropping an irrelevant integration constant and substituting the result into Equation (36) leads to

ψ′ = exp

[
− i

h̄

(
1

6
mα2t3 − 1

2
pxαt

2

)]
ψ (38)

Clasically, the particle is at rest in the frame K ′, so p′x = 0 implies px = mαt. Quantum-mechanically
we can only state that the centre of mass remains at rest at x′ = 0, the wavepacket spreading around
this average position. With this understanding we can also set 〈px〉 = px = mαt in Equation (38). We
conclude that, taking the wavefunction in the accelerated frame to be

ψ′ = exp

(
i

h̄

1

3
mα2t3

)
ψ (39)

ensures the form invariance of the Schroedinger equation under the transformation from an inertial
frame to an accelerated frame. For time lapses that are short enough, and/or for accelerations that are
weak enough, the speeds attained will never become relativistic. Within this limited range, Newtonian
mechanics (and its quantum counterpart, the Schroedinger equation) can be trusted.
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3.2. The Unruh Effect

The next step is to invoke de Broglie [32] in order to write an inverse proportionality between time t
and temperature T :

− i

t
=
kB
h̄
T (40)

Thus substituting Equation (40) into Equation (39) we find

ψ′ = exp

(
−1

3

mα2h̄2

k3BT
3

)
ψ. (41)

Moreover, from the above we can read off what power law must relate the acceleration to the temperature
of the accelerated frame: αmust be proportional to T , while dimensional analysis provides the necessary
conversion factors. Specifically,

α = 2π
ckB
h̄
T (42)

The dimensionless normalization factor 2π, that cannot be derived using our simplified treatment, comes
from a full quantum-field-theoretical analysis [31]. Finally substituting Equation (42) into Equation (41)
we arrive at

ψ′ = exp

(
−4π2

3

mc2

kBT

)
ψ (43)

Equations (43) and (39) are equivalent, the equivalence between the two being guaranteed by the de
Broglie relation Equation (40) and the Unruh relation Equation (42).

The Boltzmann-like factor present in Equation (43) bears out the fact that the effect of the gravitational
field on the Schroedinger wavefunction is of thermal nature. Due to the assumptions made in our
derivation, Equation (43) is valid only for intermediate temperatures. The limit T → ∞ is excluded
(because this would require strong gravitational fields); so is the limit T → 0 (because of the inverse
proportionality Equation (40) between time and temperature).

3.3. Transformation to an Accelerated Frame as a B-Transformation

Classical phase space is spanned by the coordinates x, y, z and their conjugate momenta px, py, pz.
For the rest of the discussion, the dimensions y, py, z, pz can be ignored, as they are unaffected by the
change of frame Equation (34). Thus, for our purposes, the manifold M of Section 2.4 can be taken to
be that subspace of classical phase space spanned by x and px, i.e., R2.

Now the manifold R2 can be endowed with a GCS. This can be done in two equivalent ways. One
can consider the GCS of complex type defined on R2 = C by the complex coordinates Equation (14).
Alternatively, one can consider the GCS of symplectic type defined on R2 by the standard symplectic
form ω = dx∧dpx/h̄. Since our interest lies in considering the effect ofB-transformations, and R2 = C

is a Kähler manifold, the type of the CGS considered is immaterial.
We claim that the transformation law for the Schroedinger wavefunction under the passage to an

accelerated frame, Equation (39), follows from a B-transformation of the GCS on phase space R2,
Equation (26). In other words, the Schroedinger wavefunction keeps track of which frame is being used,
the bookkeeping device being the GCS on phase space. Verifying that such is indeed the case requires,
so to speak, translating the geometer’s language into the physicist’s language. This we do next.
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Tangent vectors X at the point (x, px) ∈ R2 are objects

X = a∂x + b∂px ∈ T(x,px)R2, a, b ∈ R (44)

Similarly, tangent covectors ξ at the point (x, px) ∈ R2 are objects

ξ = cdx+ ddpx ∈ T ∗(x,px)R
2, c, d ∈ R (45)

As the basepoint (x, px) ∈ R2 is moved around, we obtain a vector field X and a field of differentia
l-forms ξ on R2. This amounts to promoting the numbers a, b, c, d to real-valued functions a(x, px),
b(x, px), c(x, px), d(x, px) on R2. Finally, an object such as X+ ξ in Equation (26) is the direct sum of a
vector field and a field of differential 1-forms on R2—a section of the direct sum bundle TR2 ⊕ T ∗R2.

Next we reexpress the B-transformation (26) as the variation

δ(X + ξ) = δX + δξ = δξ = iXB (46)

Above we have used the fact that, under a B-transformation, X remains unchanged. The B-field is a
2-form on R2,

B = B(x, px)dx ∧ dpx (47)

with a certain coefficient function B(x, px). Now

δξ = iXB = a(x, px)B(x, px)dpx + b(x, px)B(x, px)dx (48)

The above is a 1-form field, so it can be added to X + ξ as required by Equation (26). Let us now make
the following specific choice for the vector field X:

a(x, px) = x, b(x, px) = px (49)

In the physicist’s language, this X is just the position vector on phase space R2. Substituted into
Equation (48), this choice for X yields

δξ = iXB = xB(x, px)dpx + pxB(x, px)dx (50)

Along the motion of the particle located at O′ we can write, using Equation (34),

dpx = mαdt, dx = αtdt (51)

Substitution of Equations (34) and (51) into (50) leads to

δξ = iXB =
3

2
B(x(t), px(t))mα2t2dt (52)

The above is a 1-form, that can be integrated along the trajectory followed by the particle between τ = 0

and τ = t. We denote by ∆ξ(t) the number so obtained:

∆ξ(t) :=

∫ t

0

δξ =
3

2
mα2

∫ t

0

B(x(τ), px(τ))τ 2dτ (53)
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When B is a constant, the integral can be evaluated explicitly:

∆ξ(t) =
1

2
Bmα2t3 (54)

That the function B(x(t), px(t)) is actually constant on R2 implies that the 2-form B in Equation (47)
becomes a mere scalar multiple of the canonical symplectic form on phase space. Specifically, picking
B = 2/3 we find in Equation (54)

∆ξ(t) =
1

3
mα2t3 (55)

The right-hand side of the above equals (−ih̄ times) the argument of the exponential in the Unruh
transformation law Equation (39). Therefore the latter can be reexpressed as

ψ′ = exp

(
i

h̄
∆ξ(t)

)
ψ (56)

Summarising, we may say that the Unruh effect acts on the wavefunction by multiplication with the
exponential of (i/h̄ times) the integral of a B-field along the particle’s trajectory on phase space. The
vector field X involved in this B-transformation is just the position vector on phase space, while the
B-field considered is a mere scalar multiple of the canonical symplectic form on phase space.

3.4. A Nonuniform Gravitational Field

The relation just derived between the Unruh effect and the B-transformation of the GCS on phase
space was based on the assumption that the gravitational field was static and spatially constant. In turn,
this assumption made it possible to choose a constantB-field on phase space (actually a scalar multiple of
the symplectic form). A nonstatic and/or nonuniform gravitational field can be mimicked by a nonstatic
and/or nonuniform acceleration vector ~α. This lends plausibility to the following hypothesis:

Hypothesis 1. Regard classical phase space as a generalized complex manifold. In the presence of a
nonstatic and/or nonuniform, but nevertheless weak, gravitational field, the inertial-frame Schroedinger
wavefunction ψ remains form-invariant under a transformation to a locally accelerated frame, where its
value is ψ′, provided that ψ and ψ′ are related according to the law

ψ′ = exp

(
i

h̄
∆ξ(t)

)
ψ (57)

Above,

∆ξ(t) :=

∫ t

0

iXB(x(τ), px(τ))dτ (58)

is a line integral along the particle’s trajectory in phase space, while X is the position vector of
the particle along the said trajectory. Moreover, whenever the generalised complex structure on
classical phase phase is of symplectic type, the 2-form B is an appropriate scalar multiple of the
symplectic form ω.

We defer analysis of the above hypothesis for further study.
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4. Conclusions

We have presented a brief review of some recent developments in differential geometry with
applications to thermodynamical fluctuation theory. Standard wisdom draws a clear frontier between
thermal fluctuations and quantum fluctuations. While this separation is perfectly consistent in the
absence of gravitational fields, this border becomes fuzzy in the presence of gravity [20–23]. A
well-known example of this mixing is the Unruh effect [31,33,34]. Another instance of a gravitational
incursion into the thermal realm is the Ehrenfest-Tolman effect [35]. One can expect an eventual theory
of quantum gravity to enhance, rather than diminish, this mixing of thermal and quantum phenomena.

In this article we have examined the thermalising effect of weak, classical gravitational fields on
the Schroedinger wavefunction from the point of view of generalised complex geometry on classical
phase space. Using the transformation law for the Schroedinger wavefunction under the passage to an
accelerated frame, we have derived the nonrelativistic Unruh effect. As expected, the latter establishes
a linear dependence law between the acceleration of the noninertial frame and the temperature thereby
generated. Within the scope of the techniques presented here lie other interesting physical systems, to
be treated in an upcoming publication. Such are quantum-classical hybrids [36,37] and the thermalising
properties of nonuniform (but still weak and classical) gravitational fields.

Altogether, we conclude that generalised complex geometry provides a powerful tool to analyse
fluctuation theory and thermal phenomena in the presence of gravity.
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ABSTRACT: 

We review the present status of the different lines of research in the area of Photonics at the 
Interdisciplinary Modeling Group, InterTech (www.intertech.upv.es) paying special attention to new 
topics that we have recently incorporated to our research interests: temporal solitons and design of 
supercontinuum generation, plasmon-soliton interaction, nonlinear effects of the quantum 
electrodynamics vacuum, and, finally, cold atoms in the mean-field and quantum regimes. 

Keywords: Nonlinear Optics, Plasmonics, Cold Atoms.  

RESUMEN: 

En este artículo presentamos el estado actual de las diferentes líneas de investigación desarrolladas 
en el área de Fotónica del Grupo de Modelización Interdisciplinar, InterTech (www.intertech.upv.es) 
prestando especial atención a aquellas que han sido incorporadas recientemente: solitones 
temporales y diseño de la generación de supercontínuo, interacción plasmón-solitón, efectos no 
lineales del vacío en electrodinámica cuántica y, finalmente, átomos fríos en el régimen de campo 
medio y en el régimen cuántico 

Palabras clave: Óptica No Lineal, Plasmónica, Átomos Fríos. 
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1. Introduction 
Nonlinear waves are fundamental objects in 
media characterized by a nonlinear response. 
Their modeling and understanding is a 
fascinating object of study shared by different 
disciplines. This broad spectrum of topics in 
which nonlinear waves play a key role makes 
this subject especially suitable for the 
characteristic InterTech interdisciplinary 
approach based on advanced mathematical / 
physical modeling, demanding computational 
methods, and the development of new 
technological applications. We will present here 
the main lines of research developed in the area 
of photonics at InterTech during the last years 

and the present time which include 
contributions in the following topics: spatial 
solitons in discrete media, singular optics, 
temporal solitons and supercontinuum 
generation, non-paraxial nonlinear optics in 
photonic crystals, nonlinear liquid crystals, 
nonlinear plasmonics, cold atoms in the mean-
field and quantum regimes and nonlinear effects 
of the QED vacuum. 

 

2. Spatial solitons in discrete-
symmetry media 

Spatial solitons are nonlinear light structures 
that are able to propagate without diffraction 
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due to an exact compensation between 
diffraction and nonlinear effects. They are 
mathematically described by Nonlinear 
Schrödinger Equations (NLSE) or alike [1]. The 
propagation of spatial solitons in discrete-
symmetry media such as periodic dielectric 
structures provides them with special properties 
absent in ordinary propagation in homogenous 
media. The richness and complexity of nonlinear 
solutions in discrete-symmetry media is highly 
remarkable. Our group has worked intensively 
in this topic in the last years. Our main 
contribution has been to introduce a powerful 
theoretical tool to classify this panoply of 
nonlinear solutions in a systematic manner. This 
mathematical tool is the generalization of 
discrete group theory to nonlinear equations of 
the type given by NLSE [2]. In particular, our 
group showed the possibility of generating 
spatial solitons solutions (of the fundamental, 
vortex and dipole type) in photonic crystal fibers 
[3-5] and nontrivial phenomena involving 
nonlinear photonic crystals as that of vortex 
transmutation [6]. 

 
 
 

 

Fig. 1. Vortex soliton solutions for different powers in a 
photonic crystal fiber (up) as in Ref. [5] and a characteristic  
example of vortex transmutation (down) as in Ref. [6]. 

3. Nonlinear singular optics 
The mathematical tools developed for the study 
of solutions of NLS-like equations were 
especially well suited for the study of phase 
singularities. In general, complex scalar 
solutions of wave equations can present 
dislocations similar to those found in crystals. 
The essential mathematical property of these 
complex scalar functions in the point or line 
where a dislocation is localized is that its phase 
is increased or decreased in a multiple of 2π 
along a closed curve around it. In these points or 
lines, also known as phase singularities or, in a 
wide sense, as vortices, the amplitude of the 
function vanishes and its phase is undetermined.  
In the case of nonlinear optics, the study of such 
singularities or vortices is often enclosed in a 
separated branch called nonlinear singular 
optics [7]. An important category of optical 
vortices is that of discrete vortices (DV), or 
vortices in discrete-symmetry media. We have 
developed a series of powerful theorems and 
rules to predict the behaviour of phase 
singularities propagating in optical media 
owning discrete rotational symmetry. This 
includes a vorticity cut-off theorem [8], the 
demonstration of DV as angular Bloch modes [9], 
the essential relation between symmetry, 
winding number and topological charge of DV 
[10] and the existence of selection rules for the 
topological charge of DV in interfaces breaking 
rotational symmetry [11]. 

 

4. Nonlinear temporal optics and 
design of supercontinuum spectra 

The behavior of optical pulses in optical fibers 
and optical fiber devices  in the nonlinear regime 
is also given  by an effective NLSE in the time 
domain for the pulse envelope [12]. Generalized 
versions of NLSEs are used to include higher 
order nonlinear effects. Among them, 
supercontinuum generation, the spectacular 
enhancement of the spectral width of a pulse in a 
PCF, is likely the most relevant phenomenon in 
nonlinear fiber optics in the last years [13]. 
Supercontinuum generation is a complex 
phenomenon that strongly depends on the 
dispersion features of the fiber and the 
characteristic  of  the input pulse.  This generates 
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Fig. 2. Examples of the amplitude (left column) and phase 
(right column) of DV solitons with same rotational behavior 
under π/2 discrete rotations: they both have identical 
angular pseudo-momentum m=-1 (see [9]), but different 
total topological charge: ν=-3 in the upper case and ν=-1 in 
the lower case. White circles in phase figures indicate phase 
singularities with topological charge +1 whereas red circles 
correspond to charge -1. Classification and behavior of these 
solutions are given in Ref. [10]. 

 

an enormous variety of available output spectra 
by suitable tuning of these parameters. However, 
the computational cost to explore all the 
parameter space is unaffordable. Thus, in order 
to design useful PCF-based devices yielding 
spectra for useful applications, a combination of 
optimization techniques and large compu-
tational resources is needed. In this context, we 
have developed a new computational scheme to 
design supercontinuum spectra “à la carte” by 
means of genetic algorithms [14]. Due to the 
potentially large amount of computations 
required by this strategy, the deployment of 
these heuristic algorithms is performed using 
distributed computing in the form of a Grid 
platform. The optimization procedure is 
automated within the Grid platform and permits 
escalation to large computational Grids. Some 
examples of designed supercontinua are given in 
Fig. 3. Potential applications for the design of 
future photonic devices include the fabrication 
of light sources for specific targets in nonlinear 
microscopy and biomedicine. 

 
Fig. 3. Spectral evolution examples that belong to the parameter space. Full vertical lines mark the zero GVD and dashed show the 
targeted spectrum in the anomalous GVD regime. Figs. (a) and (b) correspond to far non optimized results, whereas Figs. (c) and (d) 
show  two optimized cases. 
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5. Nonlinear liquid crystals 
Nematic Liquid Crystal (NLC) devices are being 
widely studied in the field of Nonlinear Optics 
due to its large nonlinear response [15]. It allows 
to generate nonlinear solutions with no change 
of shape, the so called nematicons at very low 
optical powers. Its interest range from all optical 
communication devices to computation. Besides, 
the nonlocality exhibited by NLC cells has been 
shown as an efficient mechanism for stabilizing 
optical complex structures which cannot exist in 
local nonlinear homogeneous media. The aim of 
this line of research is presenting a complete 
realistic model for NLC devices that permits 
realistic simulations of nonlinear propagation of 
light in these structures. This model provides 
new effects absent in ordinary simplified 
nonlinear nonlocal models. 

 

6. Nonlinear plasmonics 
Plasmonics is an important and quickly 
developing area of modern physics which offers 
promising applications in nano-optics and 
electronics. It deals with the so-called surface-
plasmon polaritons (SPP), i.e., collective 
oscillations of the electromagnetic field and 
electrons which propagate along a metal-
dielectric surface and decay exponentially away 
from the surface [16]. SPPs are characterized by 
their frequency and their propagation constant 
along the interface. SPPs can only interact 
resonantly with evanescent electromagnetic 
waves in the dielectric medium. Accordingly, 
there are two main methods for excitations of 
plasmons: (i) via the evanescent wave generated 
at the total internal reflection and (ii) via a 
periodic structure producing evanescent modes. 
In this context, we have shown the possibility of 
resonant interaction between a SPP at a metal 
surface and a parallel self-focusing beam, in the 
form of a spatial soliton, in a nonlinear dielectric 
[17]. A simple two-level model reveals 
hybridized plasmon-soliton eigenmodes, we 
refer to as soliplasmon excitations, and their 
complex nonlinear dynamics which offers 
plasmon excitation and control using spatial 
solitons. 

 

 

 
Fig. 4. Calculated angle of rotation of the NLC molecules 
versus horizontal position for a typical configuration at an 
arbitrary z axial position (blue line and descriptive figure 
above), effective refractive induced in light by this molecular 
distribution (black line) and light field distribution at the 
same axial slice (red line). 

 

 
Fig. 5. Characteristic metal/dielectric/Kerr structure 
supporting soliplasmon excitations (up). Two examples of 
“antisymmetric” and “symmetric” soliplasmon excitations as 
appearing in Ref. [17]. 

 

7. Cold atoms in the mean-field and 
quantum regimes 

Ultracold matter can be represented by a 
coherent state, constituted by many atoms, 
called a Bose-Einstein condensate (BEC). This 
quantum state can be, in turn, represented by a 
mean-field wave function that fulfills the so-
called Gross-Pitaevskii equation (GPE). The GPE 
is a temporal equation that describes the 
dynamics of the BEC wave function and is 
formally identical to the NLSE in different 
dimensions. In the particular case of BEC in 2D 
traps the GPE is identical to NLSE describing the  
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Fig. 6. Different snapshots of the evolution of a charge 2 
matter wave vortex under the action of a symmetry breaking 
potential of order 4. This behavior is consistent with the 
discrete group theory rules developed in Ref [18]. 

 

propagation of light in 2D optical media. For this 
reason, all our results based on discrete group 
theory previously applied in optical systems can 
be translated to the ultracold matter formalism 
in a straightforward manner. In this way, the 
symmetry rules governing the behavior of 
optical vortices under the presence of discrete-
symmetry media  also hold for matter vortices  
when the full continuous rotational symmetry of 
the potential is broken by the presence of an 

instantaneous  discrete-symmetry potential [18]. 
Further studies initiated in our group indicates 
that our symmetry rules are also preserved in 
the quantum limit, i.e., that in which the number 
of atoms is so small that the usual GPE approach 
start to fail because of quantum fluctuations in 
the atom number. Modeling in this case is 
performed using the full quantum Bose-Hubbard 
model for atom traps in the form of a ring  
showing discrete rotational symmetry. 
 

8. Nonlinear effects of the QED 
vacuum 

This line of research is developed together with 
Daniele Tommasini and Humberto Michinel from 
the Optics Laboratory of the Universidad de Vigo 
at Ourense [19]. This line is devoted to light 
nonlinearities induced by the QED vacuum, that 
is, in the absence of any form of matter. 
Surprisingly, in terms of classical Nonlinear 
Optics, vacuum excitations, in the form of the 
quantum generation of virtual electron-positron 
pairs, can induce effective nonlinearities. 
However, despite it is a well-known result since 
long time ago, photon-photon scattering in 
vacuum has not yet been detected using 
standard high-energy experiments where the 
probability of this effect to occur, given by the 
photon-photon cross section, is maximized. An 
alternative approach is to perform experiments 
using   ultrahigh  power   optical  lasers,   such  as 

 

 

 

Fig. 7. Characteristic box diagram of photon-photon scattering in vacuum generating effective nonlinearity (left). Schematic 
representation (right) of a proposed experiment with a high-intensity laser (green) interacting  with a low-intensity one (red beam 
above): nonlinearities induced by the high-intensity laser generate a nonlinear shift in the low-intensity laser that can be measured 
by interferometric methods using a non-shifted reference low-intensity beam (red beam below). 
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those that will be available in the near future, in 
such a way that the high density of photons will 
compensate the smallness of the cross section. In 
this case, the small energies characteristic of 
optical photons (a few eVs) and the effect of 
photon-photon collisions due to the interchange 
of virtual electron-positron pairs can be 
expressed in terms of the effective Euler-
Heisenberg nonlinear Lagrangian. This modifies 
Maxwell’s equations transforming them into a 
Lorentz covariant set of nonlinear equations. 
Our mixed group has proposed optical 

experiments based on ultrahigh intensity lasers 
in which this small effective nonlinearities can 
be unveiled thus showing for the first time the 
presence of photon-photon scattering in vacuum 
[20-22]. 
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Abstract—In this work a sliding modes controller is designed
and implemented for regulate the temperature in a closed space.
The system is represented with a lumped parameter model of
18R13C, initially the model is evaluated in simulation and tuned
with experimental data, for the design of the controller is used
the Monte Carlo method to simplify, and later calculate the
equilibriums and main parameters, finally the controller is tested
in a reduced scale model.

Index Terms—sliding modes controller, lumped parameter
model, Monte Carlo, Full Scale Model.

I. INTRODUCTION

The reduction of the energy consumption in cities and

different human environments is a very important study field in

the last century [1]. Has been identified that the urban zones

concentrate close to the 50% and consume almost the 85%
of annual energy production on developed countries, and of

all these energy required in cities almost the 40% is used on

HVAC (Heating, Ventilation and Air Conditioning) systems to

achieve the thermal comfort in offices and residential spaces

[2], [3].

To decrease the energetic consumption of a thermal zone is

necessary analyse all the possible sources or lakes of heat, an

try to reduce his impact on the thermodynamic of the space,

for this is necessary the use of accurate mathematical models

and simulators, that allow to the researchers execute deeper

and different experiments [4].

The mathematical models used to analyse a thermal zone

can be classified in black, grey or white box according with

the grade of configuration and knowledge allowed to the

researcher, the commercial simulator such as TRNSYS® and

ENERGY+®usually implements black or grey models, and

are widely used in research and industry, for this reason in

any investigation is necessary take in account the response

of these simulators and realize comparision for guarantee the

good behaviour of the used models [5]–[7].

Otherwise, the use of the accurate mathematical models that

allow understand the thermodynamic of a building is just a

part of the problem of high energy consumption, is necessary

implement control actions that regulate the thermal conditions

and look for energy savings, in literature many controllers has

been proposed and investigated in this ambit, but is necessary

continue investigating new strategies that can achieve the aims

and for his nature can be adapted to the thermal scope.

The sliding modes control is a technique used widely in power

converters and mechanical applications [8], [9], using his good

characteristics as the quick response to disturbances, stability

and easy tuning, besides can be adapted to new applications,

such as the thermal regulation, but his implementation on

real buildings is a challenge for different reasons, such as the

interruption of human activities, economic costs and aleatory

environmental conditions between others, for avoid these el-

ements in the evaluation of new control strategies is helpful

practice the use of scale reduced models.

In this work we present the process of verification in sim-

ulation and experimentally of a lumped parameter model,

described mathematically and adjusted to represent the ther-

modynamic of a wooden box used as scale reduced model with

an internal gain, later a sliding modes controller is designed

and implemented for regulate the internal temperature.

The rest of the article is organized as follow: in section II is

described the structure of the lumped parameters model. The

section III used to present the simulation and experimental

tests. In section IV the controller is designed and evaluated the-

oretical and experimentally. Finally, in section V are showed

the conclusions.

II. MATHEMATICAL MODEL

To evaluate the control sliding method is needed count with

a mathematical model accurate and tuned to the study case, in

this research we select the lumped parameter model presented

in figure II, in literature this structure is called Full Scale

Model (FSM) [10], [11], and use the subscripts i, j, where

i = 1, 2...6 corresponds to the wall of the thermal space,

and the subscript j = in,med, ex indicate the position of the

element, in and ex corresponds to the internal and external

surfaces, and mid is used for the conduction resistance of

the walls, the state vatiables of the models are the internal

temperature T , and the 12 superficial internal and external

temperature Ti,in y Ti,ex, the environmental temperature is

represented as Ta, additionally is considered the thermal

capacity of the air in the room represented with the capacitor

978-1-5386-6962-4/19/$31.00 ©2019 IEEE
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Cr, the internal gains are included with the variable IL and

controlled with the binary variable u [7].

Fig. 1. Full scale model
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It is necessary clarify that the internal and external resistances

is considered the heat transfer process for radiation and con-

vection, meanwhile the conduction heat process is calculated

with the physical characteristics of the wall [12].

III. TUNING AND SIMULATION

For guarantee the efficiency of the mathematical model

it was planted a theoretical study case with a constant

temperature, the same situation it was model with the

commercial program TRNSYS®, the model planted was

a empty cube of edges 2m, the material in the walls is

the medium concrete, with the following thermal charac-

teristics: conductivity=4.14 KJ
hmoK

, specific heat=1 KJ
kgoK

and
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Fig. 2. Comparison between FSM and TRNSYS

density=1800 kg
m3 . The simulators results were compared using

the root mean square error (RMSE), the aim of this test is

analyse the difference between the simulators changing the

thickness of the walls, the results are presented in figure 2,

where the blue green line corresponds to the TRNSYS data

and the blue is for the FSM, the black point is the time

taken for achieve the stationary state. In table I is resumed

the thickness values used and his corresponding time of the

establishment and error calculated, with this first simulation is

possible appreciate the good behaviour of the FSM especially

for thermal spaces with walls of low thickness.

TABLE I
FSM AND TRNSYS ERRORS

Espesor[m] RMSE[C] Muestra[h] Gráfica

0.05 0.5314 117 2(a)

0.15 0.9131 157 2(b)

0.25 1.5991 175 2(c)

0.35 2.0028 243 2(d)

0.45 2.1316 383 2(e)

0.5 2.4331 397 2(f)

The next step in the investigation was tuning the model with

experimental data, for this aim was built a wooden box with
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TABLE II
WOODEN BOX PARAMETERS

Material Parameter Value

Wood
Conductivity 0.645

KJ
hmK

Density 700
kg

m3

Especific heat 1.6
KJ
kgK

Air
Density 1.2

kg

m3

Especific heat 1.007
KJ
kgK

the dimensions 70cm× 40cm× 58cm with 15.8mm of walls

thickness, the thermal characteristics are resumed on the table

II; in the interior was set a infrared lamp of 60W to stimulate

the heat flux, this experiment was executed indoor to minimise

the changes on the environmental temperature, and consisted

on consecutive periods of charge and discharge of 4h duration.

The experiment taken almost 3 days, and the internal temper-

ature experimentally recorded were used to adjust the transfer

heat coefficients between the air internal and external and the

box walls, this results are presented on figure 3, showing with

the red line the experimental data, blue line is for simulated

internal temperature and green line for environmental temper-

ature.
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Fig. 3. Circuito equivalente

IV. CONTROL DESIGN

The basic theory on the the sliding modes controller start

defining a nonlinear time-dependent system ẋ = g(x(t)) +
φ(x(t))u(t), where x is a vector of state variables, g(.) and

φ(.) are smooth vector fields [13], and u(t) is a binary equation

depending on the next relation:

u =

{

u = 0 para s > 0
u = 1 para s < 0

(4)

The variable s is the system trajectory, usually defined

as a linear arrangement with form s =
∑m

i=1
αixi = Jx,

J = [αi, α2...αm] is a vector of constants of the controller αi

to be tuned [14].

The state variables defined for this case are the temperature

error about a reference temperature Tref i.e. (x1 = Tref −T )

and the incoming heat flux x2, but initially the FSM counts

with 13 state variable related to the internal temperature an

superficial temperatures, and must be reduced or discarded

according with his importance on the model, for this process

was developed a Monte Carlo analysis with the coefficients

of the convection internal and external, the radiation internal

and external, and the conduction process. The analysis allow

know the impact of little variations in the nominal value of

an initial coefficient over the internal temperature and classify

the importance of the parameter and phenomenon according

to the slope of the line final, the disturbances on the input

parameters were generated with 1000 aleatory numbers with

different distributions, the range of disturbances used in each

case is from 2.5% until 12.5% [15].

In figure 4 is presented the result of this analysis, in this

picture is evident that the radiation process has low impact

on the internal temperature, and the system can be simplified

to a model that only considers the conduction and convection

process.

The next step on the controls design is the establishment of the

0 2 4 6 8 10 12 14

∆P[%]

0.02

0.06
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0.14

0.18

σ

Internal convection

External convection

Conduction

Internal radiation

External radiation

Fig. 4. Monte Carlo analysis results

system equilibriums, these points must be stable attractors with

fixed input and infinite time, in figure 5 is showed the theoretic

equilibriums and the sliding manifold taking the controllers

coefficients J = [α 1], the constants a, b, c and d are positive

values calculated with the walls characteristics according with

the equations 5-9.

Ri,s = Ri,ex +
Ri,med

2
(5)

Ri,m = Ri,in +
Ri,med

2
(6)

1

Rst

=
6

∑

i=1

1

Ri,s

(7)

1

Rmt

=
6

∑

i=1

1

Ri,m

(8)

Cw =
6

∑

i=1

Ci,in + Ci,ex (9)
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Fig. 5. Theoretic equilibrium
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Fig. 6. Equilibriums in simulation

a =
1

RstRmtCw

(10)

b =
1

RstCw

(11)

c =
1

RmtCw

(12)

d =
1

RmtCr

(13)

Figure 4 shows the simulation results for the both states of

the variable u, in these pictures the black circles represents

the initial point, and the the circle blue and red are the

equilibrium in each case. After find the equilibriums system

is necessary define the surface sliding s = αx1 + x2 and

his derivative ṡ expressed on equation 14, this equation is

expressed function of the the state variables, the reference

temperature and environmental temperature [16].

ṡ = ax1−(b+c+d−
α

Cr

)x2−bTref+uIL(b+c)+bTa (14)

Based on the equation 14 is possible determine the

critic value of α, for this case is planted of α =

Cr
(

1

RstCw

+ 1

RmtCw

+ 1

RmtCr

)

, it must be selected a close

value higher o lower, the chosen value taken is α = 48.3198.

The hysteresis bandwidth is defined with the establishment of

two lines λ1 and λ2, these lines corresponds to the inclusions

of one positive constants chosen arbitrary, in this case is

ǫ = 0.5, i.e. λ1 = αx1 + x2 − ǫ and λ1 = αx1 + x2 + ǫ.
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Fig. 7. Sliding modes control in simulation

In figure 8 are presented the simulations results, the black

line represents the sliding surfaces s = 0, the green line

are used for represent λ1 and λ2, the red line is used for

represent the system evolution with u = 1, and the blue line

the evolution with u = 0, specifically in 7(c) is presented

the internal temperature, and after the transitory period the

temperature achieve the reference of 28oC satisfying the 2%
criteria.

The experimental test was implemented with a electronic card

ESP32 LOLIN, and temperature sensors DS18b20, the system

was programmed to sampling temperature every thre minutes,

in this experiment the initial conditions were very close to

the sliding surface as is presented on figure 8(a), but as in

theory the system achieve the stable point in x1 = x2 = 0, in

that moment the duty cycle is very stable (figure 8(b)), finally

in figure 8(c) is showed the internal temperature recorded, in

this picture is evident the good behaviour of the controller
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regulating the internal temperature even with a increasing

environmental temperature.
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Fig. 8. Sliding modes control experimental results

V. CONCLUSIONS

In this paper was designed and tested experimentally a

sliding modes control for regulate temperature in a closed

space. In first stages of the investigations the Full Scale Model

was compared with the commercial software TRNSYS®,

giving low errors values, especially on thermal zones with

low thickness walls.

The experimental tests were done with a reduced scale

models, giving a set of experimental data that allowed

adjust the simulator and minimise the difference between the

experimental and the simulation in open loop.

The Monte Carlo analysis was used to discard parameters on

the model on the beginning of transitory stages, in this period

the radiation heat transfer has low impact over the internal

temperature.

Following the theory of sliding control strategy, it was design

the operation rule, and founded the main control parameters,

in experimental and simulation tests the controller satisfied

the 2% criteria, allowing conclude that the strategy can works

without problem with the thermal variables.
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Abstract: To reduce the energy consumption in buildings is necessary to analyze individual rooms
and thermal zones, studying mathematical models and applying new control techniques. In this
paper, the design, simulation and experimental evaluation of a sliding mode controller for regulating
internal temperature in a thermal zone is presented. We propose an experiment with small physical
dimensions, consisting of a closed wooden box with heat internal sources to stimulate temperature
gradients through operating and shut down cycles.

Keywords: building modeling; lumped parameter model; sliding control mode; reduced scale model

1. Introduction

In recent decades, building modeling and energy consumption in thermal zones have become a
growing field of study for engineers and researchers [1]. These studies have been impulsed by different
countries thanks to international agreements such as the Kyoto Protocol and the implementation of the
sustainable development goals of the United Nations (UN). It has been realized that the high energetic
consumption of HVAC systems in buildings, which in developed countries can account for 40% of the
annual energy production, is a key factor in climatic change [2].

To minimize consumption in buildings, it is necessary to understand the main factors of energy
waste, such as thermal comfort and human habits. Different tools have been developed to simulate
thermodynamic processes in buildings [3,4]. For example, commercial programs such as TRNSYS
and ENERGY PLUS allow representing an entire building and analyzing the effects of specific actions.
Another important tool is mathematical modeling, which permits deeper numerical analysis and
contributes to the development of new strategies and controllers for temperature regulation. At the
same time, this allows reducing energy consumption [5].

The representation of a entire building consisting of different levels and a large number of rooms
in each level, is a complex task especially if geometrical and physical characteristics, environmental
conditions and relations with external bodies are taken into account. To simplify the problem,
only individual and closed rooms are analyzed, and in subsequent stages the results are extrapolated
to the entire building. The analysis of a single room as a thermal zone is reduced to capturing the
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thermodynamic processes in the room. This includes evaluating the different heat sources, both external
and internal. Examples of external heat sources include sun radiation and surrounding bodies at
different temperatures. Possible internal heat sources include electronic equipment and occupants.
Some factors and phenomenona are easily handled, while others require important mathematical
modeling in order to be captured. In order to meet these requirements without increasing the
complexity of the mathematical model one makes simplifications that maintain the predominant
dynamics of the problem [6].

There are many choices of a mathematical model, depending on factors such as accuracy,
computational cost and adaptability. In many cases, high accuracy needs powerful electronic
equipment for sensing and processing. If implemented, this often drives costs beyond the budget.
Additionally, the more specific a mathematical model is, the more difficult its electronic implementation
will be, including modifications and variations in a case study. Another important factor is the tuning
of parameters in the model. Tuning strategies based on large databases or combinations of modeling
strategies in order to obtain the maximum amount of information about the study case are found
in [7–9].

Some modeling options are mentioned below: Ref. [5] presents a method for modeling room
temperature based on the laws of thermodynamics resulting in an Armax model for control purposes.
Ref. [10] uses the Zokolov mathematical model, which is based on heat balance with quasi-steady-state
approximations to determine the average internal temperature. For more detailed models, it is possible
to include different thermal phenomena such as infiltration and thermal inertia, as in [11], where the
mass and energy conservation principle was used. However, in the majority of research it is acceptable
to use reduced order models. The Lumped Parameter Methods (LPM) allow a choice among a large
variety of structures and orders. Refs. [6,12] use circuits of 4th and 7th order to model single thermal
zones, while Refs. [13,14] use simplifications and apply different control techniques.

An aspect as important as the mathematical model itself is the control strategy. This is so because
some of the thermal zones inputs are constantly changing. Thus it becomes necessary to rely on a
central controller that regulates the internal variables to achieve the objectives of thermal comfort and
energy savings. Strategies such as the model predictive control (MPC) are accepted within the scientific
community as a good alternative in thermal applications [15–18]. This technique has been compared
with classic controllers such as PID [19] and been shown to perform better. Refs. [20,21] propose
cooperative work with fuzzy controllers that exhibits an energy savings of about 20%, demonstrating
that the study of other techniques cannot be disregarded.

However, the study of alternative control techniques is not a easy task, especially in experimental
investigations. To minimize problems in the evaluation of new control strategies, some researchers
have been using reduced scale models. The latter allow the creation of sensed thermal zones with
minimal resources and minimize the effect of environmental conditions. This effect is typically one of
the most common factors in the failure of new control strategies [22–25].

In this article, we show how to use the Sliding Control strategy for regulation of the temperature
in a thermal zone. This technique is normally used for commuted systems as power converters,
but it is robust enough to be implemented in different applications [26–30]. For the evaluation of the
control technique, an experiment with a scale reduced model was planned. The experiment consisted
of a wooden box equipped with an internal lamp to simulate a heater in a room, in a cold climate
environment. In the first stages of the experiment, a mathematical modeling technique was built and
tuned with an experimental database. This allowed the development of a simulator that reproduced
the experimental results with high accuracy. Subsequently we programmed an electronic card to drive
the internal lamp according to the control rule.

This article is organized as follows: Section 2 presents the mathematical models used to represent
the proposed experiment. Section 3 describes in detail the elements and places used in the tests.
In Section 4 the process for tuning parameters is shown and the experimental and simulation results
are compared. Finally, in Section 5, we present the control technique and the mathematical description
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necessary to simulate and complete the experimental test. Section 6 presents conclusions and suggests
future work.

2. Mathematical Model

The lumped parameter technique is a methodology for modeling buildings, based on an analogy
between thermal and electrical phenomena. Temperature is represented by voltage, heat flux by
electric current, and thermal resistance is defined as the resistance to heat transfer through walls,
and represented by an electrical resistance [31]. The resulting circuit must include a series of resistances
associated with the different heat transfer processes, and capacitors that represent the wall’s capacity
to accumulate energy. In the literature it is possible to find different configurations and circuits, which
allows choosing different models to solve the problem according to information quantity, physical
characteristics, internal gains and others factors [32].

In the Lumped Parameter Models the heat flux is assumed in one direction, the orientation is
defined by the difference between the environmental and internal temperature. In case of a higher
external temperature, the sequence followed for the thermal energy is as follows: first, transfer from
the external air to the exterior surface of each wall; next, conduction through the walls; finally, transfer
from the interior surface wall to the interior air in the zone. The reverse process takes place when the
internal temperature is higher than the environmental temperature.

2.1. Full Scale Model

Figure 1 shows a RC circuit equivalent to one closed room with four walls, a roof and a floor.
This configuration of the LPM is called Full Scale Model [6–33]. It is characterized by including
branches for the different surfaces, each branch incorporating resistances for the convection, radiation
and conduction processes. The nomenclature uses two subscripts i and j; the first one indicates
the surface i = 1, ...6, and the second one indicates the position j = in, med, ex. The subscript “in”
corresponds to the interior elements, “mid” to conduction resistances, and “ex” represents the exterior
elements. Thus, e.g., the resistance R1,in corresponds to the heat transfer process between the interior
face and the interior air.

The conduction resistance for the corresponding wall is calculated according to Equation (1),
the interior and exterior resistances are calculated with Equation (2). Here ε denotes the emissivity
coefficient of the material, and h denotes the convection coefficient which must be tuned experimentally.
The thermal capacity of each wall and the air contained in the zone is defined by Equation (3):

Ri,med =
Li

ki Ai
(1)

Ri,in−ex =
1

A(hin−ex + εin−exσ(T2
sup + T2

a )(Tsup + Ta))
(2)

Ci,in−ex =
ρiCei AiLi

2
(3)

The whole model contains 31 fixed parameters: capacitors, resistances, one single time variant
input (the environmental temperature Ta(t)), and finally 13 state variables associated with the internal
and external surface temperatures together with the internal air temperature. All temperatures are
calculated as the voltage over the capacitors, connecting the temperature Ti,j with the capacitor Ci,j,
and the internal air temperature T with the capacitor Cr. Applying circuit theory it is possible to
determine one set of differential equations to calculate the temperature evolution:

dTi,ex

dt
=

Ti
Ri,exCi,ex

− Ti,ex

(
1

Ri,exCi,ex
+

1
Ri,midCi,ex

)
+

Ti,in

Ri,midCi,ex
(4)
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dTi,in

dt
=

Ti,ex

Ri,midCi,in
− Ti,in

(
1

Ri,midCi,in
+

1
Ri,inCi,in

)
+

T
Ri,inCi,in

(5)

dT
dt

=
T1,in − T
R1,inCr

+
T2,in − T
R2,inCr

+
T3,in − T
R3,inCr

+
T4,in − T
R4,inCr

+
T5,in − T
R5,inCr

+
T6,in − T
R6,inCr

+
uIL
Cr

(6)

Above, IL represents the power of the internal gains and u their state (active or inactive).

Figure 1. Circuit for a thermal zone using the full scale model.

2.2. Simplified Model

Another useful structure is presented in Figure 2; this circuit provides a simplified model and,
in many cases, is enough to analyze a thermal zone with minimal parameters. This model requires 18
fixed parameters, one single input and only two state variables, corresponding to the wall temperature
and the internal temperature (Tw and T respectively). In this case, the conduction resistance is denoted
with only one subscript i, and the internal and external resistances carry one additional subscript
j to indicate their positions. Important elements are the calculation of Ri and Cw; in this structure,
the resistance is calculated with one half of the wall’s thickness, and the capacitor uses the entire
superfice area. The order reduction in this model is given by disregarding the radiation process that,
in transitional states, hardly contributes to the general dynamics. Thus, the internal and external
resistances are calculated with the convection coefficient.

In order to calculate the set of differential equations, the circuit must be simplified by reducing the
resistors; the external face is calculated by the parallel resistor as 1

Rst = ∑i
1

1
Rs ,i , where Rs,i is the linear

addition of the conduction and convection resistors Rs,i = Ri + Ri,ex. Similarly, the internal face resistor
Rmt is calculated using the corresponding convection coefficient for the resistor Rm,i = Ri + Ri,in.
The final results are shown in Equations (7) and (8):

dTw

dt
=

T
RstCw

− Tw(
1

RstCw
+

1
RmtCw

) +
Ta

RstCw
(7)

dT
dt

=
Tw − T
RmtCr

(8)
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Figure 2. Circuit for a thermal zone using the simplified model.

3. Experimental Setup

Using the concept of reduced scale models for the evaluation of the controller, a closed container
was built with a chipboard working as a thermal zone. Such elements are regularly used in kitchen
furniture. The dimensions of the container are 70 cm × 40 cm × 58 cm with 15.8 mm of wall thickness;
additionally, it is lifted 10 cm from the ground with plastic legs that limit heat transmission by contact
with the ground. In Table 1 additional data associated with the materials used in the experiment
are presented.

Table 1. Parameters of the materials used in the experiment.

Material Parameter Value

Wood
Conductivity 0.645 KJ

hmK

Densitiy 700 kg
m3

Specific heat 1.6 KJ
kgK

Air Density 1.2 kg
m3

Specific heat 1.007 KJ
kgK

The box was equipped with: one 60 W incandescent internal lamp with infrared light to simulate
a heater in a closed room; one temperature and humidity sensor (Data Logger Wöhler CDL 210) inside
the box, and another one outside the box for registering environmental conditions.

Figure 3 shows the wooden box with the lamp and temperature sensor ready to start the
experiment. All the tests were carried out in closed spaces (in order to minimize the effect of
environmental changes) at Polytechnic University of Valencia (Spain). The first two data recompilations
were done in open loop, with the objective of generating enough information to adjust the models and
calculate the control parameters [34].

Figure 3. Wooden box used as scale reduced model.
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4. Adjusting the Models

For the dynamical analysis of the thermal zone built, it was necessary to develop a simulator
to reproduce the experimental results. The mathematical model described in Section 2.1 needs to be
adjusted to the situation of the system. That is, the convection and radiation coefficients for internal
and external faces had to be determined as functions of the state of the lamp. The activation state is
called “charge” and the deactivation stage is called “discharge” in the rest of this work. The tuning is
based on the experimental records obtained in open loop. Our strategy uses the registered data of the
internal temperature and an optimization algorithm to minimize the error between simulation and
experimental results.

The first test was done on 15 March 2018 and lasted 24 h (only the first 6 h were on charge).
With the data compiled, the Pattern Search algorithm from the OptimTool of MATLAB was used. This
tool requires a mathematical model, one objective function, and a set of output parameters. In this
case, the mathematical model used is presented in Section 2.1. The objective function Fo(T) is shown
in Equation (9). Finally, the set of output parameters defined are the internal convection coefficient hi,
the external convection ho, the internal emissivity εi and the external emissivity εo.

Fo(T) = min
{

E(T)
}

(9)

E(T) =

√∫ t f
t0
|Tmeasured − T|2√∫ t f
t0
|Tmeasured|2

× 100 (10)

As mentioned previously, the charge and discharge phases were analyzed individually, with the
resulting coefficients presented in Table 2. With these parameters, the simulator was compared with
the experimental results. This produced the results shown in Figure 4. The model’s accuracy with the
adjusted parameters was tested by calculating the relative error shown in Equation (10). This led to an
approximate error of 2.7%.

Table 2. convection and radiation coefficients.

Phase/Parameter hi[
KJ

hmoK ] ho[
KJ

hmoK ] εi εo

Charge 44.6875 11.1250 0.9430 0.9

Discharge 0 9.7324 0.0211 0.8805
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Figure 4. Simulated and experimental results in the first test.
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The second test in open loop was done on 13 April 2018 and lasted 11 days (10 days were on
charge phase). The comparison between experimental and simulation is shown in Figure 5. In this
case the relative error was about 2.3%. This figure was plotted using a total amount of 4756 data.
Among these, only in six cases does the difference between experimental and theoretical values exceed
2 degrees. It exceeds 1.5 degrees in 97 cases, while exceeding 1 degree in 461 cases. In all remaining
4295 cases the error lies below 1 degree.
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Figure 5. Simulated and experimental results in the second test.

5. Control Application

For the evaluation of the Sliding Control (SC) on the thermal zone, it was decided to use the
second order model (presented in Section 2.2) because this scheme is easier to adapt to the control
structure. In Figure 6, a reduction of the second order circuit is presented, with the internal gain IL
driven by the SC to handle the internal temperature in the thermal zone.

Figure 6. Reduced circuit of the simplified model with sliding modes control structure.

The state variables defined by the controller are the temperature error x1 and the heat flux
x2 shown in Equations (11) and (12). Here the desired temperature for the closed room is called
reference temperature Tre f , and the switch u represents the internal gain state. With these variables and
differentiating with respect to time, the state-space model can then be implemented by Equations (13)
and (14):

x1 = Tre f − T (11)

x2 = iCr (12)

ẋ1 =
−x2

Cr
(13)

ẋ2 = ˙iCr (14)
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To simplify the mathematical equations, the following parameters are defined:

a =
1

RmtRstCw
(15)

b =
1

RstCw
(16)

c =
1

RmtCw
(17)

d =
1

RmtCr
(18)

The state variables are defined as functions of the constants previously defined (the ambient
temperature, reference temperature, and the internal power source):[

ẋ1

ẋ2

]
=

[
0 − 1

Cr

a −(b + c + d)

] [
x1

x2

]
+

[
0

IL(b + c)

]
u +

[
0

a(Ta − Tre f )

]
(19)

The SC determines the switch position with a trajectory function s based on the state variables,

s = αx1 + x2 = Jx (20)

Above, J and x are the vectors J = [α, 1] and x = [x1, x2]
T , and α is the parameter to be adjusted by

the controller designer. The objective of this constant is to divide the space state in two sectors by a line
with slope α. This line is generated by the state variables that satisfy s = 0. In each zone, one system
equilibrium (ẋ1 = ẋ2 = 0) must be located, corresponding to the switch position (active/inactive).

The first case analyzed is the internal active source, with u = 1 equilibrium coordinates presented
in Equations (21) and (22). In this point the trajectory function is fulfilling the condition s > 0.

x1 = Tre f − IL(
b + c

a
)− Ta (21)

x2 = 0 (22)

For the second case, the internal source is deactivated. The u = 0 equilibrium conditions are
shown in Equations (23) and (24). This point satisfies the condition s < 0:

x1 = Tre f − Ta (23)

x2 = 0 (24)

Once the equilibrium analysis is done, the control laws can be established. Equation (25) shows
the actions in the searching period. Equation (26) defines the control laws when the system is
approaching the stability (x1 = x2 = 0) tracking the sliding line. Here ε is a positive small constant
arbitrarily determined.

u =

{
u = 0 if s > 0
u = 1 if s < 0

(25)

ṡ =

{
Jẋ if 0 < s < ε

Jẋ if − ε < s < 0
(26)

To determine the slope of the sliding line (α) the evolution of the trajectory function must be
evaluated with respect to time. Equation (28) shows that only the sliding parameter affects the incoming
heat flux. Enforcing ṡ = 0, the critical value α can be determined as presented in Equation (29):
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ṡ = αẋ1 + ẋ2 (27)

ṡ = −α
x2

Cr
+ ax1 − x2(b + c + d)− aTre f + uIL(b + c) + aTa (28)

α = Cr

(
1

RstCw
+

1
RmtCw

+
1

RmtCr

)
(29)

Based on the previous analysis, the slope of the sliding line was α = 48.3192. With this constant
and the system parameters defined, it was possible to develop the simulation of the thermal zone
under the sliding control technique.

The simulation was designed with an ambient temperature of 16 ◦C, a reference temperature of
Tre f = 28 ◦C, and the hysteresis band with a fixed constant of ε = 0.5. The results are presented in
Figure 7. Here the black line represents the sliding surface, the green lines limits the hysteresis band,
and the red and blue lines in Figure 7a correspond to the evolution of the state variables x1 and x2 as a
function of the switch position; blue is for the active u = 1 and red for the inactive u = 0. This first
figure shows the search stage. Figure 7b shows the tracking stage and the oscillation of the system
around the stability point (ẋ1 = ẋ2 = 0). Finally, Figure 7c presents the internal temperature that
achieves the reference temperature and maintains its value satisfying the 2% criteria.
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Figure 7. simulation results. (a) Theoretical development of the search stage. (b) Theoretical
development of the tracking stage. (c) Theoretical internal temperature with the sliding mode control.



Mathematics 2019, 7, 503 10 of 13

We performed different experimental tests by programming the electronic card ESP32 LOLIN
lite and measuring internal and external temperatures using a sensor DS18b20 with a sampling rate
of 3 min. Figure 8 presents the results obtained after 65 h of experimentation. The first two pictures
present the x1 and x2 variable evolution (searching and tracking stages). Figure 8c shows that the
internal temperature achieves the reference temperature of 28 ◦C. As in the case of the simulated
results, this reference temperature (output variable) is achieved and it maintained the 2% criterion.
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Figure 8. Experimental results. (a) Experimental development of the search stage. (b) Experimental
development of the tracking stage. (c) Experimental internal temperature with the sliding mode control.

6. Conclusions

An appropriate mathematical model can capture the thermodynamical behavior of a closed room,
allowing analyzing its characteristics and determining the most important factors in energy consumption.
In the energetic analysis of buildings, it is important to rely on algorithms and methods to estimate
the heat transfer parameters that contribute to thermal leaks. In this work we proposed an experiment
based on a piece of kitchen furniture with one internal lamp. Using the lumped parameter technique for
modeling, it was possible to build a simulator to reproduce the internal temperature in the thermal zone.

In order to adjust the main parameters for the simulator, different tuning strategies were used.
The best results were obtained by the algorithm called Pattern Search, in MATLAB. With this tool,
and using the experimental data, we determine the transfer coefficients between the walls and the
surrounding air. The full scale model to reproduce the experimental results with a relative error of less
than 3%.
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To summarize, in this paper we tested the ability of the sliding control technique to regulate
temperature in a thermal zone. The goals were achieved through the implementation of reduced
scale models, through a set of important tools to experimentally verify the theories, and through new
techniques of simulation and control in buildings. It is even possible to avoid many error sources in
the mathematical models, such as environmental conditions and random disturbances. Furthermore,
the test can be done with a low budget and without interrupting regular conditions in a real building.

The simulation and experimental results show that the technique control can be used to regulate
the internal temperature of a thermal zone in regions with a low ambient temperature. This procedure
can be extrapolated to different and bigger zones.

Future work to be done would be the introduction of disturbances test and the random opening of
doors or windows. This could help to test the robustness of the controller. Furthermore, the evaluation
of the energetic consumption in closed loop is necessary to define the savings in comparison with
other control strategies.
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Nomeclature

α Sliding constant
σ Stefan-Boltzman contant
ρ Material density
εin−ex Radiation coefficient
ε Hysteresis band amplitude
Li Thickness of the walls
ki Material’s conductivity
Ai Surface area
hin−ex Convection coefficient
s Sliding trajectory
J Sliding constants vector
x State variables vector
Ri,j Thermal resistance
Ci,j Surface thermal capacity
Cr Air thermal capacity
Cw Envelope thermal capacity
Cei Specific heat
Ti,j Surface temperature
T Zone temperature
Ta Ambient temperature
Tsup Superficial temperature
Tre f Reference temperature
icr Incoming heat flux
u Lamp state
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IL Internal gain power
F0(T) Objective function
E(T) Temperature error

‖ f ‖2 L2 norm of function f :
√∫ b

a | f (x)|2 dx
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Abstract

In the framework of a left-right model containing mirror fermions with gauge group
SU(3)C⊗SU(2)L⊗SU(2)R⊗U(1)Y ′ , we estimate the neutrino masses, which are found to
be consistent with their experimental bounds and hierarchy. We evaluate the decay rates
of the Lepton Flavor Violation (LFV) processes µ → eγ, τ → µγ and τ → eγ. We obtain
upper limits for the flavor-changing branching ratios in agreement with their present
experimental bounds. We also estimate the decay rates of heavy Majorana neutrinos in the
channels N → W±l∓, N → Zνl and N → Hνl, which are roughly equal for large values of
the heavy neutrino mass. Starting from the most general Majorana neutrino mass matrix,
the smallness of active neutrino masses turns out from the interplay of the hierarchy of
the involved scales and the double application of seesaw mechanism. An appropriate
parameterization on the structure of the neutrino mass matrix imposing a symmetric
mixing of electron neutrino with muon and tau neutrinos leads to Tri-bimaximal mixing
matrix for light neutrinos.
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1 Introduction

The evidences for neutrino oscillations obtained in experimental results from atmospheric, solar,
reactor and accelerator neutrinos lead to conclude that the neutrinos have a mass different from
zero. The current neutrino experimental data (SuperKamiokande, SNO, Kamland, K2K, GNO,
CHOOZ) can be described by neutrino oscillations via three neutrino mixings [1].The present
data give the solar neutrino lepton mixing angle tan2 θ12 = 0.45± 0.05, the atmospheric angle
sin2 2θ23 = 1.02 ± 0.04 and sin2 2θ13 = 0 ± 0.05 [2]. The complex phase has not yet been
measured.

The experimental information on neutrino masses and mixing points out new physics beyond
the Standard Model (SM) of particle physics, with a great activity on the consequences. Among
the possible mechanisms of neutrino mass generation, the most simple and attractive one is the
seesaw mechanism [3, 4], which explains the smallness of the observed light neutrino masses
through the exchange of superheavy particles; an alternative explanation is given by extra
dimensions beyond the usual three ones [5]. It has been suggested [ref.]that right-handed
(RH)neutrinos experience one or more of these extra dimensions, such that they only spend
part of their time in our world, with apparently small masses. At the present, it is not known
whether neutrinos are Dirac or Majorana fermions.

Models with heavy neutrinos of mass of order 1 TeV can give rise to significant light-
heavy mixing and deviation from unitarity of the Pontecorvo- Maki-Nakagawa-Sakata (PMNS)
matrix [6]. The nonunitarity nature of the neutrino mixing matrix due to mixing with fields
heavier than MZ

2
can manifest in tree level processes like π → µν, Z → ν̄ν, W → lν or in

charged lepton decays µ → eγ, τ → µγ, etc. which are flavor violating and rare and proceed
at one loop level [6, 7]. The TeV scale seesaw models are interesting because they can have
signatures in the CERN Large Hadron Collider (LHC) in the near future [8].

Neutrinos also are important in astrophysics and cosmology [9] and probably they contribute
to hot dark matter in the Universe and in its evolution.

Parity P violation was one of the greatest discoveries of particle physics [10]. Before this
observation, according to Fermi’s hypothesis it was believed that weak interactions have purely
vectorial V or axial vectorial (V-A) parity conserving Lorentz structure [11]. The theory of Lee
and Yang in 1956 [12] proposed a fermion current with V and A structure. It is known that in
the standard model (SM) the electroweak interactions have a V-A form, with only left-handed
(LH) (ordinary) fermions coupling to the weak gauge boson W±. But one can include also
mirror fermions [13] with a V + A coupling, such that P is conserved. In this sense, the term
”mirror fermion” is equivalent to ”vector-like fermion”, where for a theory with gauge group
G, in a representation R one has sets of LH and RH fermions.

In the literature a second meaning of that term is used. G is extended to a G × G gauge
theory, and for every multiplet (R, 1) a mirror partner (1, R) is added, such that there is no
gauge invariant mass term connecting the LH and RH multiplets [14]. Thus it is natural to
consider the existence of mirror generations.

Masses of mirror particles arise from symmetry breaking; for mirror generation they may
lye below one TeV , and feasible to be discovered in Fermilab Tevatron Collider and LHC.

A solution to the strong CP problem has been proposed within a L-R symmetric context [16].
The electroweak group is extended to SU(2)L⊗SU(2)R⊗U(1) including mirror fermions. These
fermions are conjugated to the ordinary ones with respect to the gauge symmetry group such

2



that a fermion representation including both of them is real and the cancellation of anomalies
is automatic [17].

In this paper we consider a L-R model with mirror fermions (LRMM) with gauge group
G ≡ SU(3)C ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)Y ′ . We discuss in section 2 the formalism of mixing
between standard and new exotic fermions In Sec. 3 we present the model and discuss the
symmetry breaking process with two scalar doublets.

In Sec. 4 we write the gauge invariant Yukawa couplings which after spontaneous symmetry
breaking give the most general Majorana neutrino mass matrix. With a double application of
the type I seesaw approximation we estimate the light neutrino masses in terms of free Yukawa
couplings assuming textures for the light and mirror matrices, obtaining consistent normal
hierarchical values for masses and a tribimaximal mixing for light neutrinos. We discuss in
section 4 the mixing between standard and mirror fermions. In Sec. 5 we include the radiative
decays µ → eγ, τ → µγ and τ → eγ and estimate bounds for their branching ratios. Finally,
we calculate such ratios for the heavy Majorana neutrinos decays N → W+l−, N → Zνl and
N → Hνl, getting a smooth variation with the heavy neutrino mass, even when it is much
larger than any of the involved masses.

2 Fermion mixing and flavor violation

To consider the mixing of fermions, we shall follow Ref. [6], grouping all fermions of electric
charge q and helicity a = L,R into na+ma vector column of na ordinary (o) and ma exotic (e)
gauge eigenstates, i.e. ψo

a = (ψo
na
, ψo

me
)Ta . The ordinary fermions include the SM ones, whereas

the exotics include any new fermion with sequential (mirror or singlet) properties beyond the
SM.

The relation between the gauge eigenstates and the corresponding light (l) and heavy (h)
charged mass eigenstates ψa = (ψl, ψh)

T
a , a = L,R is given by the transformation

ψ0
a = Va ψa , a = L,R (1)

where

Va =

(
Aa Ea

Fa Ga

)
(2)

In the Eq. (2), Aa is a matrix relating the ordinary weak states and the light-mass eigenstates,
while Ga relates the exotic and heavy states. Ea and Fa describe the mixing between the two
sectors.

From the unitary of V
VaV

+
a = 1, a = L,R (3)

it follows that the submatrix Aa is not unitary. The term F+
a Fa, which is second order in

the small light-heavy fermion mixing, will induce flavor-changing transitions in the light-light
sector.

The vacuum expectation values (VEV) of the neutral scalars produce the SM fermion mass
terms, which together with the exotic mass and mixing matrices lead to the mass matrix M
which takes the form

3



M =

(
K µ̂

µ K̂

)
(4)

where K denotes the SM fermion mass matrix and K̂ corresponds to the fermion mass matrices
associated with the exotic sector, while µ, µ̂ correspond to the mixing terms between ordinary
and exotic fermions.

The diagonal mass matrix Md can be obtained through a biunitary rotation acting on the
L and R sectors, namely

Md = V +
L MVR =

(
ml 0
0 Mh

)
(5)

where ml, mh denote the light and heavy diagonal mass matrices, respectively. The form of
the mass matrix will depend on the type of exotic fermion considered.

The scalar-fermion couplings within some specific Higgs sector are not diagonal in general,
and one can see that the couplings are not diagonal in general; thus new phenomena associated
with flavor-changing neutral currents (FCNC) will be present in such model.

3 The Model

In this and next sections we follow closely [15]. The LRMM formulation is based on the gauge
group SU(2)L ⊗SU(2)R ⊗U(1)Y ′. In order to solve different problems such as the hierarchy of
quark and lepton masses or the strong CP problem, different authors have enlarged the fermion
content to the form

l0i L =

(
ν0i
e0i

)

L

, e0i R , ν0i R, ; l̂0i R =

(
ν̂0i
ê0i

)

R

, ê0i L , ν̂
0
i L,

Q0
i L =

(
u0i
d0i

)

L

, u0iR , d0iR, ; Q̂0
i R =

(
û0i
d̂0i

)

R

, û0i L , d̂
0
i L , (6)

where the index i runs over the three fermion families and the superscripts 0 denote gauge
eigenstates. The quantum numbers of these fermions under the gauge group G defined above
are given by

l0iL ∼ (1, 2, 1,−1)iL , ν0iR ∼ (1, 1, 1, 0)iR , e0iR ∼ (1, 1, 1,−2)iR

ν̂0iL ∼ (1, 1, 1, 0)iL , ê0iL ∼ (1, 1, 1,−2)iL , l̂0iR ∼ (1, 1, 2,−1)iR

u0iR ∼ (3, 1, 1,
4

3
)iR , d0iR ∼ (3, 1, 1,

2

3
)iR

û0iL ∼ (3, 1, 1,
4

3
)iL , d̂0iL ∼ (3, 1, 1,

2

3
)iL

Q0
iL ∼ (3, 2, 1,

1

3
)iL , Q̂0

iR ∼ (3, 1, 2,
1

3
)iR

respectively, and the last entry corresponds to the hypercharge (Y ′) with the electric charge
defined as Q = T3L + T3R + Y ′

2
.
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A model with gauge group SU(2)L × SU(2)R × U(1)V × SU(3)H and the fermion content
(6) was originally suggested in Z. G. Berezhiani [18] as the ”universal seesaw” model which
generated masses of charged fermions as well as of the neutrinos. He also worked on a SU(5)×
SU(3)H model for extension to SO(10) or Pati-Salam [19], predicting for instance mνe = O(10)
eV. At low (electroweak scale) energies the model simulates the standard SU(3)C × SU(2)L ×
U(1)Y model, and FCNC are suppressed naturally.

3.1 Symmetry breaking

The ”Spontaneous Symmetry Breaking” (SSB) is achieved following the stages:

G −→ GSM −→ SU(3)C ⊗ U(1)Q (7)

where GSM = SU(3)C⊗SU(2)L⊗U(1)Y is the ”Standard Model” group symmetry, and Y
2
= T3R

+ Y ′

2
. The Higgs sector to induce the SSB in Eq.(7) involves two doublets of scalar fields:

Φ = (1, 2, 1, 1) , Φ̂ = (1, 1, 2, 1) (8)

where the entries correspond to the transformation properties under the symmetries of the
group G, with the ”Vacuum Expectation Values” (VEV’s)

< Φ >=
1√
2

(
0
v

)
, < Φ̂ >=

1√
2

(
0
v̂

)
. (9)

The most general potential that develops this pattern of VEVs is

V = −(µΦ†Φ+ µ̂Φ̂†Φ̂) +
λ1

2
[(Φ†Φ)2 + (Φ̂†Φ̂)2] + λ2(Φ

†Φ)(Φ̂†Φ̂)]. (10)

In the last expression the terms with µ, µ̂ are included so that the parity symmetry (P)is
broken softly, i. e., only through the dimension-two mass terms of Higgs potential.
The scalar Lagrangian for the model is written as

Lsc = (DµΦ)
+(DµΦ) + (D̂µΦ̂)

+(D̂µΦ̂) (11)

where Dµ and D̂µ are the covariant derivatives for the SM and the mirror parts, respectively.
The gauge interactions of quarks and leptons can be obtained from the Lagrangian

Lint = ψ̄iγµDµψ +
¯̂
ψiγµD̂µψ̂ (12)

The VEV’s v and v̂ are related to the masses of the charged gauge bosonsW and Ŵ byMW

= 1
2
gLv and MŴ = 1

2
gRv̂,where gL and gR are the coupling constants of SU(2)L and SU(2)R,

and gL = gR if we demand L-R symmetry.
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4 Generic Majorana neutrino mass matrix

With the fields of fermions introduced in the model, we may write the gauge invariant Yukawa
couplings for the neutral sector1:

hij ¯̂νiL νjR + λij l̄iL Φ̃ νjR + ηij
¯̂
liR

˜̂
Φ ν̂jL

+M̂ij
¯̂νiL (ν̂jL)

c + σij l̄iL (ν̂jL)
c Φ̃

+χij ν̄iR (νjR)
c + πij

¯̂
liR (νjR)

c ˜̂Φ + h.c. (13)

where i, j = 1, 2, 3, Φ̃= iσ2Φ
∗,

˜̂
Φ=iσ2Φ̂

∗, hij , M̂ij , χij have dimensions of mass, and σij , ηij, λij
and πij are dimensionless Yukawa coupling constants. When Φ and Φ̂ acquire VEV’s we get
the neutrino mass terms

hij ¯̂νiL νjR +
v√
2
λij ν̄iL νjR +

v̂√
2
ηij ¯̂νiR ν̂jL

+M̂ij
¯̂νiL (ν̂jL)

c +
v√
2
σij ν̄iL (ν̂jL)

c

+χij ν̄iR (νjR)
c +

v̂√
2
πij ¯̂νiR (νjR)

c + h.c. (14)

which are written in the generic Majorana matrix form

(
ΨνL,Ψc

νL

) (
ML MD

MT
D MR

) (
(Ψc

ν)R
(Ψν)R

)
(15)

where

(Ψν)L,R =

(
νi
ν̂i

)

L,R

, (Ψc
ν)L,R =

(
(νci )
(ν̂ci )

)

L,R

(16)

ML =




0 v√
2
σ

v√
2
σT M̂


 , MR =




χ v̂√
2
π

v̂√
2
πT 0


 , (17)

MD =




v√
2
λ 0

h v̂√
2
η


 , (18)

1To simplify notation we drop the ”0” superscript
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with h, M̂ , χ, σ, η, λ and π unknown matrices of 3 × 3 dimension. By assuming the natural
hierarchy |(ML)ij | ≪ |(MD)ij | ≪ |(MR)ij| for the mass terms, the mass matrix in Eq.(15) can
approximately be diagonalized, yielding

(
Ψ′

νL,Ψ′c
νL

) (
Mν 0
0 MR

) (
(Ψ′c

ν)R
(Ψ′

ν)R

)
, (19)

where, neglecting O (MDM
−1
R ) terms, we may write in good approximation[20] Ψ′

νL,R ≈ ΨνL,R,
and Ψ′ c

νL,R ≈ Ψc
νL,R. The Majorana mass matrix for the left handed neutrinos may be written

in this seesaw approximation as

Mν ≈ML −MD M
−1
R MT

D . (20)

We assume a scenario where the dominant contribution for the active known neutrinos comes
from the ML matrix having the same structure of a Type I seesaw. Then in this scenario the
eigenvalues for the light neutrinos may be obtained by applying again the seesaw approximation,
that is:

M light = −(
v√
2
σ) M̂−1 (

v√
2
σ)T . (21)

Taking advantage of the fact that all σij and M̂ij entries in Eq.(21) are free parameters, we

propose the following parameterizations for M̂ and M light neutrino mass matrices:

M light =
Y 2v2

2 m̂



1 + b b b

b 1 + b+ c b− c

b b− c 1 + b+ c


 , M̂ = m̂ Diag (Y1, Y2, Y3) . (22)

where Y , Y1, Y2, Y3, b, c are dimensionless coupling constants and m̂ represents the mirror
scale. This parameterization for the light neutrinos mass matrix imposes a symmetric mixing
of electron neutrino with muon and tau neutrinos in the first row and column of (M light)ij,
and the 2 × 2 submatrix i, j = 2, 3 generate maximal mixing for muon and tau neutrinos.
This structure for M light makes possible the diagonalization of light neutrinos by the so called
”Tri-bimaximal mixing matrix” [26], i. e.

UT
TB M

light VTB = −UT
TB (

v√
2 σ

) M̂−1(
v√
2 σ

)T UTB = Diag(m1, m2, m3) , (23)

with

UTB =




2√
6

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2




(24)
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and the light neutrino mass eigenvalues

(m1, m2, m3) =
Y 2v2

2 m̂
( 1, 1 + 3b , 1 + 2c ) . (25)

The suppression by the mirror scale m̂ in Eq.(25) provides a natural explanation for the small-
ness of neutrino masses. The allowed range of values for the square neutrino mass differences
reported in PDG [22]:

m2
2 −m2

1 ≈ 7.6× 10−5 eV2 , m2
3 −m2

2 ≈ 2.43× 10−3 eV2 , (26)

with the input for normal hierarchy of the neutrino masses

(m1 , m2 , m3 ) = ( 0.0865 , 0.0870 , .1 ) eV , (27)

fix the parameter values as b = 0.00168 and c = 0.07757. These neutrino masses are consistent
with the bounds mν < 2 eV [22], and set the mass differences

m2
3 −m2

1 ≈ 2.5× 10−3 eV2 . (28)

So, from Eqs.(25, 27)

Y 2 v2

2m̂
≈ 8.65× 10−2 eV . (29)

Therefore, assuming m̂ = mν̂ = 100 GeV and v = 246 GeV we obtain

Y ≈ 5.34× 10−7 (30)

The matrix ML in Eq.(17), may be diagonalized by using a unitary transformation

U † ML U = Diag (m1, m2, m3, m̂1, m̂2, m̂3) , (31)

where the mixing matrix U compatible with our framework is written in good approximation
as

U6×6 ≈




UTB
v√
2
σ M̂−1

−( v√
2
σ M̂−1)T I3×3


 , (32)

The particular numerical solution congruent with the above scenario for the neutrino masses
and mixing is
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v√
2
σ ≈ 93041.9 eV



−1.2001 0.6355 1.2952
0.6355 −1.2702 1.3006
1.2952 1.3006 0.5389


 , (33)

M̂ = 100 GeV Diag ( 3.4918 , 3.2643 , 3.6043 ) , (34)

and

v√
2
σ M̂−1 ≈ 9.3× 10−7




−0.3437 0.1946 0.3593
0.1819 −0.3891 0.3608
0.3709 0.3984 0.1495


 (35)

for light ν - mirror mixing. Since the light-mirror mixing is very small, the mixing matrix for
light neutrinos behaves in good approximation as the UTB, Eq.(24). It is worth to mention here
that in the limit of very small light-mirror charged lepton mixing, (F †

LFL)ij , (E†
LEL)ij ≪ 1,

we may approach UTB as the usual UPMNS lepton mixing matrix for three generations. Then,
we obtain (UPMNS)e2 ≃ 1√

3
, (UPMNS)e3 ≃ 0, and (UPMNS)µ3 ≃ 1√

2
, which give for the solar

and the atmospheric neutrino mixing angles θ12 ≃ 35.20 and θ23 ≃ 450, with θ13 ≃ 0 in good
agreement with current data, although recent evidences [27] show that θ13 may have a value
different from zero.

In earlier papers on the study of neutrinos and left-right symmetry [28] appear similar
representations of the fermions and mass matrices as our in Eq.(18), but these authors obtain
masses for the standard and mirror neutrinos some orders of magnitude different from ours. On
the other hand, the mass generation in the LRMM here considered is achieved with the scalar
fields Φ and Φ̂, Eqs.(3,4), transforming as doublets under SU(2)L and SU(2)R, respectively,
with a mirror scale much lower than 1012-1013 GeV ′s.

5 Radiative decays

In this section we analyze the lepton flavor violation processes µ → eγ, τ → µγ and τ → eγ

arising in the model by the existence of gauge invariant mixing terms between ordinary leptons
and with the mirror counterparts. The lower order contribution to theses decays mediated by
the neutral scalar fields comes from the Feynman diagrams where the photon is radiated from an
internal line. The corresponding amplitude is proportional to the operator u(p2)σ

µνqνǫµu(p1),
where q = p1 − p2 and ǫµ is the photon polarization [21].

In the limit me ≪ mµ ≪ mτ the rate decay is given by

Γ(li → lj + γ) =
α

512π4
(GFm

2
li
)2
m5

li

M4
H

|(lnM
2
H

m2
li

− 4

3
)ǫij −

∑

k

xνkVL,jkV
+
R,ki|2 (36)

where xνk ≡ m2
ν
k

M2

W

, ǫij = |A+
LAR|ij represents the flavor-changing couplings, and the second term

is the very small contribution from the light neutrino propagating inside the loop.
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In the limit α ≪ 1 and MH ≪MĤ the branching ratios are respectively

B1(µ→ e + γ) =
3αm4

µ

8M4
H

|(lnM
2
H

m2
µ

− 4

3
)ǫeµ −

∑

k

xνkVL,ekV
+
R,kµ|2 (37)

B2(τ → µ+ γ) =
3αm4

τ

8M4
H

|(lnM
2
H

m2
τ

− 4

3
)ǫµτ −

∑

k

xνkVL,µkV
+
R,kτ |2 (38)

and

B3(τ → e+ γ) =
3αm4

τ

8M4
H

|(lnM
2
H

m2
τ

− 4

3
)ǫeτ −

∑

k

xνkVL,ekV
+
R,kτ |2 (39)

By using the constraints ǫij < 1 , i 6= j for the parameters in Eqs.(37,39), required by
unitarity of V , see Eqs.(2,3), one gets for the above branching ratios:

B1 < 2.2× 10−13 , B2 < 5× 10−9 and B3 < 5× 10−9 (40)

which is congruent with the experimental bounds [22] B(µ → e + γ) < 1.2 × 10−11, B(τ →
µ+ γ) < 4.4× 10−8 and B(τ → e + γ) < 3.3× 10−8 PDG [22].

6 Heavy Neutrino signals

Possible new neutrinos can be detected in various ways in colliders. If these neutrinos are heavy
they will be unstable and may be detected directly in their decay products.

Next generation of large colliders will probe Nature up to TeV scales with high precision,
probably discovering new heavy particles. Thus, it will be a window to any new physics near
the electroweak scale which couples to the SM. Such colliders can be used to produce new
heavy neutrinos at an observable level to improve present limits on their masses and mixings
[29]. These fermions with new interactions, like in the left-right models [30], can be produced
by gauge couplings suppressed by small mixing angles. For the analysis of the heavy neutrinos
signals it is necessary to know their decay modes, which are different in the Dirac and Majorana
cases.

Heavy Majorana neutrino singlets can be produced in the process [31]

qq̄′ → W ∗ → l±H (41)

with l = e, µ, τ , which cross sections depend onMN and the small mixing VlN . Heavy Majorana
neutrino decays in the channels N → W±l∓, N → Zνl and N → Hνl. The partial widths for
the N decays are

Γ(N →W+l−) = Γ(N → W−l+) =
e2

64πs2θw
|UlN |2

m3
N

M2
W

(1− M2
W

m2
N

)(1 +
M2

W

m2
N

− 2
M4

W

m4
N

) (42)

Γ(N → Zνl) =
e2

64πs2θwc
2
θw

|UlN |2
m3

N

M2
Z

(1− M2
Z

m2
N

)(1 +
M2

Z

m2
N

− 2
M4

Z

m4
N

) (43)
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mN(GeV) BW± BZ BH

100 0.34 0.1 0.2
390 0.3 0.306 0.09
780 0.3 0.297 0.107

≫ MW ,MZ ,MH 0.293 0.3 0.111

Table 1: Branching ratios for different values of mN

Γ(N → Hνl) =
e2

64πs2θw
|UlN |2

m3
N

M2
W

(1− M2
H

m2
N

)2 (44)

where UlN is the light-mirror neutrino mixing v√
2
σ M̂−1, Eq.(35). From Eqs. (32,35) the

contributions come from terms of the order |VlN | . 10−7. From these expressions we can
conclude that the total branching for each of the four channels is independent of the heavy
neutrino mixing, determined only by mN and the gauge and Higgs boson masses.

Heavy neutrino signals are limited by the small mixing of the heavy neutrino required by
precision constraints [33] and masses of order 100 GeV are accessible at LHC. For this mass
range, SM backgrounds are larger and, since production cross sections are relatively small,
heavy neutrino singlets are rather difficult to observe.
The branching ratios for different values of mN reads as Table 1 (MH = 130 GeV);
and in all these cases

∑
Bi ≈ 1. Here

BW± = Br(N → W±l∓) , BZ = Br(N → Zνl) , BH = Br(N → Hνl) (45)

Table 1 shows that these decays are not so sensitive to the heavy neutrino mass, such that for
heavy neutrino signals it is not necessary to have center of mass energies much larger than a
hundred GeV .

Among the possible final states given by Eqs.(42-44), only charged current decays give final
states which may in principle be detected. For mN < MW these two body decays are not
possible and N decays into three fermions, mediated by off-shell bosons.

Other simple production processes like

qq̄′ → Z∗ → νN (46)

gg → H∗ → νN (47)

give l± and l+l− final states which are unobservable due to the huge backgrounds. For the pair
production

qq̄ → Z∗ → NN (48)

the cross section is suppressed by |VlN |4, phase space and the Z propagator, and is thus negli-
gible.

Three signals are produced in the two charged current decay channels of the heavy neutrino

l+N → l+l−W+ → l+l−l+ν̄ (49)
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l+N → l+l+W− → l+l+l−ν (50)

and small additional contributions from τ leptonic decays.
Heavy neutrino signals in the final state l±l± are given in the lepton number violating

neutrino decay and subsequent hadronic W decay, or leptonic decay when the lepton is missed.
LHC present energies are enough to discover heavy Majorana neutrino with very small Ve N
[32].

7 Conclusions

Here the LRMM with gauge group SU(3)C⊗SU(2)L⊗SU(2)R⊗U(1)Y ′ is applied in order to find
closer values for neutrino masses fitted to experimental data. We have worked with Majorana
neutrinos, which mass matrix was written in terms of blocks that stand for standard and mirror
mass terms. The large number of parameters involved induces to make some simplifications on
the structure of the matrix. A double seesaw approach method is used and diagonalization is
performed, and with the help of neutrino data we accommodate neutrino masses with normal
hierarchy of the order of (m1, m2, m3) ≈ (0.0865, 0.0870, 0.1) eV. So, we have found a consistent
smallness hierarchy for the neutrino masses. With the LRMM we have also analyzed the
radiative decays µ → e+ γ, τ → e+ γ and τ → µ+ γ for a Higgs mass of 130 GeV , obtaining
bounds for the branching ratios congruent with the experimental ones. Decay rates for heavy
neutrinos N were calculated for different channels, and we found that their BR are nearly equal
forMN ≫MW ,MZ ,MH and also that they do not change too much for other values ofMN . To
find heavy Majorana neutrinos one has only a few parameter dependence (for neutrino singlets,
the heavy neutrino mass and its mixing angle)and also the mass scale could be accessible at
the LHC.
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Abstract

In this contribution, a design of a synthetic calibration genetic circuit to char-
acterize the relative strength of different sensing promoters is proposed and
its specifications and performance are analyzed via an effective mathematical
model. Our calibrator device possesses certain novel and useful features like
modularity (and thus the possibility of being used in many different biolog-
ical contexts), simplicity, being based on a single cell, high sensitivity and
fast response. To uncover the critical model parameters and the correspond-
ing parameter domain at which the calibrator performance will be optimal,
a sensitivity analysis of the model parameters was carried out over a given
range of sensing protein concentrations (acting as input). Our analysis sug-
gests that the half saturation constants for repression, sensing and difference
in binding cooperativity (Hill coefficients) for repression are the key to the
performance of the proposed device. They furthermore are determinant for
the sensing speed of the device, showing that it is possible to produce de-
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tectable differences in the repression protein concentrations and in turn in
the corresponding fluorescence in less than two hours. This analysis paves
the way for the design, experimental construction and validation of a new
family of functional genetic circuits for the purpose of calibrating promoters.

Keywords: synthetic genetic circuits, synthetic biology, calibration, gene
promoter, effective modeling of gene circuits, parameter analysis

1. Introduction

One of the fundamental principles of synthetic biology is the construction
of biological standardized parts and devices which are interchangeables. A
proper characterization of these parts and devices appears as a key issue in
order to make them reusable in a predictive way. In the recent past scien-
tists have witnessed several initiatives towards the design and fabrication of
synthetic biological components and systems as a promising way to explore,
understand and obtain beneficial applications from nature. For instance, in
the post genomic era one of the most fascinating challenges scientists are
facing is to understand how the phenotypic behaviour of living cells arise out
of the properties of their complex network of signalling proteins. While the
interacting biomolecules perform many essential functions in these systems,
the underlying design principles behind the functioning of such intracellu-
lar networks still remain poorly understood [3, 13]. Several initiatives have
been reported in this line of thought to uncover some key working principles
of such genetic regulatory networks via quantitative analysis of some rel-
atively simple, experimentally well characterized, artificial genetic circuits.
It has been shown that custom made gene-regulatory circuits with any de-
sired property can be constructed from simple regulatory elements [4]. These
properties include bistability, multistability or oscillatiory behaviour of ge-
netic circuits in various microorganisms such as bacteriophage switch [5] or
the cyanobacterium circadian oscillator [6]. As one example, the genetic tog-
gle switch, a synthetic, bi-stable gene-regulatory network in Escherichia coli,
was shown to provide a simple theory that uncovers the conditions necessary
for bi-stability [11, 12]. Further, artificial positive feedback loops (PFLs)
have been used as genetic amplifiers in order to enhance the responses of
weak promoters and in the creation of eukaryotic gene switches [14]. Sayut
et al. demonstrated the construction and directed evolution of two PFLs
based on the LuxR transcriptional activator and its cognate promoter, Pluxl
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[8]. These circuits may have application in metabolic engineering or gene
therapy that requires inducible gene expressions [9, 10].

The desired performance of these synthetic networks and in turn the
resultant phenotype is strongly dependent on the expression level of the cor-
responding genes, which is further controlled by several factors such as pro-
moter strength, cis- and trans-acting factors, cell growth stage, the expression
level of various RNA polymerase-associated factors and other gene-level reg-
ulation characteristics [11, 13]. Thus, one important ingredient to elucidate
gene function and genetic control on phenotype would be to have access to
well-characterized promoter libraries. These promoter libraries would be in
turn useful for the design and construction of novel biological systems. There
have been several initiatives to control gene expression through the creation
of promoter libraries [2, 7]. Alper et al., [1] have reported a methodology to
develop a completely characterized, homogeneous, broad-range, functional
promoter library with the demonstration of its applicability to analysis of
genetic control.

Since Miller published [16] a proposal for a measurement standard for
β-galactosidase assays, yet much work has been done with no conclusive
standard being established [17, 18, 19]. The main goal in calibration is mea-
suring a query value up to an established standard. A good device should
be unique, reliable and easy to use; additionally it should circumvent, to
all possible extent, any noise that could alter the measurement. Recently a
methodology [20] has been reported to characterize the activity of promoters
by using two different cell strains. In the present study we propose the use
of a synthetic gene regulatory network as a framework to characterize dif-
ferent promoter specifications by using a single-cell strategy. In this context
characterization stands for evaluating the parameters of a query promoter as
compared to a standard promoter acting as a scale. The proposed device,
the promoter calibrator, works on the principle of comparing a specific input
signal which will be sensed by promoters of different sensing strengths and,
as an output, produces fluorescence of specific colours which allows quanti-
fying the relative strength of the promoters. Analyses were carried out in
order to find out relevant model parameters and the corresponding range of
model parameter values which are compatible with the performance of this
calibrating biological design over a spectrum of given input .

This contribution is organized as follows: in the first part, “Design”, the
structure and working principle are explained and the mathematical model
resulting from the construction is established. In section 3, “Numerical Anal-
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Figure 1: Design of the proposed promoter calibrator. It is composed of two promoters
(with two parts each: a sensing and a repressed domain) one of the sensing promoters
is the device promoter and the other is the query promoter. The repressed domains are
controled by the two repressors proteins (x and y). Each promoter is inhibited by the
repressor which is transcribed from the opposing promoter. Fluorescence proteins levels
will be proportional to repressor protein levels, which, in turn, will be promoted by the
sensing promoters.

ysis of the System”, we analyze the dynamics of the model equations in regard
to its stability, functional parameter regions and sensitivity or robustness vs.
the change in certain key parameter values. In the following section, a proof
of concept design is proposed in order to choose the right parameters to actu-
ally perform the experimental validation of our concepts and have a system
that gives a clear and stable signal that can be interpreted. Finally, the
conclusions resulting from our paper are exposed.

2. Design

2.1. Biological principles

Our promoter calibrator is composed of two promoters (each with two
parts: a sensing and a repressed domain), two repressors proteins and two
fluorescent protein outputs (see Fig. 1). Each promoter is inhibited by
the repressor, transcription of which is promoted by the opposing promoter.
Fluorescence protein levels will be directly related to repressor protein lev-
els, activated in turn by their sensing promoters. Hence, different sensing
strengths will cause a difference in the expression of the fluorescence pro-
teins, detectable by means of single cell fluorescence as changes in the color
patterns of the individual cell or cell sample.

In our scheme, one of the sensing promoters acts as the device promoter
to which the strength of a given query promoter is quantitatively compared.
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The main use of this device is to characterize different promoter specifications
(sensing affinities and cooperativities) compared to some standard. One of
the main usefulness of this design lies in the potential modularity of the sys-
tem: by changing the sensing part of the promoters, other sensing promoters
could be calibrated; this change can be carried out by a simple, straight-
forward cloning step. Modularity also boasts the potential of this device as
it can be implemented in a potentially unlimited set of systems.

2.2. Mathematical model

The behaviour of the proposed promoter calibrator can be understood
via an effective mathematical model. The model is considered to be effective
as transcription and translation have been modeled as a lumped reaction.
The separation of transcription and translation otherwise involves a response
delay. We seek to classify dynamic behaviors depending upon the change in
model parameters and determine which experimental parameters should be
fine-tuned in order to obtain a satisfactory performance of our device.

The time dependent changes in repressor and sensing protein (input) con-
centrations is shown in equations (1-3). Subsequent to the biological design,
reporter protein concentrations are directly related to repressor protein con-
centrations.

dx

dt
= α1

(

ps
k1

)n1

1 +
(

ps
k1

)n1

1

1 +
(

y
ky

)ny
− βxx+ γx, (1)

dy

dt
= α2

(

ps
k2

)n2

1 +
(

ps
k2

)n2

1

1 +
(

x
kx

)nx
− βyy + γy, (2)

dps
dt

= −βpsps. (3)

The device and query promoters activate the production of repressor pro-
tein x and y, respectively, and their concentration is related directly to the
concentration of fluorescence proteins. Thus these variables will be treated as
equivalent from the modelling point of view. Parameters α1 and α2 represent
the effective rate of synthesis of repressor proteins x and y, respectively; α is
a lumped parameter that takes into account the net effect of various activ-
ities such as RNA polymerase binding, RNA elongation and termination of
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transcript, ribosome binding and polypeptide elongation and will be modi-
fied by repression and sensing effects. The βx, βy and βps are the degradation
constants of repressor protein x, repressor protein y and sensing protein ps,
respectively. The sensing protein concentration ps will depend on the sensed
input, will be easy to change in a given experiment and is used as the main
input variable in our calibrator experiments. It is important to note that a
slow rate of degradation is assumed for the sensing protein, implying a nearly
constant level over a reasonable experimental time interval. Basal level rates
of synthesis of proteins x and y are denoted by γx and γy, respectively.

Repressor and sensing responses are assumed to follow Hill equation dy-
namics: promoter-binding monomers form multimers by positive allosterism
and attach to its cognate promoter with saturating behaviour. Binding coop-
erativities are described by Hill coefficients nx and ny for repressor domains
corresponding to x and y respectively, and n1 and n2 for sensing domains
corresponding to device and query promoter respectively. The extent of the
saturation rate is described by half saturation constants or Michaelis con-
stants, denoted by parameter kx and ky for repressor domains corresponding
to x and y respectively and k1 and k2 for sensing domains corresponding to
device and query promoter respectively. The total number of promoter sites
is assumed to be conserved and the total concentration of both promoters is
chosen to be identical.

In our construction, the crossrepressing part will be kept unchanged while
different sensing domains may be attached to it. The aim is to establish
a protocol to accurately quantify differences between the sensing promoter
parameters (α1,2, k1,2). Crossrepression parameters (kx,y, βx,y and nx,y) are
structural parameters that must be chosen in such a way that the fluorescence
response of the system gives us stable, sensitive and robust indication about
the quantitative relations between the sensing promoter parameters. The
dynamic analysis of the system will help us to take the right decisions on
which are the most appropriate values for these structural parameters. The
next sections are devoted to the dynamical analysis in order to determine the
sensitivity and robustness of the system for different ranges of the structural
parameters.

The commercial software package Mathematica (Wolfram), was used for
model development and simulation. In the numerical calculations we have
used the following dimensionless variables:
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X =
x

kx
(4)

Y =
y

ky
(5)

τ = tβx (6)

ᾱ1,2 =
α1,2

βxkx,y
(7)

γ̄x,y =
γx,y
βxkx,y

(8)

therefore, the units in the plots of the figures in this work are given in units
of kx or ky for the x and y repressor proteins concentrations and time in units
of 1

βx

. For the adimensional variables, Equations (1-2) take the form:

dX

dτ
= ᾱ1

(

ps
k1

)n1

1 +
(

ps
k1

)n1

1

1 + Y ny

−X + γ̄x, (9)

dY

dτ
= ᾱ2

(

ps
k2

)n2

1 +
(

ps
k2

)n2

1

1 +Xnx

− RY + γ̄y, (10)

where R is the ratio βy

βx

.

3. Numerical analysis of the system

The simplifying assumption of considering sensing proteins for which the
degradation constant βps is much smaller than the rest (βps ≪ βx, βy) was
made in order to classify the possible dynamic scenarios of our model. Given
this assumption, in a first order of approximation we have,

dps
dt

= −βpsps ≈ 0. (11)

In such approach, the concentration of sensing protein ps is constant
during the evolution time of the rest of the internal variables of the system.
This assumption leads to a system of two autonomous coupled non-linear
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ordinary differential equations dependent on the variables x and y, eqs. (9-
10), in which ps is fixed although it can be easily changed within a given
experiment. This is not true for the rest of parameters which are more
difficult to modify in a given experiment. This approximation transforms
the system into:

dX

dτ
= ᾱ′

1

1

1 + Y ny

−X + γ̄x, (12)

dY

dτ
= ᾱ′

2

1

1 +Xnx

−RY + γ̄y. (13)

where the new parameters ᾱ′

i (effective transcription factors) are given by
the following expression:

ᾱ′ = α

(

ps
k

)n

1 +
(

ps
k

)n . (14)

In the limit in which the constants kx,y, βx,y, γx,y are equal, this equations
describe the biological equivalent of an electronic comparator, that is, a device
which compares two voltages or currents and switches its output to the larger
signal. In the biological equivalent, our comparator would select for the larger
of the two ᾱ’s, as exemplified in Fig. 2, which represent the evolution of the
system for the cases in which the query promoter has a higher and lower
effective transcription factor compared to the device promoter, respectively.

In any case, our aim is to construct a device, termed a calibrator, which
not only selects the stronger affinity but also allows quantifying the rela-
tive strength of both promoters. Although the comparator is a fundamental
part of this device, a deeper understanding of the dynamics of the system is
required for its application as a calibrator device in real biological environ-
ments.

3.1. Dynamic analysis of the calibrator

The dynamical analysis of the system given by Eqs. (12-13) requires the
determination of its steady state solutions and their linear stability. The
steady states (xss, yss) are given by the intersection of the null clines:

F1(X, Y ) = ᾱ′

1

1

1 + Y ny

−X + γ̄x = 0, (15)
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Figure 2: Typical response of the proposed promoter calibrator. In the upper figure the
concentration of the x protein (solid line) in the steady state is higher while in the figure
below the concentration of the y protein (dashed line) is higher.

and

F2(X, Y ) = ᾱ′

2

1

1 +Xnx

− RY + γ̄y = 0. (16)

The analytical solution of Eqs. (15-16) cannot be obtained, hence nu-
merical methods must be used. The linear stability of the steady states is
determined by the sign of the eigenvalues of the Jacobian matrix,

M =

(

∂F1

∂X
∂F1

∂Y
∂F2

∂X
∂F2

∂Y

)

X=Xss,Y=Yss

(17)

which are given by

λ± = −1 +R

2
± 1

2

√

(R− 1)2 + 4∆, (18)

∆ =
nxny(Xss − γ̄x)(ᾱ

′

1 + γ̄x −Xss)(YssR− γ̄y)(ᾱ
′

2 + γ̄y − YssR)

ᾱ′

1ᾱ
′

2XssYss
.(19)
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From the analysis of the previous equations (15-16), we deduce that, for
the positive steady state solutions (Xss > 0 and Yss > 0), the following
mathematical constraints hold: ᾱ′

1 > Xss − γ̄x > 0 and ᾱ′

2 > YssR − γ̄y > 0,
respectively. Thus, taking into account (18-19), we observe that ∆ > 0 and
λ− is always negative. However, λ+ can be either negative, for ∆ > R,
or positive, for ∆ < R, resulting in either stable nodes (sinks) or unstable
saddles, respectively. The condition ∆ = R is satisfied at certain critical
values of the parameters at which precisely one of the steady state solutions
of the system changes its stability.

In order to highlight the specific aspects of the calibrator dynamics, we
will in the following sections consider a number of special cases. Specifically
we will examine the (fully) symmetrical calibrator, ᾱ′

1 = ᾱ′

2 = ᾱ′, nx = ny =
n, kx = ky = k, βx = βy ⇒ R = 1 and γ̄x = γ̄y = γ̄, and the partially
symmetrical calibrator, with the same specifications except that ᾱ′

1 and ᾱ′

2

may differ. At the end of the section some general considerations about
dynamics of the system in the most general case will made.

3.2. The fully symmetrical calibrator (ᾱ′

1 = ᾱ′

2 = ᾱ′)

From the analysis of Eqs. (15-16) it is shown that there is always a fixed
point with Yss = Xss and that there exists a minimum value of Xm such that
for parameters resulting in Xss > Xm, three steady states exist, otherwise
only one.

Using ᾱ′ as free parameter and taking fixed values for the rest, i.e., n, R
and γ̄, the condition ∆ = R = 1, together with Eq. (15), allows to obtain the
critical values ᾱ′

m andXm that characterize the appearance of the bifurcation,
namely:

1 =
n2(γ̄ −Xm)

2(γ̄ −Xm + ᾱ′

m)
2

X2
mᾱ

′2
m

(20)

whose values can be obtained by numerical methods. For example, for n = 2,
k = 80, β = 0.069 and γ̄ = 0.1, yields ᾱ′

m = 11.24 and xm = 81.46 or, in
the dimensionless variables: X = 1.018 and ᾱ′ = 2.036. Figure 3, shows the
bifurcation diagram for Xss as function of ᾱ showing that for ᾱ > ᾱm there
are three steady states.

This analysis shows that the (fully) symmetrical calibrator possesses three
fixed points for ᾱ′

1 > ᾱ′

m: a saddle ( ~xM) with Xss = Yss, and two sinks, one
with Xss > Yss and another one with Xss < Yss, referred to as ~xR and ~xL,
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Figure 3: Bifurcation diagram for Xss.

respectively. This behaviour is typical of the occurrence of a (supercritical)
pitchfork bifurcation and bistable behaviour.

Regarding the possible trajectories of the dynamic variables, Figure 4
illustrates the phase plane of Eqs. (12-13), where the steady states are located
at the intersection of the null clines eqs.(15-16) represented by dashed lines.
The solid lines are the stable (W S) and unstable (WU) manifolds of the
saddle fixed point ~xM . The stable manifold W S divides the phase plane
in two regions, the first and second octants corresponding to the attraction
basins of the sinks ~xR and ~xL, respectively. Different possible trajectories in
the phase plane are depicted for a given number of initial conditions, where
the arrows indicate the flow direction.

In a calibrator experiment the initial value of the repressor protein con-
centrations x and y would be zero and hence the phase plane trajectories
would depart from the origin in Figure 4. For values of ᾱ′ larger than ᾱ′

m,
the system becomes unpredictable, as small perturbations in the trajectories
would potentially push the system into any of the attraction basins of the
sinks ~xR and ~xL.

3.3. The partially symmetrical calibrator

We consider now the more general scenario in which ᾱ′

1 and ᾱ′

2 may differ
being the rest of variables equal (nx = ny = n, kx = ky = k, βx = βy = β
and γ̄x = γ̄y = γ̄). The condition ∆ = R which characterizes the occurrence
of the pitchfork bifurcations now reads:

11



Figure 4: Phase plane, showing the unstable equilibrium point (the point where the two
dashed lines touch in the center) and the two steady state solutions (points where the
dashed lines touch close to each axis). The arrows show the path the system would do
starting from any point in the phase space.

1 =
n2(γ̄ −Xss)(γ̄ − Yss)(γ̄ −Xss + ᾱ′

1)(γ̄ − Yss + ᾱ′

2)

XssYssᾱ′
xᾱ

′
y

(21)

that shall be solved together with Eqs. (15-16) for the fixed points of the
system.

Fig. 5 shows the result of the numerical simulation of the resulting system
of equations (with initial conditions X = Y = 0) by slightly changing the
value of ᾱ′

2 with respect to ᾱ′

1. The figure shows the results of different
simulations for ᾱ′

1 =3.0, n = 3 and ᾱ′

2 = ǫᾱ′

1 with ǫ =0.5, 0.6, 0.7, ..., 1.0, ...,
1.5. The results for ǫ < 1 are the points in the right down corner of the plot.
One can see that these points positions are very insensitive to the value of
ᾱ′

2. There is only one point in the center of the plot, which corresponds to
ᾱ′

1 = ᾱ′

2, it is the unstable saddle, and small perturbations in the system will
drive the system away from this solution to either of the other two steady
state solutions. Once ǫ > 1, the system goes to the solutions where Yss > Xss

which are represented by the points in the upper left corner. For these points
the maximum value of ᾱ′ is growing and one can observe that the solution

12
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Figure 5: Results for the simulation of the partially symmetric calibrator. On the right,
close to the x-axis (ᾱ′

2
< ᾱ′

1
for these points), there are many points at the same posi-

tion, showing that, for the parameter region where a bifurcation happens, the solution is
insensitive to the value of the weakest between the two ᾱ′s.

is sensitive to this value. So the steady state solution into which the system
falls is only sensitive to the bigger value between ᾱ′

1 and ᾱ′

2 and changes in
the smaller among these two parameters has no sensible effect in the final
solution.

For the case in which the calibrator falls within the region of bistability,
if ᾱ′

2 < ᾱ′

1 the orbits departing from the origin of Fig. 5 would fall within the
attraction basin of solution ~xR. It is nevertheless observed that ~xR is quite
insensitive to the actual ᾱ′

2/ᾱ
′

1 ratio. In consequence, the system would show
a stable but rather insensitive response to different query promoters. On the
other hand, if ᾱ′

1 < ᾱ′

2, the orbits departing from the origin would fall within
the attraction basin of solution ~xL, which changes appreciably as a function
of the ᾱ′

2/ᾱ
′

1 ratio. Thus the system would not only be stable, but also rather
sensitive to changes in the effective query promoter affinity. It should be kept
in mind that the sensing protein concentration, ps, can be used to modify
ᾱ′

1, ᾱ
′

2, which changes from unity to ᾱ1,2 as ps changes from zero to infinity
and therefore the ratio ᾱ′

2/ᾱ
′

1 changes with ps.
We can also define the fluorescence ratio as the ratio of X/Y if X < Y

and Y/X if Y > X . This will be the intensity ratio of the two fluorescences
once the system reaches stability. In Fig. 6 we show a plot of this ratio for
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different values of ᾱ′

2/ᾱ
′

1. This ratio grows until it reaches its maximum when
ᾱ′

2 = ᾱ′

1 and then it decreases. Another observation about this parameter
is that the bigger ᾱ′

1 is, the less sensible to the ratio ᾱ′

2/ᾱ
′

1 the fluorescence
ratio will be.

3.4. The calibrator dynamics in the general case

The theorem of Andronov and Pontryagin [21] states that Eqs. (12-13)
in the symmetrical case are structurally stable, since every fixed point is hy-
perbolic (its eigenvalues have a non-null real part) and there are no orbits
connecting two saddles (since there is only one). Structural stability im-
plies that the phase plane topology is preserved under small perturbations
of the parameters. Hence, the phase plane of Eqs. (12-13) in the case that
ᾱ′

x ≈ ᾱ′

y, nx ≈ ny, kx ≈ ky, βx ≈ βy and γ̄x ≈ γ̄y, is topologically equiv-
alent to that shown in Fig. 4, meaning that there is a continuous function
(homeomorphism) between both phase planes.

Changing the ratio of other structural parameters of the calibrator has
similar results as in the partially symmetrical case. For a given range close
to the value 1 for the ratio of each parameter ratio (nx/y, βx/y, ...) the
bifurcation appears while far from the value 1 the bifurcation cannot be
seen. The range is usually bigger, the bigger the values for ᾱ′

1,2 are. In Fig. 7
we show, as an example, the range where the bifurcation appears for different
values of βx/βy.

If R < 1 the orbits departing from the origin (X = Y = 0) would fall
within the attraction basin of solution ~xL, on the other hand if R > 1 the
orbits departing from the origin would fall within the attraction basin of
solution ~xR.

3.5. Calibrator performance analysis: robustness and response time

In order to use this system to measure the relative strength between two
promoters, one should keep in mind two factors. The first important factor
is the right choice for the parameters of the repressor proteins and device
promoter in order to have a robust system, that gives a stable response that
can be easily interpreted. Second, is the time response of the device, that
means, how long does the system needs to reach its steady state solution.

When the equations are written in the dimensionless form, the parameters
kx and ky do not appear explicitly, see eqs. (9-10). These parameters appear
implicit in the definition of the variables X and Y and in the γ̄ parameters
(which have small influence in the dynamics of the system). By choosing
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Figure 6: Upper plot: Fluorescence ratio for different values of ᾱ′

y
/ᾱ′

x
(ᾱ′

x
=2.5). The blue

points are solutions where X > Y and in the red points Y > X . Lower plot: Fluorescence
ratio for different values of ᾱ′

y
/ᾱ′

x
and for different values of ᾱ′

x
(Solid line:ᾱ′

x
=2, dashed

line:ᾱ′

x
=3, dotted line:ᾱ′

x
=4).
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kx = ky the results will be easier to interpret since the fluorescence is directly
related to the concentrations of the proteins x and y and, by setting kx =
ky, the fluorescence intensity ratio (X/Y and Y/X) and the fluorescence
intensity difference (|X−Y |) will be directly proportional to these parameter
calculated with the real protein concentrations.

An experiment made with the calibrator would consist of cloning a plas-
mid with the calibrator genetic circuit assembled with the device promoter
(whose parameters one have to choose) among known ones and with a query
promoter whose parameters are unknown. The plasmid should be inserted
in cells in solutions of the signaling protein at different concentrations ps.
Each promoter is modeled through two parameters, ᾱ1/2 and k1/2, 1/2 stand
for device/query promoter. While at low ps concentrations both promoters
are weak and give a weak fluorescence response, at high ps concentrations,
both promoters are saturated and their strength is maximal. From the flu-
orescence intensities at these high concentrations of the signaling protein it
is possible to establish the relative strength of the two promoters ᾱ2/ᾱ1. In
figures 8 and 9 we show plots of the fluorescence difference defined as |X−Y |
and the fluorescence ratio X/Y for three different values of ᾱ1 and varying
ᾱ2 at high signaling protein concentrations (the effective strength of both
promoters is maximum).
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Figure 8: (Color online) The fluorescence difference for different values of ᾱ1 as a function
of ᾱ2. Note that for values of ᾱ2 sufficiently higher than ᾱ1 the fluorescence difference
increases linearly with the value of ᾱ2.

The first thing to note from figures 8 and 9 is that, if the query pro-
moter is stronger than the device one, the device fluorescence (X) will be
strongly suppressed, and the fluorescence intensity coming from the query
promoter is proportional to its strength (the response of the system is lin-
ear). That means, choosing a weak device promoter, one can establish the
relative strength of other promoters by a simple proportionality law given by
the linear response plotted in figure 8.

At each different ps concentration, the effective strength of the device and
query promoters is different, see eq. (14). The parameter that distinguishes
two promoters, with respect to the ps concentration, is their Michaelis con-
stants, k1,2. The parameters k1,2 mark the rhythm at which the effective
strength of each promoter grows. If a promoter has a small value of k, at low
ps concentrations of the signaling protein, the promoter is already acting at
full strength, while for high values of k the promoter saturates only at high
values of ps. We have already established to choose a small value for the
device promoter ᾱ1, so we expect the query promoters to have ᾱ2 > ᾱ1. If
k2 < k1, the effective strength of the query promoter is always bigger than
the relative strength of the device one, and in the experiment one observes
that the luminosity associated with the query promoter is stronger for any
value of the signaling protein concentration ps. On the other hand, if one
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Figure 9: (Color online) Upper plot: the fluorescence ratio X/Y as a function of ᾱ2/ᾱ1

for different values of ᾱ1. One can clearly see that for similar values of ᾱ1 and ᾱ2, when
the bifurcation occurs, the system goes to a state where the repressor protein of the
stronger promoter completely dominates the system. Lower plot: Detail of the region
where ᾱ2 > ᾱ1.
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chooses a small value for k1, already at low ps concentrations the strength of
the device promoter saturates, and if k1 is small enough it saturates before
the effective strength of the query promoter reaches a value bigger than ᾱ1.
In this situation one would observe at low concentrations of ps the lumi-
nosity of the device promoter stronger than the one coming from the query
promoter. Then, at some critical value of ps = psc both strength are equal
and for ps > psc the stronger fluorescence is the one from the query promoter.
For n1 = n2, the value of k2 given in units of k1 as a function of psc (also in
units of k1) is given by:

k2 = n

√

pnsc

(

ᾱ2

ᾱ1

− 1

)

− ᾱ2

ᾱ1

, (22)

psc = n

√

(

kn
2 − ᾱ2

ᾱ1

)(

ᾱ1

ᾱ2 − ᾱ1

)

. (23)

In figure 10 we show a few examples of results one might expect for
different values of k2.

So, the construction of the calibrator device, as we present it, would be
the following: first one chooses a very weak promoter which has a small
Michaelis constant to act as the device promoter in the calibrator. Second
step is to define a standard, to choose a known promoter, clone the calibrator
device with it as query promoter and perform a measurement of the fluores-
cence intensity of this standard promoter at high ps concentrations. This
fluorescence intensity is the standard one, to which we can compare other
promoters. Now performing the experiment with another promoter acting
as query promoter one obtains another value for the luminosity that we can
compare with the standard one. The higher or lower this luminosity is with
respect to the standard, the stronger or weaker the promoter is compared
with the standard, so one can establish the value of α2. Knowing α2 one can
perform the same measurement for different ps concentrations in order to
establish the critical value of ps where the query fluorescence becomes higher
than the device one. Knowing the value of psc it is possible to establish the
value of k2 by means of eq. 22 (assuming both promoters have the same n).

Now that we have established the ideal parameters for the device promoter
(weak strength and small Michaelis constant) and set kx = ky and βx = βy

the last important factor is the time response of the system.
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In figure 11 we show plots for the tf , the time the systems needs to
reach its steady state1 for different values of ᾱ1. One observes that the time
response of the system has a peak with the maximum around 30β−1

x when
the effective strength of both promoters is equal and then it goes to a rather
stable value close to 7β−1

x . For a realistic value of βx like 0.069 min−1 the peak
value for tf is 7 hours, while for most of the measurements (the calibrator at
different ps concentrations) this time should be around two hours.

4. Conclusions

In the present study we have proposed a biological device that works as a
promoter calibrator in which the strength of a collection of query promoters
can be measured against the strength of a device promoter. Some of the key
features of the proposed design are its single cell character, high modular-
ity and handy construction: a unique molecular cloning permits the change
of the promoter ready to be calibrated. The designed performance of the
proposed biological device has been demonstrated by means of an effective
mathematical model. The sensitivity analysis of the model shows that there
is a sensible relation between the relative promoter strengths and the final
steady fluorescences measured by the system.

Furthermore, a response time analysis shows that the device can produce
a large difference in the repression protein concentrations and in turn in the
corresponding fluorescence in approximately two hours.

Finally our promoter calibrator principle may lead to an improvement in
the modeling and characterizations of systems in Synthetic Biology, which
frequently rely on arbitrarily characterized, or even non-characterized, pro-
moters.
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the ᾱ′s that the system presents a bifurcation, the response time can be large because the
system spend time in its non-equilibrium solution.

24



New Approach for Phylogenetic Tree Recovery

Based on Genome-Scale Metabolic Networks
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ABSTRACT

A wide range of applications and research has been done with genome-scale metabolic
models. In this work, we describe an innovative methodology for comparing metabolic
networks constructed from genome-scale metabolic models and how to apply this com-
parison in order to infer evolutionary distances between different organisms. Our meth-
odology allows a quantification of the metabolic differences between different species from a
broad range of families and even kingdoms. This quantification is then applied in order to
reconstruct phylogenetic trees for sets of various organisms.

Key words: connectivity, genome-scale metabolic models, networks, phylogeny.

1. INTRODUCTION

Metabolic models at the genome scale are one of the prerequisites for obtaining insight into the

operation and regulation of metabolism as a whole (Barrett et al., 2006; Morange, 2009; Patil et al.,

2004; Stephanopoulos et al., 1998). Uses of metabolic models embrace all aspects of biotechnology, from food

(Nielsen, 2001) to pharmaceutical (Boghigian et al., 2010) and biofuels (Montagud et al., 2010, 2011a).

Genome-scale metabolic network reconstruction is, in essence, a systematic assembly and organization of all

reactions that build up the metabolism of a given organism. It usually starts with genome sequences to

identify reactions and network topology. This methodology also offers an opportunity to systematically

analyze omics datasets in the context of cellular metabolic phenotype.

Reconstructions have now been built for a wide variety of organisms and have been used toward five

major ends (Oberhardt et al., 2009): contextualization of high-throughput data (Stephanopoulos et al., 1998;

Montagud et al., 2010; Edwards et al., 1999), guidance of metabolic engineering (Angermayr et al., 2009),

directing hypothesis-driven discovery (Nevoigt, 2008), interrogation of multi-species relationships (Stolyar

et al., 2007), and network property discovery (Guimera and Nunes Amaral, 2005).

Nowadays, phylogeny has become so popular that it’s being used in almost every branch of biology

(Yang and Rannala, 2012). Beyond representing the relationships among species in the tree of life, phy-

logeny is used to describe relationships between paralogues in a gene family (Maser et al., 2001), histories

of populations (Edwards, 2009), the evolutionary and epidemiological dynamics of pathogens (Marra et al.,
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2003; Grenfell et al., 2004), the genealogical relationship of somatic cells during differentiation and cancer

development (Salipante and Horwitz, 2006), and even the evolution of language (Gray et al., 2009). More

recently, molecular phylogenetics has become an indispensable tool for genome comparisons (Brady and

Salzberg, 2011; Kellis et al., 2003; Green et al., 2010).

A phylogeny is a tree containing vertices that are connected by branches. Each branch represents the

persistence of a genetic lineage through time, and each vertex represents the birth of a new lineage. If the

tree represents the relationships among a group of species, then the vertices represent speciation events.

Phylogenetic trees are not directly observed and are instead inferred from sequence or other data. Phy-

logeny reconstruction methods are either distance-based or character-based. In distance matrix methods, the

distance between every pair of sequences is calculated, and the resulting distance matrix is used for tree

reconstruction. For a very instructive review, please refer to Yang and Rannala (2012).

This work is organized as follows. In the next section, we explain the genome-scale models with which

we work, how we define a parameter for comparing two models, and how we recover the phylogenetic tree

from the comparison matrix obtained for many metabolic models. Additionally, we will account for the

minimum spanning tree of a nondirected, connected, weighted network associated with these metabolic

models. In the subsequent section, we present the results, a brief study of the sensibility of the comparison

parameter, and a summary and overview.

2. COMPARISON BETWEEN METABOLIC MODELS

In a recent article (Reyes et al., 2012), a method has been presented for automatically generating

genome-scale metabolic models from data contained in the KEGG database (Kanehisa and Goto, 2000).

The method consists of searching the database for genes and pathways present in an organism and

downloading the corresponding set of chemical reactions. The algorithm filters isosenzymes, or other

repeated reactions, and may add missing reactions to a given pathway using a probabilistic criterion based

on the comparison of the organism’s pathway with the same pathway in other organisms. In this work, we

use data obtained from this platform, but the method described can, in principle, be used with any set of

metabolic models given that the compound names in the models follow the same standard (the same

compound has the same name in all models).

The methodology we are about to describe will make use of two fundamentally different networks. One

is the metabolic network build-up from the chemical reactions contained in an organism’s metabolism. In

this network, each metabolite represents a node (or vertex), and each link (or edge) is associated with a pair

of nodes if their respective metabolites are connected as a substrate and product by some reaction. The

second kind of network is the complete weighted network where each vertex represents an organism and

each edge connecting two nodes is weighted by the parameter measuring the metabolic distance between

the organisms’ metabolism (note that this will be a complete network, where all vertices are connected to

all others). In order to distinguish clearly the two networks in the text, we will talk about nodes and links for

the metabolic network while for the organisms’ network we will use the terms vertices and edges. As for

the notation, we use capital letters (N, V, E) for the network, nodes, and links in the metabolic networks and

curly letters (N ‚V‚ E) for the network, vertices, and edges in the organisms’ network. In the metabolic

network we will use roman lowercase letters for indices representing single metabolites in sums, while for

the organisms network we use Greek letters for the indices representing single organisms.

The first step in our work is to construct for every metabolic model A a nondirected connected network

NA = (VA, EA) from the information contained in it. Here, VA stands for the set of nodes of A, and EA stands

for its set of links. A metabolic model comprises a set of chemical reactions. Each chemical reaction

associates a set of substrates with a set of products. For constructing the network, first we define the set of

nodes VA as the set of compounds in A (metabolites present in the model), assigning a node to each

metabolite. The chemical reactions in the model will define the links of the network. If two metabolites

appear as a substrate and as a product, respectively, in a chemical reaction, a link connecting the corre-

spondent nodes is added to the network. A typical metabolic model of a prokaryote, with around 1000

metabolites and the same number of chemical reactions, becomes through this process a nondirected

connected network with 1000 nodes and approximately 3000 links.

The problem at hand is to elaborate a method to systematically compare and quantify the differences

between two metabolic networks. For this purpose, we define a parameter that scales between zero and
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infinity, zero meaning identical networks and infinity for networks that either share no node or no link in

common. The definition of this parameter is based on the identity of the nodes (the compounds) but not

directly on the chemical reactions of the metabolic models, only indirectly through the links of the network.

Here we start with the metabolic networks of two organisms A = (VA, EA) and B = (VB, EB). The set of

all metabolites in between the two organisms A [ B = (VA [ VB‚ EA [ EB) can be divided into a partition of

three disjoint sets: the set of metabolites only present in A, the set of metabolites only present in B, and the

set of metabolites common to both organisms:

VA[B = (VAyVB)|fflfflfflfflffl{zfflfflfflfflffl}
Only in A

[ (VA \ VB)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Common

[ (VByVA)|fflfflfflfflffl{zfflfflfflfflffl}
Only in B

(1)

where y stands for the difference of sets. A representation of this situation is shown in Figure 1. As it is

represented there, each metabolite may have connections to metabolites within its set and connections to

metabolites in the other sets.

Suppose that VA [ VB = fv1‚ . . . ‚ vng. Fix an arbitrary node vi, 1 £ i £ n. We can consider its degree in

A [ B, that is, the total number of connections of vi to the rest of the metabolites of VA [ VB, that we denote

by deg(vi). We can also consider the degree of vi when we restrict ourselves to the subnetwork generated by

the node in (VAyVB), which we will call degAyB(vi). Similarly, we can also define degA\B (vi) and degByA(vi).

With these degrees we can define, for each metabolite vi 2 VA [ VB, the rate pAyB,i of connections of vi to

metabolites inside A and not in B with respect to the total number of connections of vi, that is:

pAyB‚ i =
degAyB (vi)

deg (vi)
:

Analogously, we can define

pByA‚ i =
degByA (vi)

deg (vi)
and pA\B‚ i =

degA\B (vi)

deg (vi)
:

The following weighted sum of the rates pAyB,i provides a parameter of the differentiation of A [ B with

respect to A:

a =
1

jVAyVBj
X

vj2VAyVB

deg (vj)

 ! X
vi2VAyB

pAyB‚ i

deg (vi)

On the one hand, the rates pAyB,i are multiplied by the inverse of the total number of connections of vi to

give more importance to the metabolites with fewer connections. The reason to do this is that metabolic

networks of all organisms usually share their hubs (metabolites with many connections), so in order to

establish differences and similitude for different networks, one should focus on specific metabolites par-

ticular to only some organisms sharing common features. This weighting of pAyB,i with the inverse of

deg(vi) will reduce the importance of very connected metabolites (hubs) that are common to most or-

ganisms and adds weight to specific metabolites that might be particular for a branch in the tree of life,

helping in this way to differentiate the branches. Removing this inverse weighting results in a very mild

difference between the organisms, which makes the second step in the reconstruction very hard, because the

differences will appear as a small noise in the parameters.

On the other hand, the factor 1
jVAyVBj

P
vj2VAyVB

deg (vj) gives an average of the number of connections of

the metabolites only present in A with respect to the whole network. This is done in order to rescale the size

FIG. 1. Representation of the sets of metabolites between two organisms.
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of the network and normalize (balance) the parameter after the inverse weighting done by the factor deg(vi)

for each metabolite in the set.

Analogously, we can define b and c from the metabolites in the other two sets.

b =
1

jVByVAj
X

vj2VByVA

deg (vj)

 ! X
vi2VByA

pByA‚ i

deg (vi)

c =
1

jVA \ VBj
X

vj2VA\VB

deg (vj)

 ! X
vi2VA\B

pA\B‚ i

deg (vi)

For illustrating the process, let’s consider three organisms, the Synechocystis sp. PCC 6803 (which we

refer to as syn), Synechococcus elongatus PCC7942 (referred to as syf), and the Escherichia coli K-12

MG1655 (referred to as eco). In Table 1, you can see the number of metabolites and links in the networks

of these organisms, and in Table 2, we show the number of elements in each one of the three sets of the

partition in which we split the set of nodes of the network obtained from each pair of these three

organisms.

Now let’s focus on a few metabolites to see their contribution to the differentiation parameters (i.e.,

to the parameters a, b, and c). For this, we chose pyruvate (PYR), glyoxylate (GXL), and 2-dehydro-3-

deoxy-6-phospho-D-gluconate (6PDG), which are respectively very, medium, and poorly connected

metabolites present in these three organisms. In Table 3, we show the contribution of these metabo-

lites to the parameters a, b, and c. Column di of Table 3 shows, for each one of these metabolites, the

value of

di =
1

deg (vi)P
vj2VA\VB

1
deg (vj)

 !
‚ (2)

which is the weight proportion associated with the metabolite (with respect to all others) discussed above in the

text. Note that this weight for PYR is very small, since pyruvate has many connections and is a very common

metabolite in the metabolism of virtually any organism, and therefore is not a good candidate to help differ-

entiate branches in the tree of life. On the other hand, 6PDG has few connections and they are different in

cyanobacteria than in the E. Coli, potentially helping, in this way, to differentiate these two branches.

Finally, the comparison between the networks A and B, namely fA,B, is defined as:

fA‚ B =
jVBj
jVAj a + jVAj

jVBjb

2c

The parameters a and b are balanced since some organisms have much smaller metabolic networks than

others. If this is not corrected, it results in a disproportionate size between subnetworks generated by VAyB

and VByA. In order to weaken this difference, the parameter factors
jVBj
jVAj and

jVAj
jVBj are introduced. For two

identical networks, a and b are zero, and so that f = 0. For two networks that do not have a single

metabolite in common we have c = 0 and so f = N.

3. CONSTRUCTION OF THE PHYLOGENETIC TREE

Given a set of n organisms fA1‚ A2‚. . . ‚ Ang, we will see how to construct their phylogenetic tree taking

into account the degrees of similarity between every pair of metabolic models.

Table 1. Sets of Nodes and Links

Organism No. nodes No. links

syn 1001 2891

syf 979 2810

eco 1227 3801

Nodes and links in the networks of syn, syf, and eco.
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Firstly, let N = (V‚ E‚ w) be a nondirected, connected, complete weighted network, where

V = fA1‚ A2‚ . . . ‚ Ang is the set of vertices that represent the metabolic models of the aforementioned

organisms, E is the set of edges (Al‚ A�)‚ 1 � l‚ � � n‚ l 6¼ �, and w :E ! R is a function that assigns to

every edge (Al‚ A�)‚ the amount wl‚ � = fAl‚ A� . Looking at the definition of f, we observe that this network

N must be symmetric. In particular, all the weights in our study are strictly positive.

Secondly, we will compute a minimum spanning tree ofN , that is, a tree that has V as the set of vertices,

and such that the sum of the weights associated with the edges of this tree is minimum. In these trees, every

vertex Al 2 V is connected with at least one of the other vertex of VyfAlg by an edge that has minimum

weight among all the edges incident to Al. The well-known Kruskal algorithm gives us a procedure for

finding these trees (see, for instance, Gross and Yellen, 2005). We just have to follow the trace of the

Kruskal algorithm in order to recover the phylogenetic tree of the organisms represented by the models

A1‚ . . . ‚ An.

In order to compute the phylogenetic tree of the models fA1‚ A2‚ . . . ‚ Ang, consider the minimum

spanning tree ofN , namely T = (V‚ E0‚ wjE0 ), where E0 � E and wjE0 denotes the restriction of the function w

to the elements in E0. Let us take all the elements of E0 in decreasing order of weights, that is,

E0 = fe01‚ e02‚ . . . ‚ e0n - 1g with w(e01) � w(e02). . . � w(e0n - 1). We are going to remove edges from T following

this order. Every time an edge is removed, the number of connected components of the resulting graph is

increased in one respect to the previous one. We can represent this division of connected components by a

binary tree. The phylogenetic tree is generated taking into account how we divide T .

There are two different situations depending on the size of the (new) connected components (if any of

them consists on a single vertex or not). Let us start with the edge with maximum weight in T which we

have denoted as e01. Suppose that e01 is adjacent to two vertices Al0 and Am0, with 1 � l0‚ �0 � n‚ l 6¼ �.

Then two possibilities can occur:

(a) One of these vertices, for instance Al0, is a leaf (vertex of degree 1),

Table 2. Metabolites in the Partitions

syf eco

syn jV A X V Bj = 911 jV AXV Bj = 778

jV AyV Bj = 90 jV AyV Bj = 223

jV ByV Aj = 68 jV ByV Aj = 449

syf - jV AXV Bj = 775

- jV AyV Bj = 204

- jV ByV Aj = 452

Metabolites in the three sets of the partition when comparing three

organisms.

Table 3. Metabolite Weighting

Metabolite Organisms in comparison pAXB,i di Contribution (%)

PYR syn and syf 0.98 0.127 0.0064

syn and eco 0.73 0.117 0.0044

syf and eco 0.75 0.113 0.0044

GXL syn and syf 0.86 0.454 0.020

syn and eco 0.87 0.550 0.024

syf and eco 0.80 0.439 0.018

6PDG syn and syf 1.00 3.176 0.16

syn and eco 0.80 1.762 0.072

syf and eco 0.80 1.757 0.072

Contributions of different metabolites to the differentiation parameter (f) between two networks. The column di

shows the weight of the metabolite in the calculation of pAXB,i, which is the inverse of the degree of the metabolite

divided by the sum of the inverses of the degrees of all metabolites contributing to the parameter.
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(b) Neither of these two vertices is a leaf (each vertex is still connected with the other vertex). This

happens only if the former connected component has three or more vertices.

We point out that our phylogenetic tree will have two types of vertices: the leaves, which represent

metabolic models, and the inner vertices, which represent two branches that each have more than one vertex.

We start our phylogenetic tree with a vertex v0 that will be its root. Then two vertices v1, v2 are hanged

from v0. Each one of these vertices represents one of the two connected components of the network

Tyfe01g. Let us see what to do with v1 and v2 according to the case.

� If we are in case (a), one of these two vertices, for instance v1, represents the vertex Al0, and v2

represents the other connected component of T which is a subgraph of T generated by the vertex of

VyfAl0
g.

� If we are in case (b), one of the vertices, for instance v1, represents the connected component of

Tyfe01g that contains Al0, and the other vertex, v2, represents the connected component of Tyfe01g
that contains Am0.

This procedure is repeated again with v1 and v2 and by removing e02 from Tyfe01g. When we remove e02,

then either the connected component that represents v1 or v2 is split into two smaller ones, and the vertex

associated with this component plays again the role of v0. This process is repeated until we remove all the

edges.

Let us see with two examples how it works:

1. In Table 4, we have the weights associated with a set of 10 organisms. We can represent them

by a complete weighted network in which every organism is connected with the others. This is

a weighted network, so that we can apply the Kruskal algorithm in order to get a minimum

spanning tree of this network, which is represented in Figure 2. Following the aforementioned

Table 4. Comparison Matrix

org syf syn syc mge lpl cbe bcj eco tma ypk

syf 0.0 0.019 0.0061 0.1628 0.1493 0.1239 0.1083 0.106 0.1567 0.1155

syn 0.019 0.0 0.0177 0.1821 0.1524 0.1269 0.1079 0.1116 0.161 0.1213

syc 0.0061 0.0177 0.0 0.1779 0.1616 0.1318 0.1067 0.1032 0.1572 0.112

mge 0.1628 0.1821 0.1779 0.0 0.1179 0.1351 0.1257 0.1252 0.1159 0.1266

lpl 0.1493 0.1524 0.1616 0.1179 0.0 0.0711 0.1098 0.1194 0.0668 0.111

cbe 0.1239 0.1269 0.1318 0.1351 0.0711 0.0 0.0979 0.0926 0.0674 0.1049

bcj 0.1083 0.1079 0.1067 0.1257 0.1098 0.0979 0.0 0.0592 0.1167 0.0557

eco 0.106 0.1116 0.1032 0.1252 0.1194 0.0926 0.0592 0.0 0.102 0.0294

tma 0.1567 0.161 0.1572 0.1159 0.0668 0.0674 0.1167 0.102 0.0 0.1044

ypk 0.1155 0.1213 0.112 0.1266 0.111 0.1049 0.0557 0.0294 0.1044 0.0

Comparison matrix for 10 organisms.

FIG. 2. A minimum spanning tree associated with 10

organisms.
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notation, e 01 corresponds to the edge that connects mge with tma, weighting 0.1159. We can see

in Figure 3 that two vertices are hanging from the root of the tree. The one on the left

represents the mge; the one on the right represents the subgraph associated with the rest of

vertices, where tma can be found.

2. In the case of 38 organisms, when we remove from the minimum spanning tree the edge with

maximum weight, we split this tree into two connected components: the one associated with the pair

mge and mpm, and the one associated to the other vertices.

Finally, the vertices in the phylogenetic tree can keep more information concerning the aforemen-

tioned minimum spanning tree. Suppose that the height of our phylogenic tree is w(e01), which rep-

resents the maximum weight in the minimum spanning tree (i.e., the weight associated with e01). We

place the root of our phylogenetic tree at height y = w(e01). Now, two vertex are hanged from the root.

If one is associated with a single vertex, for instance, v1 in case (a), then we place this vertex at height

y = 0. We remember that this vertex represents the organism Al0. If not, for instance, v2 in case (a) and

either v1 or v2 in case (b), each one of these vertices represents a connected component with more than

one vertex in which the minimum spanning tree is split. In order to know at which height we should put

these vertices, we have to continue removing edges from the former tree. After removing e02, one of

these connected components, for instance, the one represented by v2, is split again into two smaller

connected components. So we place the vertex v2 at height w(e02). We repeat this process recursively

until the initial tree is just reduced to isolated vertices.

4. RESULTS AND DISCUSSION

We have reconstructed two phylogenetic trees, one with 10 bacteria and another one with both pro-

karyotes and eukaryotes. In Table 4 we show the parameter f for the pairwise comparison of the 10

prokaryotes in the first tree. The data for the comparison of the 33 organisms in the second tree is given in

the Supplementary Material (available online at www.liebertonline.com/cmb).

The organisms in each comparison are:

� 10 organisms tree / Mycoplasma genitalium (mge), Lactobacillus plantarum WCFS1 (lpl), Sy-

nechocystis sp. PCC 6803 (syn), Synechococcus elongatus PCC7942 (syf), Synechococcus elongatus

PCC6301 (syc), Clostridium beijerinckii (cbe), Burkhoderia cenocepacia J2315 (bcj), Escherichia coli

K-12 MG1655 (eco), Thermotoga maritima (tma), and Yersinia pestis KIM10 (ypk).

FIG. 3. A phylogenetic tree with 10

organisms.
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� 38 organisms tree / Mycoplasma genitalium (mge), Mycoplasma pneumoniae 309 (mpm), Sy-

nechocystis sp. PCC 6803 (syn), Synechococcus elongatus PCC7942 (syf), Synechococcus elongatus

PCC6301 (syc), Clostridium beijerinckii (cbe), Salmonella bongori (sbg), Escherichia coli K-12

MG1655 (eco), Aquifex aeolicus (aae), Yersinia pestis KIM 10 (ypk), Cyanobacterium UCYN-A

(cyu), Thermosynechococcus elongatus (tel), Microcystis aeruginosa (mar), Cyanothece sp. ATCC

51142 (cyt), Cyanothece sp. PCC 8801 (cyp), Gloeobacter violaceus (gvi), Anabaena sp. PCC7120

(ana), Anabaena azollae 0708 (naz), Prochlorococcus marinus SS120 (pma), Trichodesmium ery-

thraeum (ter), Acaryochloris marina (amr), Halophilic archaeon (hah), Polymorphum gilvum (pgv),

Micavibrio aeruginosavorus (mai), Agrobacterium radiobacter K84 (ara), Clostridiales genomosp.

BVAB3 (clo), Gamma proteobacterium HdN1 (gpb), Vibrio fischeri ES114 (vfi), Vibrio fischeri MJ11

(vfm), Haemophilus influenzae F3031 (hif), Coprinopsis cinerea (cci), Sus scrofa (ssc) and Leish-

mania braziliensis (lbz), Mus musculus (mmu), Apis mellifera (ame), Methanotorris igneus (mig),

Halalkalicoccus jeotgali (hje), and Thermoplasma acidophilum (tac).

In Figures 3 and 4 we present the two phylogenetic trees that we have constructed. In the first tree, the

only organism displaced in relation to what is expected from standard methods of phylogenetic tree

reconstruction is the tma. In both trees mge (and mpm in the second one) diverges from other organisms at

the beginning of the tree. This happens because of their minimalistic genomes, with only a couple hundred

metabolites in their metabolomes. As a result, when compared with an organism without a reduced genome

with almost a thousand metabolites, several hundred metabolites will not have a correspondent one,

increasing hugely the value of a in the calculation of the parameter f, and therefore distancing these

organisms from the rest. The problem with these parasitic organisms has been noticed elsewhere (Fukami-

Kobayashi et al., 2007), but unfortunately the solution found in this article did not yield better results in our

present study. One should keep in mind that the present approach only considers genes (and proteins)

associated with metabolic reactions and moreover, considers only the existence/absence of the enzymes

(reactions). Our work yields results that are very close to the tree of life, in spite of using only a subset of all

genome’s information. It was not our intention to build trees that would address properly minimal or-

ganisms’ phylogenies, but to prove the feasibility of building those trees using only reactome data. In any

case, for the second study we used organisms from very different origins in the evolutionary history, and we

found that the method is able to separate bacteria, archea, and eukaryotes. Different strains of the same

species also appear closely related and share branches with organisms from the same family and order.

We have also studied the sensibility of the parameter f. For this we performed a Monte Carlo analysis of

f. The procedure for this analysis is explained as follows. Given two organisms, one of them remains the

wild type while, with the other, one builds an ensemble with Nt elements, where each element is the result

Table 6. Sensibility Study 2

org org syn syf eco mge

syn 0.0005 – 0.0005 0.0186 – 0.0006 0.0896 – 0.0007 0.1604 – 0.0018

syf 0.0187 – 0.0006 0.0005 – 0.0005 0.0860 – 0.0007 0.1532 – 0.0019

eco 0.0893 – 0.0008 0.0857 – 0.0007 0.0003 – 0.0003 0.1281 – 0.0011

mge 0.1602 – 0.0035 0.1531 – 0.0032 0.1288 – 0.0023 0.0028 – 0.0023

Sensibility calculation for Nt = 500 and nK = 10. Each element in the table is the average of the parameter f in an

ensemble plus (minus) its standard deviation (�f – rf).

Table 5. Sensibility Study 1

org org syn syf eco mge

syn 0.0002 – 0.0003 0.0184 – 0.0005 0.0893 – 0.0005 0.1600 – 0.0014

syf 0.0184 – 0.0004 0.0002 – 0.0003 0.0857 – 0.0006 0.1527 – 0.0014

eco 0.0892 – 0.0005 0.0856 – 0.0005 0.0001 – 0.0002 0.1278 – 0.0009

mge 0.1597 – 0.0025 0.1527 – 0.0026 0.1283 – 0.0015 0.0014 – 0.0016

Sensibility calculation for Nt = 500 and nK = 5. Each element in the table is the average of the parameter f in an

ensemble plus (minus) its standard deviation (�f – rf).
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of nK knock-outs (removal of nK randomly selected reactions from the metabolic model) in the organism.

Then the calculation of f is performed between the wild-type organism and each organism in the knock-out

ensemble. From this process one obtains an ensemble of Nt values of f for the comparison (one from each

version of the organism in the knock-out ensemble), from which one calculates its average and standard

deviation. This standard deviation is treated as an indicator of the sensibility of the parameter (as a function

of the number of knock-outs).

We performed this sensibility analysis for four organisms (syn, syf, eco, and mge) with ensembles of

sizes Nt = 500 for nK = 5, 10, 50, and 100. The results are shown in Tables 5 through 8. These four

organisms have been chosen to observe the sensibility in the comparison between very similar organisms

(syn and syf), more distant ones (syn and eco), and very different ones (syn and mge).

This sensibility analysis mainly reflects the uncertainties in the calculation of the metabolic distances.

Since the distance parameter is based on metabolic models, one relies in the genome annotations for each

organism and any annotation is usually faulty. One may miss enzymes or wrongly annotate existing ones.

The models used in this study have been automatically generated from a database constructed from

information downloaded from the KEGG database (Kanehisa and Goto, 2000), and since the beginning of

this study the databases have been updated and most models have to be changed as well. The ‘‘knocked-

out’’ models used for the sensibility parameter analysis simulate such imperfect annotations: one might

consider the situation with nK = 5 as the model constructed from a well-annotated genome, while the case

with nK = 100 is the model resulting from a very poor annotation. One can see that when only a few

enzymes might be missing from the annotation, the error in the parameter can be expected to be less than

1%, except for the case of the minimalistic genomes like the parasitic mge, that has an error more than five

times bigger than the other organisms. This error increases as the number of knock-outs increase, but it

keeps below 5% even for 100 knockouts (or missing enzymes), except again in the case of the mge, but

even for the mge it is below 10%. This shows that the methodology is robust and that one works here with

an uncertainty of less than 5% in most of the cases.

5. CONCLUSIONS AND OVERVIEW

In this work, we have developed a methodology for comparing organisms based on their metabolic

networks. This methodology has been successfully applied for the reconstruction of phylogenic trees for

several organisms from a broad range of families and kingdoms. Resulting trees stand up well to their

comparison with the so-called ‘‘tree of life.’’ The great majority of the branches in the tree fit their expected

Table 8. Sensibility Study 4

org org syn syf eco mge

syn 0.0058 – 0.0016 0.0239 – 0.0020 0.0942 – 0.0024 0.1715 – 0.0062

syf 0.0238 – 0.0018 0.0061 – 0.0017 0.0907 – 0.0023 0.1630 – 0.0066

eco 0.0919 – 0.0024 0.0883 – 0.0022 0.0033 – 0.0011 0.1329 – 0.0040

mge 0.1694 – 0.0120 0.1648 – 0.0131 0.1433 – 0.0092 0.0460 – 0.0076

Sensibility calculation for Nt = 500 and nK = 100. Each element in the table is the average of the parameter f in

an ensemble plus (minus) its standard deviation (�f – rf).

Table 7. Sensibility Study 3

org org syn syf eco mge

syn 0.0028 – 0.0011 0.0209 – 0.0014 0.0915 – 0.0017 0.1652 – 0.0045

syf 0.0207 – 0.0013 0.0029 – 0.0011 0.0879 – 0.0016 0.1575 – 0.0044

eco 0.0903 – 0.0017 0.0868 – 0.0016 0.0016 – 0.0007 0.1301 – 0.0029

mge 0.1638 – 0.0080 0.1577 – 0.0077 0.1343 – 0.0055 0.0170 – 0.0053

Sensibility calculation for Nt = 500 and nK = 50. Each element in the table is the average of the parameter f in an

ensemble plus (minus) its standard deviation (�f – rf).
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positions well and their distance is in good correlation with evolutionary distances. The discrepancies found

can be explained by particularities in these very few organisms not fitting the tree, such as tremendous

genome reductions that caused reduced metabolisms.

Our methodology is innovative for it is not directly based on the structure and evolution of proteins or

DNA but on the metabolism and the organisms’ components and metabolic capabilities, allowing one to

compare organisms very distant from the evolutionary point of view or organisms for which orthologs’

comparison is difficult. In order to accomplish this, we make use of the correlation between evolutionary

distances and metabolic network likelihood and propose our methodology as a starting point to study it.

Metabolism information is retrieved as a subset of the whole genome information. We hereby show that

metabolic network connectivity can be used to build phylogenetic trees that are in accordance with gene-

directed trees. It can be argued whether the selected construction parameter (f) is the optimal one for this

purpose (or even if there is an optimal one), but it stands clear that this is an innovative application for

metabolic models, their curation, and cross-species evolutionary studies.

We have also performed a sensibility study in which we show that the methodology is robust even if the

annotation information used to construct the metabolic models is faulty. This study also suggests an upper-

bound for the uncertainty in the distance parameter of approximately 5%.
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