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A review of the present situation of the mesonic decay of A hypernuclei is done. The 
link between the propagator method and the one with wave functions and nuclear matrix 
elements is established. The lack of links between the mesonic decay and the nucleon 
occupation number in nuclear matter is also discussed, as well as the effect of the AN short 
range repulsion in the mesonic decay of light hypernuclei. The relevance of the 2p2h induced 
A decay channel is also discussed. Finally an overview of the potential use of the process, 
when systematic measurements over the periodic table are done, is presented at the end. 

§ 1. A brief historical introduction 

461 

A paper devoted to the memory of our friend Hiroharu Bando is the right place 
to recall some interesting events associated with him and the subject of this paper. In 
1984 L. L. Salcedo was working in Valladolid for his Ph. D. on the decay of A 
hypernuclei and he surprised me (E. 0.) with the results which indicated that the rate 
for pionic decay of heavy A hypernuclei was increased by about two orders of 
magnitude when a proper medium renormalization of the pion was done. At that 
time I was still not used to shake every one of the few times that Salcedo would open 
his mouth, so I told him to check again his program. He did so and came out with 
the same answer. This time I checked it myself and had to surrender to a reality that 
was difficult to swallow and worst, I had the feeling it would be difficult to sell. A 
paper was written and after a few useful corrections suggested by the referee the 
paper was published.!) I should thank the generosity of the referee who, probably 
without believing the results, let it be published. I say that a posteriori because when 
my selling mission began I could not convince a single colleague of the soundness of 
the results. To make it short I recall the lapidary sentence of A. Gal: "I do not believe 
in any renormalization factor of 100". 
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With this predisposition from my colleagues I presented these results in the 
hypernuclear Conference at Brookhaven in 1985.2> I went there with clarifying and 
convincing arguments, with Feynman diagrams, with poles and cuts in the complex 
plane and Cutkosky rules to separate imaginary parts, and all this heavy artillery that 
should have crumbled the strongest walls. The result: a lost battle. The whole 
audience turned against me. Even my friends Gerry Brown and Torlif Ericson 
showed disbelief in their questions and comments at the end of the talk. But it was 
Torlif the one who opened my mind to what was happening: I was using an inappropri
ate language for that audience which was more used to the language of wave func
tions and matrix elements than to the one of propagators, selfenergies and cuts which 
I was using. And here came Bando. I went to him and discussed with him. He was 
using this alternative language and he should be able to prove the same results using 
pionic wave functions in the nucleus and evaluating the proper matrix elements. He 
was the first person to take us seriously and he started to work with his colleagues 
Motoba and Itonaga on the issue. In Ref. 2), after the experience with the audience 
and the discussions with Torlif, I wrote a section on "an alternative approach" 
sketching the way to follow using the language of wave functions and matrix ele
ments, which was the one followed by Bando and collaborators. 

Their work has been very useful.3>-s> It not only confirmed the huge enhance
ment of the mesonic width found in Ref. 1), but produced detailed and quantitative 
results in many nuclei, taking into account shell effects, Q values and other details 
which go far beyond the nuclear matter and local density approach of Ref. 1). Since 
then the spectacular enhancement of the mesonic width has been universally accepted. 
Their predictions have been confirmed by the new wave of experiments.6>'10> 

I came to appreciate Bando more with this incident. His quiet, flexible and 
gentle approach to the problems contrasted with my stern and temperamental one, 
and certainly proved to be much more efficient. 

One of the interesting outputs of Refs. 3)~5) is that the mesonic width is quite . 
sensitive to the pion nucleus optical potential, for potentials which fit equally well the 
pion nucleus scattering data. This information is very useful and should serve as a 
check for different microscopic models of the pion nucleus interaction. The work 
done on the mesonic decay and its interconnection with the other A decay channels 
has also been essential to get a unified picture of the A decay in nuclei and has 
generated other interesting developments as we shall see below. 

§ 2. Formal derivation of the A width in nuclei 
-- The propagator method--

The starting point is the A--+ 1rN Lagrangian, accounting for this weak process, 
which is given by 

(1) 

with 

(Gp2) 2/8Jr=l.94510-15 , A=l.06, B=7.10. (2) 
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In Eq. (1) the A is assumed to behave as 
the state 11/2, -1/2> of an isospin dou
blet with T=1/2 and this imposes the 
LJT=1/2 rule, which has as a conse
quence a strength double for the A~ 1r-p 
channel than for the A~ 7r0 n one. In 
Eq. (1) the term A violates parity and 
the term B conserves it. 

A practical way to evaluate the A 
width in nuclear matter and introduce 
the medium corrections is to start from 
the A selfenergy, I, associ a ted to the 
diagram of Fig. 1 and then use the rela
tionship 

r=-2Imi. 

The selfenergy is readily evaluated as 

' ' .... ·········'···· 
' k q mn mn ... q, ~ 

- • s• t 1 

"' 
I 

111" 

Fig. 1. Feynman graph for the free A selfenergy of 
Eqs. (4) and (5). The A--+ 1rN "cut" is shown 
(dotted line). 

(3) 

(4) 

where G and Dare the nucleon and pion propagators respectively and P/f.J.=B/2M 
with f.J., M the pion and nucleon mass. By using the free nucleon and pion propaga
tors, and making the typical nonrelativistic approximation M/E=1, one obtains 
immediately the free A width1l,Ul 

(5) 

In a Fermi sea of nucleons, both the nucleon and pion propagators are changed 

G(p) 0 1- n(p) . + 0 n(p) . , 
p - E(p)- VN + Z€ p - E(p)- VN- Z€ 

(6) 

1 D(q) (7) qo•_q2-f.J.2-JI(qo, q) , 

where VN is the nucleon potential, Il(q0, q) is the pion selfenergy in the nuclear 
medium and n(p) is the occupation number in the Fermi sea, n(p)=1 for IPI~kF, n(p) 
=0 for IPI > kF with kF the Fermi momentum. The practical way to perform the q0 

integral in Eq. (4) is to perform a Wick rotation as shown in Fig. 2, where the 
analytical structure of the integrand is shown. The shaded region accounts for the 
discontinuity of the pion propagator due to Im II. The pole at iiJ(q) would corre
spond to a renormalized pion pole where 

iiJ(q)2- q2- f.1.2_ Il(iiJ(q), q)=O. (8) 
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Missing in the figure is the pole of G(k-q) corresponding to the second term in 
(6). This pole lies in the lower halfplane of the figure and would contribute in the 
Wick rotation only when it happens to be in the third quadrant, i.e., k0 - E(k- q)- VN 
<0. But this corresponds to (k-q) very large where n(k-q)=O and hence this term 
does not contribute. Thus we obtain for the width1>.n> 

[s2+( p)2 2JI 1 I X -qm<W 2 2 o . 
fl. q - q -fl. -II( q ' q) q"=k"-E(k-q)- VN 

(9) 

. . . 
~ . . 

-wCq> 

.. .... 

. . 

'"· 
. . 

Fig. 2. Analytical structure of the integrad of Eq. 
( 4) in the complex q0 plane with the nucleon 
and propagators of Eqs. (6) and (7). The 
renormalized pion propagator pole al(q) is 
shown. The dashed lines close to the real axis 
indicate the analytical cut from Im Il(q", q) 
related to the nonmesonic A decay channel. 
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In the discussion here we neglect the 
role of correlations and form factors, 
which are obviously important and are 
treated in all detail in Refs. 1) and 11). 
The simplified formalism will allow us 
to concentrate on the qualitative aspects 
of the reaction. 

In the first place we observe the 
Pauli blocking factor, 1- n, in Eq. (9). 
Since a A with k=O decays into a nu
cleon and pion with q~100MeV/c, this 
momentum is smaller than the Fermi 
momentum for nuclear matter density, 
kF=270 MeV /c, and the decay is forbid
den by Pauli blocking, i.e., 1-n(k- q) 
=0. The overlap of the A wave func
tion with the nuclear surface in finite 
nuclei still allows the A decay since at 
some radius the local Fermi momentum 
will be smaller than 100 MeV /c, and also 

+ 

(d) (e) 

Fig. 3. A self-energy diagrams included in Eq. (4) with the nucleon and pion propagators of Eqs. (6) 
and (7). (a) Free self-energy graph. (b), (c) Insertion of P-wave pion selfenergy at lowest order. 
(d) Generic RPA graph from the expansion of the pion propagator in powers of the pion selfenergy. 
(e) s-wave pion selfenergy at lowest order. The cuts represent the nonmesonic decay channel. 
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because the momentum distribution of the A wave function helps a bit in allowing 
some nucleon momenta in the decay. Nevertheless the A mesonic width decreases 
drastically as a function of the mass number. 

The language of propagators which we have used here is the most appropriate in 
order to provide a unified picture of the A nuclear decay. Indeed, Eq. (9) contains not 
only the modified mesonic channel but also the nonmesonic one. This can be seen 
diagrammatically by expanding the pion propagator and taking a Ph and Llh excita
tion to account for the pion selfenergy, II. This is depicted in Fig. 3. The imaginary 
part of a selfenergy diagram is obtained when the set of intermediate states cut by a 
horizontal line are placed simultaneously on shell in the intermediate integration. In 
Fig. 3 we observe a source corresponding to placing on shell a nucleon and the Ph of 
the pion selfenergy. This corresponds to a channel where there are no pions and only 
nucleons in the final state. The physical process which has occurred is AN-+ NN and 
this is the nonmesonic channel. Technically it would be obtained by substituting in 
Eq. (9) 

(10) 

where Ilph is the pion selfenergy due to the 1P1h excitation. There is no overlap 
between Imllph(q0, q) and the pion pole in the propagator of Eq. (9) and thus the 
separation is clear. 

The mesonic channel would correspond to a different cut, the one where the N 
and the ;rare placed on shell. This is shown diagrammatically in Fig. 4. The terms 
in Fig. 4(b), and further iterations contained in (9), lead to a renormalization of the 
mesonic width, and an appreciable one, as it was shown in Ref. 1). 

Technically the mesonic width can be calculated from the total width, Eq. (9), 
subtracting the nonmesonic width, or equivalently by obtaining the pion pole contribu
tion in Eq. (4) from the renormalized pion pole given in Eq. (8). 

The qualitative reason on why the mesonic width is so drastically changed is 
given in Refs. 1) and 11): The attractive character of the pion selfenergy leads to a 
larger pion momentum for the same pion energy and thus, to a larger nucleon 
momentum by momentum conservation. Thus, the nucleon has more chances to have 
a momentum bigger than the Fermi momentum, therefore increasing the mesonic 

k-q 
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\ ............ \ .... 
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k-q N 
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A 
Fig. 4. Free and lowest order A selfenergy graph. The dotted cuts represent the mesonic decay 

channel. 
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width. 
The width in finite nuclei is obtained in Ref. 1) via the local density approxima-

tion 

(11) 

where ¢A is the A wave function. A further average over the momentum distribution 
of the A wave function is also done in Ref. 1). 

§ 3. Finite nuclei approach to the mesonic width 
-- The wave function method--

This approach was sketched in Ref. 2) and carried out in detail in Ref. 3). The 
mesonic width is given, in analogy to Eq. (5) by 

r<a) =.l.c<al( GJi.Z? ~ f d 3 q - 1-27io(EA- m( q)-EN) 
2 Nf/'-F (27r)3 2m(q) 

X { S2ifd3Xif;A(X)¢><<-l(q, x)*¢~(x)l2 

(12) 

where ¢N is the wave function of the nucleon states and ¢><H* corresponds to an 
outgoing solution of the Klein-Gordon equation normalized to a plane wave 
asymptotically (e-iqr). The index a stands now for 7i-p or 1r0 n decay, with c<PJ=4, 

c<n)=2, which one separates here since due to shell effects these channels can depart 
drastically from the elementary LJT=1/2 rule. 

The sum in Eq. (12) runs only over non occupied nucleon states in the shell model. 
On the other hand the effects of using for ¢><H* a solution of the Klein-Gordon 
equation with a proper optical potential (or pion selfenergy, II =2m Vopt, Vc Coulomb 
potential), i.e., 

(13) 

instead of a plane wave are rather drastic and increase the mesonic width in about 
two orders of magnitude in heavy nuclei,3J,sJ in qualitative agreement with the nuclear 
matter results of Ref. 1). 

The arguments for the renormalization are expressed now in the alternative 
language as follows: the attraction caused by the pion selfenergy increases the pion 
momenta in the pion wave function. As a consequence the matrix element of the A 
wave function (in a 1s112 ground state of the A nucleus potential) and the nucleon wave 
function is considerably enhanced. Note that if the A and N potentials were the 
same, the A and Nf/:.F states are orthogonal and the matrix elements of (12) would 
be zero for q=O. The matrix elements thus necessarily increase with q, for the 
moderately small values of q involved in the present process. In the two languages 
the physical consequences are the same: an increased probability of reaching the 
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unoccupied states and thus an enhancement of the mesonic width. 

§ 4. Equivalence of the propagator and wave function methods 

The discussion above has shown that the physical and numerical results of the 
pion renormalization are the same. Yet, technically the two approaches look 
different. In this section we establish the equivalence of the two methods and the 
approximations implicit in them. 

Let us start from the pion propagator in finite nuclei written in coordinate space 

(14) 

where gln(x) are the pion wave functions in the nucleus and En their corresponding 
energies. Ignoring pionic bound states, which do not play a role in our problem, we 
can identify the pionic wave functions by the asymptotic momentum q. Hence their 
energy is given by w(q)=(q2+ Ji)112. The sum over the index n is then replaced by 
an integral over q as given below 

D ( E)-! d 3q </Jn:(q, XI)</J~(q, Xz) 
n: XI, Xz, n:- (2nl En:2-w(q)z+i7J . (15) 

For simplicity in the derivation we shall take the s-wave part of the width (the 
one providing the largest contribution) and will not distinguish between rc0 or rc
decay. Hence, from Eq. (12) we obtain 

Fs=3(GJ-l2)2S2N"5,tF}(~:)3 2w~q)2rc8(EA-EN- w(q)) 

X 1Jd3x¢A(x)¢~(q, x)¢;(x)l 2
, 

which can be rewritten as 

(16) 

X </JN(XI)¢;(xz) }(~:)3 2~q)2rc8(EA-EN-w(q))<Pn:(q, XI)</J~(q, xz) (17) 

or by virtue of Eq. (15) as 

Ts=3(GJ-l2)2S2 :l: fd3xid3Xz</J~(XI)</JN(XI)( -2) 
N<$F 

(18) 

Now, in order to connect with Eqs. (9) and (11) one makes a local density 
approximation. In the first step one evaluates r for a slab of infinite nuclear matter 
and in the second step one replaces the width in the infinite slab by an integral over 
the nuclear volume assuming slabs of matter in each d 3 r of the nucleus with local 
density p(r) and with a probability of finding the A particle given by I¢A(r)l2• This 
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last step is implemented by means of Eq. (11). Hence we should see how we repro
duce now Eq. (9) when we assume in Eq. (18) a slab of infinite nuclear matter. For 
this purpose we have to substitute for the nucleon sector 

¢N(x)-+ ffeipx' 
EN-+E(p)- VN 

and for the A wave function 

(19) 

(20) 

Now in the infinite slab of nuclear matter the pion propagator of Eq. (15) is 
substituted by 

(21) 

where fl(Etr, q) is the pion selfenergy, which is a function of p. Note that for values 
of Xr, Xz far away from the nucleus Eqs. (15) and (21) are equivalent since there p=O 
and fl (in the local density approximation) will be zero. At other densities, fl will 
be different of zero and the integral of Eq. (21) gives rise to other momentum 
components, modulating the plane wave of the numerator and providing a kind of 
WKB approximation to the wave functions of the numerator of Eq. (15). The local 
density approximation gives rise to a variable local momentum and hence a distorted 
pion wave. 

By substituting Eqs. (19)~(21) in Eq. (18) we obtain: 

Fs= -6(Gt.i)2S2 j(g~3 fcg:)3 (1- n(p))lmDtr(q)O(q0)lqo=EA-E(k-q)-vN 

(22) 

with D1r(q) given by Eq. (7). Finally, by means of the relationship (27i)3o3(0)=f d 3x 

= V we can cast Eq. (22) as 

which coincides with the s-wave contribution to r from Eq. (9). This establishes the 
equivalence between the two methods within the local density approximation which 
we have done in the case of the propagator method. 
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§ 5. The mesonic width and the occupation number 

I ----------., 
n(k) 

I 

We have seen that Pauli blocking is 
the major factor in the small mesonic 
width of heavy A hypernuclei. It was 
suggested that because real interacting 
nuclei have the "occupied" states partly 
unoccupied, the mesonic width should be 
enhanced with respect to a calculation 
with fully occupied Fermi levels.14> In 
the nuclear matter approach of § 2 this is 

!------__ 

easily visualized by recalling a realistic Fig. 5. Schematic representation of the nucleon 

picture of the occupation number of the occupation number for an interacting Fermi 

Fermi sea/5> which is depicted in Fig. 5. sea. 

For the states below the Fermi energy the level of occupancy is of the order of 85% 
and by assuming that in the A decay the nucleons can occupy the 15% vacancy of 
these states we would guess that the mesonic width would stabilize at the level of 
about 10% of the free width for heavy nuclei (taking into account pion absorption in 
the way out of the pions). If this were the case the mesonic width could serve as a 
measure of the occupation number in the Fermi sea. The argument is very appealing 
and intuitive, however, it is incorrect and leads to an overestimate of the width in 
about three orders of magnitude in heavy nuclei. 

The detailed discussion of this problem was done in Ref. 16). The fallacy in the 
argumentation lies in the fact that 

(24) 

where n1(k) is the realistic occupation number in nuclear matter, is not an improve
ment over the propagator in Eq. (6). The realistic N propagator for an interacting 
Fermi sea is given in terms of the spectral functions by 

G(ko, k)=j~-' dw ~h(w, k~ + ('"' dw ~p(W, k~ 
-oo k - w- u: )p k - w+ Z€ 

(25) 

with f.l. the chemical potential. 
When performing the calculations of the mesonic width with this N propagator 

one obtains the factor 

(26) 

replacing the factor 

[1- n(k- q)]27r8(k0 - E(k- q)-w(q)) (27) 

in Eq. (5), when the Pauli blocking factor of Eq. (9) is implemented. Equations (26) 
and (27) bare some intuitive resemblance because 
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(28) 

However, in the presence of the o function of Eq. (26), the integral of Eq. (28)) cannot 
be factored out because the o function in Eq. (26) has m in the argument. Further
more because of restrictions of the phase space (energy and momentum conservation) 
the range of values of m allowed are very small compared to the range (t-t, oo) needed 
in Eq. (28) to obtain 1-n1(k- q) of the interacting Fermi sea. In physical terms we 
can interpret it in the following way: the occupation number n1(k-q) is ah integral 
for all the energies of the nucleon, m, of the probability of finding a nucleon with 
momentum k-q and an energy m, which is given by the spectral function Sh(m, 
k-q). However, in a physical decay process we have conservation of energy and 
momentum and hence there are severe restrictions to the values of the energies that 
the nucleon can have. This is why the occupation number n1(k-q) cannot be 
factored out. 

The actual calculations carried out in Ref. 16) showed that for light and medium 
nuclei the use of the spectral representation for the nucleon propagator, Eq. (25), 
instead of the one of the noninteracting Fermi sea, Eq. (6), has negligible consequences 
in the mesonic width (of the order of 6% corrections in 160). The corrections can be 
of the order of 50% in heavy nuclei, but in all cases, when the pionic renormalization 
is taken into account, one can disregard these effects. 

These findings have been of relevance in showing similar problems in the study 
of other physical processes, like in the contribution of the pion cloud to K+ nucleus 
scattering where one can show17> that one cannot relate the effect of the pion cloud to 
the pion excess number in the nucleus as assumed in Refs. 18) and 19). 

§ 6. Results for the mesonic width 

In Refs. 3)~5) one can find abundant results in different nuclei which are rather 
realistic. These results have been recently improved13> by a more accurate descrip
tion of the energy balance in the particular reactions, taking into account transitions 
to the bound and continuum N states and using a pion nucleus optical potential which 
has been derived theoretically and leads to a good description of the data of pionic 
atoms and to elastic, reaction and absorption cross sections in the scattering proces
ses.20> The potential allows the separation of its imaginary part into two terms 
related to pion absorption and quasielastic scattering. In Ref. 13) the pion quasielas
tic events are not removed from the pion flux, as it corresponds to the actual experi
mental observation, while the use of a full distortion of the pion with the total optical 
potential, as done in Refs. 3)~5), inevitably removes the pion quasielastic events, 
together with the pion absorption events. Though conceptually important, this 
refinement turns out to be of little practical relevance in the present problem given the 
small energy that the pions carry and the very small phase space for quasielastic 
collisions.13> However, other considerations, particularly the energy balance in the 
reactions makes the widths in heavy nuclei for 7C- -decay about one order of magnitude 
smaller than those of Ref. 5). 
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MASS NUMBER A 

Fig. 6. Pionic decay rate for ;r0 and ;r- as a function of the mass number (of the host nucleus, 160, 4°Ca, 
90Zr, 138Ba and 208Pb). The two lower lines show the calculation with plane waves for the pion and 
the two upper lines the results with pion distorted waves. 

In Fig. 6 we show the prediction of Ref. 13) for different nuclei and for 7r0 and ;r
decay, with plane waves and the renormalized pion wave function. The drastic 
effects of the pion renormalization are seen there and are a bit smaller than in former 
works because the energy balance makes the pions come out with smaller energies 
than in the previous approaches and the attractive effects of the P-wave part of the 
optical potential are then diminished. 

Of particular relevance are the results in ~C. One obtains the following: 

Ref. 13) 

Ref. 5) 

exp 

0.159 

0.13 

0 0 217±0 0 08410) 

0.086 

0.098 

1.86 

1.32 
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Although with large errors the experimental results confirm these striking theo
retical predictions which show a large violation of the L1T=1/2 in nuclei (F"o/F"
should be 0.5 under this rule) due mostly to nuclear shell effects. 

Another interesting finding is seen in very light nuclei. The mesonic width of 
1He has attracted particular attention. There, in addition to the pion renormaliza
tion, the repulsive character of the AN interaction and the relatively weaker medium 
range attraction, compared to the NN interaction, has as an effect the pushing of the 
A to the surface of the nucleus, weakening the Pauli blocking effect and thus enhanc
ing the mesonic decay.21 >'22> The experimental numbers clearly favour potentials with 
a repulsive AN core. One should note that such a repulsion automatically appears in 
quark based models of the AN interaction. A recent study of the lHe decay using a 
quark model based hypernuclear wave function23> leads to the following results: 

Ref. 23) 

exp 

0.431 

0.44±0 .119) 

0.239 0.670 

0 .18±0.209) 0. 59±8:~1 

These theoretical results are also in good agreement with those of Ref. 24) when 
a A wave function from the modified YNG AN interaction of Ref. 25), which has a 
strong repulsion at short distances, is used. 

§ 7. The 2p2h induced decay around the pion branch 

One of the interesting findings concerning the pionic decay was done in Ref. 26). 
The idea of this work, expressed in a different way, is the following: A real pion in 
a nuclear medium has a large width because of the coupling to 2P2h components 
which lead to pion absorption. This means that the strength of the pion is spread in 
a wide region, unlike a free pion which has all its strength accumulated in one point 
(one energy for a certain value of q). The decay leading to the emission of one pion 
is drastically reduced in nuclei because of Pauli blocking. However, one extreme of 
the pion distribution in the nucleus could be saved from Pauli blocking, because we 
can have a smaller energy for the pion and correspondingly more energy for the 
nucleon, and thus this part of the nuclear pion spectrum could participate in the A 
decay. Technically we could say that the strength of a free pion, which is accumulat
ed in a 8 function, becomes now a Breit 
Wigner distribution and part of the tail 
will correspond to a Pauli unblocked 
situation. Since the width of the Breit 
Wigner distribution at low pion energies 
is mostly due to pion absorption through 
2P2h emission, the new mode would be 
observed as three particle emission from 
ANN~ NNN. This is depicted in Fig. 7. 

In order to see this analytically we 

N 

----V V ----------
Fig. 7. Schematic representation of the A decay 

coupling to 2p2h components through virtual 
(close to real) pion absorption. 
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go back to Eq. (9). F(k) is related to Im D(q). Assume we have 

ll(q0, q)=llph+ll,Jh 

as done in Ref. 1). Then 

Imllph + Imfl,jh 
1qo•_q2-tL2-m2. ImD(q) 
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(29) 

(30) 

Around the pion pole, when the denominator in (30) vanishes, Im fl,Jh is extremely 
small because there is little phase space for pion quasielastic collisions and the L1 is 
far off shell. In addition, there Im llph=O because a real pion cannot be absorbed by 
just one nucleon in nuclear matter. As a consequence we have a o like distribution 
which corresponds to a pion in the medium, renormalized by a real pion selfenergy 
Refl ~ llph + fl,Jh. Now, if in addition we consider the 2P2h part of the pion self energy 
leading to pion absorption we would have 

fl(q0, q)=flph+ fl,Jh+ fl2P2h (31) 

and now Im fl2P2h=I=-O for (q0, q) close to on shell pions. As a consequence we will 
have around the pion pole the following strength of the pion propagator 

D( ) ~ Imll2p2h 
Im q - ( o• 2 2 n n R n )2 +(I n )2 . q - q - fL - Ph- ,Jh -- e 2P2h m 2P2h 

(32) 

This is like a Breit-Wigner distribution in q0, except for the fact that ll2p2h depends 
explicitly on the variable q0 (and q). 

Since now there is overlap between Im ll2p2h and the pion pole one has to be 
cautious in the separation of the pionic width and the one associated to 2P2h emission. 
In Ref. 26) the calculations were done in infinite nuclear matter at normal nuclear 
matter density where the mesonic decay channel is forbidden. Hence, all the strength 
from Eq. (9) with Im D(q) from Eq. (32) was attributed to the 2P2h channel. In finite 
nuclei, where there is some mesonic decay allowed, Eq. (9) with the distribution of 
Eq. (32) accounts simultaneously for the mesonic and 2P2h excitation channel. The 
separation of the two channels can be done by calculating the contribution of the pion 
pole and associating it to pion emission, and then associating to the 2p2h excitation 
channel the difference between the width calculated with Eqs. (9), (32) and the width 
from the pion pole contribution. The pion pole contribution is calculated by means 
of Eq. (9) substituting ImD(q) by -;ro(q0•-q2 ~fL2 -Rell(q0, q)). This is the way 
followed in Ref. 27). In addition a more realistic input for ll2p2h is used in Ref. 27) 
taking care properly of the phase space available for the 2p2h excitation. 

The results of Ref. 27) indicate that I2P2h/rA ~0.30 for different nuclei from 12C up 
to 208Pb. In Ref. 26) this ratio had a value around 0.60 for values of the gA parameter 
compatible with those used in Ref. 27). 

Even with smaller values for I2P2h/rA than those of Ref. 26), the existence of this 
channel has important repercussions in the number of neutrons and protons emitted 
in the A decay process, a piece of information which is used to determine the ratio of 
proton to neutron induced A decay in the nonmesonic channel. It is clear that in view 
of the new results one cannot associate all nor P emerging from the experiment to the 
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primary An-+ nn or Ap--+ np reactions and hence a reanalysis of the experimental data 
is needed. This analysis requires the consideration of the A nonmesonic decay 
channel, which we have not addressed here, hence the reader is addressed to this 
paper27> for further details. 

Up to now the experiments for A decay have focused on two channels, the 
mesonic and the non-mesonic. In view of the former results and the fact that the 2P2h 
channel has a bigger strength than the mesonic one from nuclei like 160 up, it would 
be very interesting to conduct experimental searches for this channel too. 

§ 8. Conclusions 

We have made a review of the present situation concerning the mesonic decay of 
A hypernuclei. We have established the formal link between the propagator method, 
where the huge enhancement of the pionic decay width was first reported, and the 
finite nuclei approach with wave functions and matrix elements. Shell effects and 
precise values of the nuclear binding energies are also important in the mesonic width 
and they are best taken into account in the finite nuclei approach. The intuitive and 
appealing, but fallacious, link between the nucleon occupation number and the 
mesonic width has also been discussed, which has served to unveil rough approxima
tions used in other processes to link the pion excess number with contributions of the 
nuclear meson cloud to some physical observables, like K+ nucleus scattering. We 
have also discussed the relevance of the short range AN repulsion in the mesonic 
width of light hypernuclei and showed how the repulsion provided by quark models of 
the AN interaction can naturally account for the present experimental widths. 
Finally we have discussed the A decay induced by pairs of nucleons through the tail 
of the pion distribution in the nucleus, which "cheats" the Pauli blocking and leads to 
a three nucleon decay channel, ANN--+ NNN. 

With the limited amount of experimental data available on the mesonic channel, 
the amount of physical information obtained is remarkable. There is support for 
strong AN repulsion at short distances providing indirect support f0r quark models 
of the AN interaction; the process provides us with the most striking renormalization 
effect due the pion nucleus interaction. Furthermore, the "cheating" of Pauli block
ing by the 2P2h induced decay can provide good information on the coupling of the 
pion to these nuclear components, a very valuable complement to real pion absorp
tion, etc. The sensitivity of the A decay to the pion nucleus optical potential can also 
serve as a tool to choose between different theoretical descriptions of the complex 
mechanisms of pion nucleus interaction. The decay channel into 1r0 can be an 
excellent instrument to learn about 1r0 nucleus interaction, and so on. 

It is clear that a systematic experimental search in many nuclei of the mesonic 
decay channel and its related 2p2h induced decay mode will provide us with very 
valuable information to unravel the intricacies of the pion nucleus interaction or the 
elementary properties of the AN interaction, as well as proper nuclear structure 
details of the A hypernuclei themselves. 
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Abstract 

Two types of coherent pion production in heavy-ion collisions are studied and calculations are 
performed for ‘*C against ‘*C collisions. The first one, doubly coherent production, produces a 
pion in one nucleus leaving it in its ground state, while the second nucleus is excited to the 
I’, T = 1 state. The second process, semicoherent production, also leaves in its ground state 
the nucleus where the pion is produced while the second one is broken. The cross sections for 
forward pions are compared to the standard incoherent production process. We observe that at 
energies below 130 MeVIA the semicoherent process dominates the cross section for forward 
pion angles while at large energies around 800 MeVIA it represents a fraction of around 30% of 
the incoherent cross section. The doubly coherent process leads to smaller cross sections, still in 
the measurable range for energies above 200 MeVIA. 

PACS: 25.10.-z; 25.40.Qa 

1. Introduction 

Pion production in heavy-ion reactions has been extensively studied both experi- 
mentally [ I-71 and theoretically [ 8-151. Many of the efforts have been devoted to 
the interesting phenomenon of subthreshold pion production [ 2-71. The fact that pion 
production is forbidden for a simple NN collision has stimulated a large number of 
works where either the role of Fermi motion or some cooperative phenomena between 
the nucleons has been exploited in order to understand the data [ 16-221. The differ- 
ent mechanisms, however, rely upon elementary cross sections but possible coherent 

037%9474/96/$15.00 Copyright @ 1996 Elsevier Science B.V. All rights reserved. 
PIISO375-9474(96)00299-O 
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T=)___‘;f=W 
T=O T=1/2 

b) 

Fig. I. Two mechanisms for A excitation in ((Y, a’) collisions on the proton. (a) A excitation in the projectile: 
(b) A excitation in the target (forbidden by isospin). 

phenomena, in the quantum mechanical sense, where the individual contribution of the 
nucleons is summed up in the amplitudes, is ignored. One exception is the work of 
Ref. [ IO] where the explicit coherent excitation of the l+, T = 1 state in one of the nu- 
clei is studied in detail, while an incoherent sum over the contributions of the nucleons 
in the other nucleus is done. 

The present work continues the line started in Ref. [IO] and considers two new 
mechanisms of coherent production: 

(i) Doubly coherent production, in which one of the nuclei is excited to the l+. T = 1 
state, while the second one is left in the ground state. 

(ii) Semicoherent production in which one nucleus remains in the ground state and 
the second one is broken. 

The equivalent problem in the proton-nucleus case is coherent pion production in- 
duced by protons. This problem, and the related one in the ( 3He,t) reaction, has attracted 
much attention lately, with the theoretical observation that a sizable fraction of the pions 
produced in pA or ‘HeA collisions corresponds to coherent pion production where the 
target nucleus is left in its ground state [23-2.51. Partial experimental results in the 
(3He,t) reaction [ 261 and p-nucleus collisions [27] confirm the theoretical findings. 
More devoted experiments are now under way [ 28,291. Some interesting features arc 
attached to the coherent pion production: (i) the reaction is basically sensitive to the 
longitudinal part of the spin-isospin interaction in the NN + NA transition; (ii) the 
pions are produced in a narrow cone along the direction of the (p,p’) momentum 
transfer and preferably forward when the p’ goes in the forward direction; (iii) the 
energy distribution has a A peak considerably shifted towards lower excitation energies 
with respect to the free A peak in the NN --f NA reaction. This latter feature is partly 

responsible for the shift of the A peak observed in the (“He,t) reaction on 12C [ 30,3 11. 
The most striking experimental evidence of coherent pion production comes from the 

(a, a’) reaction on proton targets [ 321. In this experiment, aimed at looking for the 
Roper excitation, one finds a much larger A peak which correspond to A excitation in the 
projectile. Indeed the A excitation in the p target is forbidden by isospin conservation 
as shown in Fig. 1. Thus the A excitation peak in this experiment can be interpreted 
as coherent pion production on the 4He nucleus, since a pion is produced in the p4He 
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collision leaving the nucleus of 4He in its ground state. 
In Ref. [ 331, a model for the (a, cu’) reaction, consistent with the scheme used to 

evaluate coherent pion production in [25], was used and the experimental data were 
well reproduced. The same model will be used to describe the doubly coherent and 
semicoherent pion production processes. The results are compared with the incoherent 
production mechanisms generated by means of a cascade procedure as done in [ 34,351. 

One of the findings of the calculations is that at high energies the semicoherent pro- 
cess provides a sizable fraction of the forward produced pions and at energies below 
130 MeVIA it dominates over the incoherent production mechanisms. The pion en- 
ergy spectra has also peculiar features which should help identify experimentally this 
interesting source of subthreshold pion production. 

The paper proceeds as follows. In Section 2 we show the scheme to calculate the 
doubly coherent pion production. In Section 3 we study the semicoherent pion production 
mechanisms and in Section 4 we outline the method used in Ref. [ 341 to produce pions 
incoherently. The results are shown in Section 5 and some concluding remarks are made 
in Section 6. 

2. Doubly coherent pion production 

The process we study is 

A+A+A(T=l)+A(g.s.)+?r”, (1) 

where A is a spin-isospin saturated nucleus for simplicity. We shall work out the specific 
case with the nucleus of 12C, Thus the reaction we study is 

l2c+ 12c ~ 12 C*(Y = 1+,7’= 1,15.11 MeV) + 12C(g.s) +?r” (2) 

The process is depicted in Fig. 2. The projectile 12C emits a virtual pion exciting the 
12C*. The virtua 1 p’ ‘on interacts with the 12C target and becomes a real pion leaving the 
target nucleus in the ground state. Note that a T = 1 state in the projectile has to be 
necessarily excited in the mechanisms depicted in Fig. 2. 

The analogy with the coherent pion production on 12C with the (3He,t) reaction is 
complete, with some minor differences: 

(i) A r” is produced instead of a rTT+ ‘n the (3He,t) case. Technically this means a 
fi isospin factor is now replaced by 1. 

(ii) The (3H e,t ) transition form factor is now replaced by the ( 12C, 12C*) transition 
form factor. 

(iii) The kinematics is adjusted to the ( 12C, 12C*) reaction. 
(iv) The distortion of the 3He, or t waves through 12C is now replaced by the distortion 

of the 12C or 12C* through 12C. 
We can thus use the results from Ref. [25] implementing these minor changes here. 

We thus save details on the derivation of the formula which can be seen in [ 251. 
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Fig. 2. Mechanism for coherent pion production on the 12C target in ‘*C scattering against ‘*C, leading to 
the I+, T = I excited state of 12C in the projectile. 

We find then, assuming for the moment that the ‘*C* is formed from the beam 

where 

d3X& (+$c(~)~c,c*(&$, 

(3) 

(4) 

where n’“’ 17’“) are the s-wave and p-wave parts of the pion 12C optical potential 
written as 

n(r) = ZIPS) (r) + VP’( r)V (5) 

and VL, Vi the longitudinal and transverse parts of the spin-isospin interaction 

2 

v;(q) = @? _ i2 _ 
P2 

F*(q) + 8’3 

2 

G(q) = @Z _ ;2 _ m:pq%&J +R’ 

(6) 

(7) 

F(q) is the TNN vector form factor and F,(q) the pNN one. They are taken of the 
monopole type with A,, = 1300 MeV and A,, = 1400 MeV and C, = 3.96 [ 361, g’ = 0.6. 
qb,*,,(p,, x) is the outgoing pion wave function, taken as a solution of the Klein-Gordon 
equation with the potential of Ref. [ 371. ticI is the unit vector in the spherical base and 
Fc,c* (q) the transition C, C* form factor, which can be obtained from Ref. [ lo] or 
from the appendix of Ref. [ 381 
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F(q) = $& 1 + -& ey2f4a2, ( > (8) 

where the factor 8 which appears in the usual form factor in the nucleus rest frame (or 
better the Breit frame) has been substituted by -q2 to allow us using it in any frame of 
reference. In Eq. (8) a2 = 0.37 fmd2 is the 12C oscillator parameter. The factor zJM.q 
which appear in the C, C* form factor induced by the pion has been incorporated in 

Eq. (4). 
Since the process is coherent and we do not want any of the nuclei to break, we must 

use proper distorted waves and hence we have in an eikonal approximation [25] 

~c*(x)~c(x)=exp(i(pc-pc*)x)exp -i frr(l-irl)p(6,z’)dz’ 
I I 

, (9) 

-co 

where g is the 12CN total cross section (the elastic part removes flux when the target 
is broken and the inelastic one when the projectile is broken) and 7 = 0.275 is the ratio 
of the real to imaginary part in the NN interaction, which in practice plays a negligible 
role here. In Eq. (9) fi is the convoluted density of 12C-12C normalized to A and the 
12CN total cross section is again calculated with the Glauber formula 

with UNN = 40 mb and pc the 12C density. 
In order to care about the Lorentz invariance of the TM matrix, the factor dm 

is implemented in Eq. (4) since the transition form factor is calculated with the aq 
nonrelativistic vertex, and furthermore q in V[, Vi is evaluated in the frame where 
(q + ply) is at rest [25], with pN an average nucleon momentum in the 12C target 
nucleus. 

In order to make connection and use the same formalism as in the former work of 
coherent pion production we have assumed the coherent pion production taking place 
in the target and the 12C* excitation occurring in the projectile. We can easily get 
the contribution of the symmetrical case where the coherent pions are produced in the 
projectile and the excitation of the 12C occurs in the target. The easiest way to implement 
this is to recall that 

s d3p, 1 
0-z - 

(27T>3 2w,F(z), (11) 

where F( z ) is an invariant magnitude under collinear frame transformations, since both 
u and J d3p,/w, are then invariant. Hence in another collinear frame 

da = & do 
d&,, d6, P,, dw,rdf&r ’ ( 12) 

In order to get the frame where the pions are produced coherently in the beam we 
make two steps. From the former frame we pass to the frame where the original 12C 
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of the beam is at rest. The next step makes a rotation of angle r around the y axis 
(perpendicular to the z, axis and in the scattering plane of the pion) so that the 12C 
where the pions are produced approaches the target from the left (instead of the right 
after the boost). In the boosted frame where the original 12C of the beam is now at rest 
we have 

P:,= [($-l)~-&J~+p,, (13) 

where the subindex A is referring to the 12C of the original beam. If we limit ourselves 
to the forward direction and after the rotation is made we find 

(14) 

As we shall see later, at TA/A = 100,200,500 MeV and 0’ the peak of the pion kinetic 
energy distribution is around 35, 100, 200 MeV, respectively. Then pa corresponding 
to these pions is negative and corresponds to backward propagating pions. We thus 
conclude that the coherent pions produced in the projectile move mostly backwards in 
the lab frame and contribute little to the forward pion cross section. The main source of 
forward pions corresponds then to pions produced coherently in the 12C target. 

3. Semicoherent pion production 

Now we study the process 

‘2C+‘2C+‘2C+X+7r (15) 

and we will consider 7r”, 7~+ and rr- production. X will account for all excited states of 
12C going mostly to nucleon emission. In our approach we shall consider that the 12C 
as a whole collides with one nucleon of the target, exciting it above the Fermi sea. and 
will sum the contribution (incoherent since the nucleus breaks) of all nucleons in the 
target. We also consider the direct contribution of two nucleons in the target, following 
the approach of Ref. [39] to account for two-nucleon induced n decay in nuclei, which 
has been recently revised in [40]. 

3.1. One-nucleon mechanism 

We assume first that the coherent production of pions occurs in the projectile and the 
breakup in the target. Later on we shall consider the opposite case. It is then instructive 
to show explicitly the process of coherent pion production in the projectile. Based on 
the observation that the pion-nucleus optical potential is dominated by A excitation 
we can write the mechanism for coherent pion production in the projectile with the 
diagrammatic representation of Fig. 3, which is used to study the ( LY, cu’) reaction on 
the proton in Ref. [ 331. 
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Fig. 3. Model for coherent pion production on the projectile in the scattering of ‘*C against one nucleon of 
the 12C target. 

The cross section for the process depicted in Fig. 3 for a 7r” production is given by 

-=&J%J d3p,, MC MC, A4 M 1 __---- 
(21~)s EC EC! EN EN’ 2~,, 

xFc(P~~,~)~E~ [Tj2(2~)6(Ec -EC/ + EN -EN, -CO,). ( 16) 

In order to account for the contribution of all nucleons in the target nucleus, consid- 
ering Pauli blocking and Fermi motion, and taking M/EN, M/EL = 1 for the nucleons 
of the target we write 

c %-S(Z) -4 
iEF J +$,,,,,l -dk+C7)l~&3°+ EN(k) -E~(k+q)) 

=_ - J d3rImU(qo,q,p(r)), (17) 

where U(q”, q) is the Lindhard function for ph excitation [41], with the normalization 
of the appendix of [42] and 

q”=Ec - EC! -w,, 

4’Pc -PC, -p,> 

Hence 

(18) 

da M&r d” JJ d3pcj I 
dw,d& = (2r)“pc r 

-- 
(2~)~ EC, 

where CC (Tl2 is given in analogy to [33] by 

(19) 

(20) 
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where I$‘, V,’ are given by Eqs. (6), (7) and pKM is the pion CM momentum in the 
frame where the A in Fig. 3 is at rest. 

In Eq. (19) we also have the ‘*C form factor which is given by 

FC(PP, 9) = FC(PC - PC,) 

= J’ d3R exp (i(pc - pc,)R) J’d3r’p(r’)ip(R - r’) 

1 
xexp -- 

( J’ 2 
d*sa&-(s)T(b - s) , 

> 
(21) 

where pc, pc,, are written in the rest frame of the 12C of the beam, (TNN the NN total 
cross section, b is the impact parameter for the variable R and T(s) is the thickness 
function. This is the formula of Czyz and Maximon [43] which takes into account the 
distortion of the 12C of the beam by the ‘*C of the target, and explicit formulas for its 
evaluation in 12C are given in Ref. [ lo] (Eq. (3.51)). The pion wave should also be 
distorted. In practice, given the highly peripheral character that the distortion of “C by 
‘*C gives to this reaction, the distortion of forward pions is small. This is particularly 
true at low energies when the pions come with small energies for which the distortion 
is negligible. 

Once again we must ask ourselves what is the contribution from coherent pion pro- 
duction in the target. For this purpose we repeat the arguments which led from Eqs. ( I I ) 
to ( 14). As we shall see later, now the momenta of the forward pions are very small. 
For instance at TA/A = 100, 200 MeV the pion energy distribution peaks at around pion 
kinetic energies of 10, 25 MeV. By means of Eq. (14) one sees now that 11, is smaller 
than L’A and hence p7F has the same sign as pp and we get a contribution for pions prop- 
agating forward. This contribution is, however, small, 20% increase of the cross section 
at TA/A = 100 and 6% at TA/A = 200 with a tendency to give smaller contributions at 
higher energies. However, we also get backward-going pions in the frame moving with 
the projectile. All these correspond to forward pions after the boost and the rotation 
(Eq. ( 14) ). We will show the corresponding contributions in the results section. 

3.2. Two-nucleon mechanism 

We have also evaluated the contribution from the excitation of 2p2h in the target, 
by replacing Im U by the corresponding pion polarization function for the excitation 
of 2p2h. The expression of this function in terms of the ordinary Lindhard function 
is given in Ref. [44] and the normalization is chosen such as to get the experimental 
strength of the imaginary part of the pion-nucleus optical potential for pionic atoms, 
following the same steps as in [ 39,401. We found negligible results for this contribution 
and for this reason we omit further details. 
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4. Incoherent pion production 

The incoherent pion production is based on the microscopic transport model of heavy- 
ion reactions. The first pion production with the transport model was carried out by 
the cascade model [45]. The cascade model simulates heavy-ion collisions at high 
bombarding energies on a microscopic level by treating nucleus-nucleus collisions as a 
superposition of independent two-body BB collisions (B stands for either a nucleon N 
or a delta resonance A ) . 

In the cascade model the Fermi motion cannot be implemented in a consistent way. 
Later on G.F. Bertsch et al. studied pion production by the BUU equation [46]. In the 
BUU model the Fermi motion, nuclear selfconsistent mean fields and Pauli blocking are 
included. 

In our calculation of pion production, we employ the QMD model [34] which is 
widely used by the FOP1 collaboration. Instead of the test particle method used in 
solving the BUU equation, in the QMD model one uses N-particles (N is the total 
mass number of the projectile and the target) for the simulation for each event. In order 
to reduce the numerical fluctuations of the mean field, one describes each particle by 
a Gaussian wave packet. In this model, the Hamiltonian for the system is given by a 
Skyrme-type NN interaction consisting of two-body and three-body interactions: 

"IOC 
= t,6(r, - r2) + tqqr, -r2)8(r, -t-3). (22) 

By folding the Gaussian wave packet, one obtains the Hamiltonian for the system as 

@MD = 
N exp (-(Co - 'jOj2/4L) 

I 
Y 

exp (-(CO - rj012/4L) 1 , (23) 
where the index “0” refers to the center of the Gaussian and po is the normal nuclear 
matter density (~0 = 0.17 fm-“) . 

The three-body term in Eq. (22) can be extended using a density-dependent interac- 
tion giving an arbitrary y for the nuclear equation of state (EOS) in nuclear matter [ 341. 
L = 1.08 fm2, CX, p and y, the parameters appearing in Eq. (23), are listed in Table 1. 
The evolution of the particles is governed by the classical Hamilton equations of motion. 

In light colliding systems such as the 12C + 12C collisions considered in this paper, 
one does not expect to obtain a high-density zone. A series of studies on pion production 
shows that pion production has a weak dependence on the nuclear EOS [35]. We use 
the parameter of the soft EOS in our calculations. In our pion production, we emphasize 
the role of Fermi motion and the role of the delta resonance. The delta resonance can 
be produced, propagated and annihilated in the simulation of the HI reaction. The pions 
are produced through the decay of all delta’s at freeze-out, which is defined as the final 
state where there is no interaction between any two particles [46]. 
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The parameters of the Skyrme parametrization for the equation of state and the incompressibilities 

(Y (MeV) P (MeV) Y K (MeV) 

soft -356.0 303.0 716 200.0 
hard - 124.0 70.5 2 380.0 

The collision term in QMD is treated in the same way as BUU, i.e. we use the so- 
called Cugnon parametrization. Two particles may undergo scattering if they approach 
each other with a minimum distance of less than dw, 

I r;o - ‘;ol 6 hn,, = J dot ( 4) 
VT . 

where atot is the total free NN cross section. The Pauli principle is included by Monte 
Carlo methods. 

In the Cugnon parametrizations the A resonance is included. So we have the following 
processes during the time evolution of the nucleus-nucleus collision: 

N+N+N+N, N+A+Ni-A, A+-A-A-k-A, 

N+N+N+A, N+A+N+N. 

For elastic channels: 

N+ N--t NiN (a), 
elastic : N+A--+N+A (b), 

A-tA-+A+A (c), 

we use, for the total cross section and the differential cross section: 

/ flP_l(d) = 55 [mbl, & < 1.8993 GeV, 

= 20+ 
35 

[mb] , q’? > 1.8993 GeV, 
1+100(&- L8.893) 

angular distribution : - 0; eh’, t=-2&l -case), 
(24) 

dt 

b(A) = 
6[3.65(,& 1.866)16 

\ 1 + [3.65(&- 1.866)16’ 

We have two inelastic channels: 

N+A (d), 
N+N (e>. 

For the A excitation channel (d) , we use the total and differential cross sections ob- 
tained by the one-boson-exchange model [47], i.e. the total cross section of NN --) NA 
is parametrized as 
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Fig. 4. The factor H( 4) of Eq. (29) appearing in the modified detailed balance formula of Eq. (26). 

uNN-+NA (A) = 0, fi 6 2.014 GeV, 

= 1341(& - 2.014)2.8’9 [mb], 2.014 < fi < 2.20 GeV, 

= 18.51 - 235.2(& - 2.370)2 [mb], 2.20 < fi < 2.45 GeV, 

= 1591(&)-4.957 [mb], 2.45 < fi < 4.50 GeV 

and the differential cross section of NN + NA is given by 

b= 

= 

angular distribution of NN --+ NA : 
dc - c( ehlnss] with 

dcos0 
19.71(& - 2.014) 1.55’, 2.014 < fi < 2.43 GeV, 

33.41 arctan[0.5404( fi - 2.146)“.9784], 2.43 < & < 4.50 GeV. 

(25) 

(26) 

Since the delta resonance has a width, the cross section for NA --+ NN obtained from 
detailed balance from the NN -+ NA must take into account that NN + NA reaction is 
restricted to A masses with mp < fi - mN. In our work, we have taken this into account 
and have improved the A absorption by the method of “extended detailed balance”, which 
has proved to be important in the description of eta and dilepton production [48]. 

Therefore, the cross section for the A absorption, i.e. channel (e), can be obtained 
from the cross section of N + N + N + A with the use of the extended detailed balance 
principle: 

(27) 

where fi is the invariant mass of two colliding baryons: 

h= i/w, +E2)2- (PI +I%p. 
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Fig. 5. drr/ dR for pion production at 8 = 0” in r2C-“C collisions as a function of the incoming energy of 
the projectile. The upper solid curve corresponds to incoherent pion production, omitting the A width in the 
detailed balance of Eq. (27). The lower solid curve corresponds to incoherent pion production including the 
A width in the detailed balance equation. The dashed curve corresponds to semicoherent and the dotted one 
to doubly coherent pion production. 

The mass distribution factor F(M2) is given by 

F(M2) = !- mrf( M) 
5i- (M2 - m2)2 + m2P( M) ’ 

m, = 1.232 GeV 
r r 

with 

f(M)=& (EN+MNQ 
mAm?i 

,,,> &NA = 2.12, 

which can be obtained from the interaction Lagrangian 

c nNA = &!!A ZTN.~,~ + h.c. 
rnr > 

and 

q,v= J 
[M2 - (MN + MT)~] [M2 - (MN - MT)~] 

2M 

The factor 

(28) 

(29) 

(30) 

( &9?l,v)2 

H(h) = s F( M2) dM2 

(nW+n7,)2 

(31) 

accounts for the mass distribution of the A with finite width, and is plotted in Fig. 4. Due 
to the energy dependence of the width, the asymptotic value of this factor is slightly less 
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Fig. 6. da/ dEdR at 100 MeV/A and 0” of the pion as a function of the pion kinetic energy for the doubly 
coherent process of pion production. 

than 1. We see that this factor decreases rapidly near the threshold. As a consequence, 
the A’s are more strongly absorbed by the nucleons near the threshold as compared with 
the conventional detailed balance. 

We have proton-neutron symmetry in the t*C + ‘*C collisions, therefore the proba- 
bilities of rr+, rr” and 7~~ are equal in the present approach. 

5. Results and discussion 

In Fig. 5 we show the results for the doubly coherent, semicoherent and incoherent 
cross sections at zero degrees for the pion. 

The two solid curves in the figure refer to incoherent pion production. The upper one 
neglects the A width in the detailed balance formula of Eq. (27). The threshold obtained 
with this prescription, around 50 MeV, is similar to the one obtained in Ref. [46]. The 
use of the extended detailed balance formula, Eq. (27)) moves the threshold at higher 
energies, around 120 MeV and reduces the cross section at all energies. The incoherent 
pion production dominates clearly the reaction at energies above 130 MeVIA, which 
is the lowest energy where we found a nonzero cross section from the simulation. At 
120 MeV we found no incoherent events. 
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Fig. 7. Same as Fig. 6 for 200 MeV/A 

The trend of the incoherent cross section in Fig. 5, allowing for some statistical 
uncertainties below 130 MeVIA, indicates that the semicoherent cross section will 
dominate the pion production cross section at energies around 100 MeVIA, while the 
doubly coherent process will dominate below 80 MeV/A. 

This behaviour in the subthreshold region can be understood in terms of the masses of 
the particles involved. In the incoherent case the pion production comes from individual 
collisions. In NN collisions with a nucleon at rest the N threshold energy to produce a 
pion is TN = 289 MeV in the lab frame. Fermi motion and successive collisions with 
A’s in the intermediate states lower effectively this threshold as one can see from the 
figure. On the other hand, for the semicoherent process the collision is of a nucleon on 
the nucleus. In such a case, assuming free kinematics for the nucleon, the threshold for 
pion production in 12C is TN = 152 MeV. Obviously, Fermi motion lowers effectively 
this threshold. In the doubly coherent process the threshold for pion production is even 
lower, since it corresponds to nucleus-nucleus collisions with the nuclei unbroken in the 
final state. In this case the threshold energy is TA/A = 23 MeV. 

The cross section for the coherent and semicoherent channels are weakly dependent 
on the lrNN from factor. We have checked that lowering A, from 1300 to 1000 MeV 
reduces these cross sections in less than 10%. 

At energies around 200 MeVIA and up the cross sections for the semicoherent 
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Fig. 8. Same as Fig. 6 for the semicoherent process. 

reaction are relatively large and can be measured through techniques like the one used 
for the (LY, cr’) experiment on the proton [32], although the smaller energy gap for the 
excitation of t2C with respect to 4He makes the identification of 12C in its ground state 
more difficult. 

The identification of the doubly coherent process is certainly more difficult. However, 
techniques to detect the excited 12C* (J = l+, T = 1, 15.1 MeV) state in 12C + 12C 
collisions have already been developed [ 491. 

One of the peculiar features of the doubly coherent and semicoherent reactions are 
the energy distributions. In Figs. 6, 7 we show the results for da/ do, da,, at 0” for the 
doubly coherent process as a function of the pion kinetic energy for EA/A = 100 and 
200 MeV respectively. At 500 MeVIA the distribution is similar but the peak appears 
at T,, = 200 MeV. 

On the other hand in Figs. 8, 9 we show the same distributions coming from the 
semicoherent process. We observe that the pion distributions peak at lower energies in 
the semicoherent process than in the doubly coherent one. 

In Fig. 10 we show the pion energy distribution at 200 MeVIA for the incoherent 
process. As we can see, the pion distribution peaks at higher energies than in the 
semicoherent case and resembles more to the one of the doubly coherent scattering. 

In the semicoherent process, Figs. 8, 9, we see a double hump in the energy dis- 
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Fig. 9. Same as Fig. 7 for the semicoherent process. 

tribution. The peak at lower energies corresponds mostly to pions which are emitted 
coherently from the projectile, while the peak at higher energies corresponds to pions 
which are emitted coherently from the target. We can also see that the position of this 
second peak corresponds approximately to the position of the peak in the doubly co- 
herent process, which, as we discussed, proceeds mostly through pion production in the 
target. 

Coherent pion production takes place preferably in the forward direction. Indeed, 
in (p, p’) reactions, on a nucleus, the coherent pions are produced mostly along the 
direction of the (p,p’) momentum transfer and there is a momentum mismatch between 
the momentum of the virtual pion produced in the first step and the real pion coming out 
after the interaction with the nucleus (momenta 4 and p, respectively in Fig. 2). This 
momentum mismatch is taken by the nuclear momentum distribution and the nuclear 
form factor comes as a reduction factor in the cross section. For a given energy of the 
pion the momentum mismatch in (p,p’) grows as the angle of the p’ increases and as 
consequence the cross section decreases. Hence, the preferred direction for the coherent 
pions is forward. 

The case is different in the incoherent process. At large energies the angle distribution 
is smooth but still the largest cross section is for forward pions. 

E,/A=ZOO MeV- 
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Fig. 10. Same as Fig. 7 for incoherent pion production. 

6. Conclusions 

We have studied three types of pion production: doubly coherent, semicoherent and 
incoherent. The traditional approach for pion production in heavy-ion reactions has been 
cascade calculations, or the use of transport equations, in which some kind of cooperation 
between nucleons occurs, but the steps are based on two-body cross sections of NN, NA 
or AA. Some coherent effects, in which the contribution of the nucleons to the amplitude 
is summed, were already considered in [lo] in ‘*C collisions against ‘*C, where the If, 
T = 1 state was excited in one nucleus while the other nucleus was broken. Here we have 
studied two new possibilities of coherent production, both of which involve fully coherent 
pion production in one of the nuclei, which remains in its ground state, thus all nucleons 
of the nucleus collaborate coherently to the pion production. In one of the cases the sec- 
ond nucleus was excited to the If, T = 1 state while in the other case the second nucleus 
was broken. We observe that the doubly coherent scattering leads to smaller cross sec- 
tions than the semicoherent or the incoherent processes, but for energies of the projectile 
around or larger than 200 MeVIA leads to cross sections in the measurable range. 

These findings should stimulate the search of this new kind of highly cooperative 
phenomena in heavy-ion reactions, going beyond the gross features of these reactions 
which are largely dominated by a succession of incoherent processes. 
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Abstract

A semiphenomenological approach to the nucleon self-energy in nu-

clear matter at finite temperatures is followed. It combines elements of

Thermo Field Dynamics for the treatment of finite temperature with

a model for the self-energy, which evaluates the second order diagrams

taking the needed dynamics of the NN interaction from experiment.

The approach proved to be accurate at zero temperature to reproduce

ImΣ and other properties of nucleons in matter. In the present case

we apply it to determine ImΣ at finite temperatures. An effective NN

cross section is deduced which can be easily used in analyses of heavy

ion reactions.
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1 Introduction

The imaginary part of the nucleon self-energy Σ has been the subject of intense
research in the past [1]. However, these studies have been done at zero temper-
ature, of relevance for physical processes involving nucleon-nucleus scattering.
On the other hand, in heavy ion collisions, through multiple collisions of the
nucleons, one reaches conditions roughly similar to those of a thermal bath at
finite temperature [2]. The imaginary part of the nucleon self-energy in such a
bath is an important magnitude which governs processes of nucleon emission,
particle production and, in principle, most of the nuclear processes occurring
during heavy ion collisions, including the rate of thermalization.

The many body field theoretical treatment at finite temperature becomes,
however, technically more involved than at T = 0. At the root of it lies the
fact that particle annihilation operators do not give a vanishing result when
applied to the ground state of the system, which is now a thermal distribution.
This does not allow one to use the Wick theorem to generate the Feynman
diagrammatic perturbation expansion, as we know for many body systems at
T = 0, or in ordinary Quantum Field Theory in the absence of a medium.
Yet, even if more complicated, the methods to deal with it are available. The
traditional approach has been the one of the imaginary time formalism [3, 4],
although lately the new method in real time formalism known as Thermo Field
Dynamics [5, 6] is proving quite efficient and becomes more and more widely
used. A recent review on Thermo Field Dynamics with some applications to
nuclear matter looking at collective modes and delta propagation in matter
is presented in ref. [7]. A covariant formalism at finite temperature unifying
the good features of the two formalisms is presented in ref. [8], with some
application to nuclear matter within the relativistic Walecka model [9].

Detailed analyses of nucleon properties along the lines of ref. [1] are avail-
able at finite, but small temperatures T ≤ 10MeV [10, 11]. Neither of the two
approaches mentioned above is followed, but instead the smallness of the tem-
perature justifies some approximations by means of which one finally follows
the steps at T = 0 substituting the Pauli distribution n(~k) (1 for |~k| < kF , 0

for |~k| > kF ) by the thermal distribution

n(k0) = [1 + exp(
k0 − µ

kBT
)]−1 (1)

with kB the Boltzmann constant, k0 = ε(~k) the nucleon energy and µ the
chemical potential. The results of [10] are improved in [11] by considering the
correlation diagrams which lead to a large contribution to ImΣ at momenta
below the Fermi momentum. Similar steps are followed in ref. [12] to deal
with the propagation of the ∆ at finite temperatures.

The appeal of Thermo Field Dynamics is that one can continue to use
Wick’s theorem and the Feynman diagrammatic approach as at T = 0. The
price is the introduction of an auxiliary field by means of which one constructs

2



a field doublet; the propagators become 2 × 2 matrices and the Feynman rules
are now algebraic operational rules in the space of 2 × 2 matrices.

In the present work we shall evaluate the imaginary part of the nucleon
self-energy at finite temperature. In doing so we shall be following closely the
steps of ref. [13], where ImΣ was evaluated for nuclear matter at T = 0.
The approach used in [13] was semiphenomenological, much in line with usual
approximations done in the treatment of heavy ion collisions where the results
obtained here are bound to be of relevance. The approach of [13] evaluated
correctly the second order nucleon self-energy diagrams but bypassed the use
of an explicit NN potential. Instead, it used the fact that the sum of ladder
diagrams in the low density limit provides the NN scattering t matrix, and
its modulus squared, which appears in the evaluation of ImΣ, is related to
the NN cross section. Hence the experimental cross section was used as input
and the low density theorem [14, 15] was automatically fulfilled. This theorem
states that, as the nuclear density goes to zero, one has

ImΣρ→0 = −1

2
σtot v ρ (2)

where v is the velocity of the nucleon in the rest frame of the Fermi sea and
σtot the total NN cross section. Long range correlations were also considered
by means of an RPA sum with a phenomenological particle-hole interaction
acting in the spin-isospin transverse channel. The approach proved to be nu-
merically quite successful by comparing the results with those of elaborate
and time consuming many body approaches like those of refs. [16, 17]. Spec-
tral functions and occupation numbers were also evaluated in [13] and were
very similar to those obtained in other successful many body approaches with
special emphasis in selfconsistency [18].

As with respect to the finite temperature treatment, we use the Thermo
Field Dynamics approach by following the formalism, normalization and rules
of ref. [19], where a comprehensive and practical extract of this method is
presented.

2 Finite temperature formalism for the nu-

cleon self-energy

By following ref. [19] we have the thermal doublet for the nucleon field

ψ(a)(x) ≡
{

ψ(x)

i tψ̃†

}

(3)

where ψ(x) is the ordinary nucleon field and ψ̃ a support field for the formalism
(t means the transposition with respect to the spinor index and † stands for
conjugate). The thermal propagator is now defined as

iG(a,b)(x1, x2) =< 0(β)|T [ψ(a)(x1)ψ̄
(b)(x2)]|0(β) > (4)

3



where |0(β) > is the state transformed from the vacuum by a Bogoliubov uni-
tary transformation, and which has the property that the expectation value of
an operator in this state is equivalent to its thermal average with the distri-
bution of eq. (1). Hence the component of the Green’s function, G(11), is the
proper thermal average of the ordinary Green’s function.

The thermal free propagator, to be used in perturbation theory in the
nonrelativistic approximation which we shall follow here, is given by

G0 (ab)(p) = G
0 (ab)
F (p) +G

0 (ab)
D (p) (5)

with

G
0 (ab)
F (p) =

(

G0
F (p) 0
0 G0∗

F (p)

)

; G0
F (p) =

1

p0 − ε(~p) + iǫ
(6)

G
0 (ab)
D (p) = 2πiδ(p0 − ε(~p))





sin2θp0
1
2
sin2θp0

1
2
sin2θp0 −sin2θp0



 (7)

cosθp0 =
1

(1 + e−x)1/2
; sinθp0 =

e−x/2

(1 + e−x)1/2
; x =

p0 − µ

kBT
(8)

sin2θp0 =
1

ex + 1
= n(p0) (9)

This Green’s function is in addition diagonal in spin but we omit the spin
indices for simplicity.

An alternative way of writing this propagator which is also suited to write
the exact propagator is

G0(ab)(p) =

[

UF (p
0)

(

G0
F (p) 0
0 G0∗

F (p)

)

U−1
F (p0)

](ab)

(10)

with

UF (p
0) =

[

cosθp0 sinθp0
−sinθp0 cosθp0

]

(11)

and the exact propagator can be cast as

G(ab)(p) = UF (p
0)

(

[p0 − ε(~p)− Σ̄(p)]−1 0
0 [p0 − ε(~p)− Σ̄∗(p)]−1

)

U−1
F (p0)

(12)
with ε(~p) the kinetic energy of the particle and

ReΣ̄(p) = ReΣ(11)(p)
ImΣ̄(p) = ImΣ(11)(p)/cos2θp0

(13)
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In particular the G0(11)(p) component has an intuitive form given by

G0(11)(p) =
1− sin2θp0

p0 − ε(~p)− Σ̄
+

sin2θp0

p0 − ε(~p)− Σ̄∗
(14)

which in the limit of T = 0 reproduces the standard form of the nucleon
propagator in a Fermi sea.

Hence in order to obtain the self-energy Σ̄(p) which renormalizes the nu-
cleon propagator, only the thermal component Σ(11) needs to be evaluated. In
the next section we show the approximation scheme that we follow to evaluate
this magnitude.

3 Semiphenomenological model for Σ

This section follows closely ref. [13]. The generic Feynman diagram which
we evaluate is the one in fig. 1, where the nucleon propagator in each of the
baryonic lines is given by eq. (5). Note that in the limit of T = 0, and with
the conventional separation of particles and holes, the usual polarization (fig.
2a) and correlation (fig. 2b) graphs which lead to ImΣ [11] are automatically
generated (together with other two graphs with the interaction lines crossed
which do not contribute to ImΣ).

In fig. 1 the indices a,b,c,d in the vertices are thermal indices. We are
interested in Σ(11) and hence a = b = 1. Assuming for the moment the
interaction lines to correspond to meson exchange, and considering also that
no such mesons are present in the ground state of our many body fermionic
system, the meson propagator would be diagonal in the thermal indices and
hence c = d = 1.

We thus must evaluate the polarization function Π(11)(q)

Π(11)(q) = −4i
∫ d4p

(2π)4
G0 (11)(p) G0 (11)(p+ q) (15)

where the factor 4 takes into account the sum over spin and isospin.
Once again in the limit of T = 0, this polarization would account for the

two diagrams in fig. 3, which are those accounted for by means of the Lindhard
function [4].

By using G0 (a,b) from eqs. (6,7) the p0 integration can be easily performed
and one obtains

Π(11)(q) = 4
∫ d3p

(2π)3

{

sin2θε(~p)cos
2θε(~p+~q)

q0 + ε(~p)− ε(~p+ ~q) + iǫ
+

sin2θε(~p+~q)cos
2θε(~p)

−q0 − ε(~p) + ε(~p+ ~q) + iǫ

}

(16)
Next we evaluate Σ(11) corresponding to fig. 1

Σ(11)(k) = i
∫

d4q

(2π)4
V 2(q) Π(11)(q) G0 (11)(k − q) (17)

5



where V (q) would take into account the interaction due to the hypothetical
meson exchange.

Here again we follow the steps of ref. [13] and sum the ladder diagrams
which would replace V (q) by the scattering t matrix. (Note that medium cor-
rections to t which would appear in the medium G-matrix are taken explicitly
into account to second order with the structure of the diagram). We shall
continue to use the same t matrix here. The studies of refs. [10, 11, 20] show
indeed little dependence of the effective interaction on the temperature.

In order to evaluate ImΣ11) from eq. (17) a Wick rotation was made in ref.
[13] which allows one to express ImΣ(11) in terms of ImΠ(11). This is however
not possible here because Π(11) from eq. (16) has overlapping cuts in the upper
and lower half planes of the complex plane (unlike at T = 0 where the cuts are
confined to the second and fourth quadrant). However, an explicit evaluation
of ImΣ(11) is possible by first performing the q0 integral in eq. (17) and then
evaluating the imaginary part, with the result

ImΣ(11)(k) = −4π
∫ d3q

(2π)3

∫ d3p
(2π)3

|t|2δ(k0 + ε(~p)− ε(~k − ~q)− ε(~p+ ~q))

·
{

cos2θε(~k−~q)cos
2θε(~p+~q)sin

2θε(~p) − sin2θε(~k−~q)sin
2θε(~p+~q)cos

2θε(~p)
} (18)

The spin-isospin averaged value of |t|2 assumed in eq. (18) is then replaced
by 4πσNN/M

2, where M is the nucleon mass and σNN the spin-isospin averaged
NN elastic cross section. Since pion production is not explicitly taken into
account, this restricts us below the pion production threshold. The final step
in ref. [13] is to consider the polarization or RPA corrections to the interaction.

The consideration of the polarization was an important ingredient in ref.
[13], which reduced ImΣ particularly at small energies, and provided results
similar to those found in refs. [16, 17]. We implement it here too. For this
purpose we need to evaluate Π(11)(q), both the real and imaginary part, which

cares about ph excitation, and Π
(11)
∆ (q), the equivalent term accounting for

∆h excitation. At T = 0 these quantities are the familiar Lindhard functions
UN(q), U∆(q), respectively, used in ref. [13].

The real part of UN (q), unlike ImUN (q), is not affected by Pauli blocking
[4], hence finite temperature, which modifies occupation numbers, has not
much of a consequence in the change of ReUN (q). On the other hand there is
no Pauli blocking in the ∆h excitation since we do not have a Fermi sea of ∆’s.
For these reasons we keep ReΠ(11) and Π

(11)
∆ at finite temperatures equal to

ReUN (q), U∆(q) at zero temperature. However, we evaluate ImΠ(11)(q) from
eq. (16) at finite temperature. The reason is that keeping ImΠ(11) 6= 0 is
important in order to avoid singularities coming from poles of zero sound (q0

proportional to |~q| at small energies) which are strongly dumped at finite T .
The expression for ImΠ(11) obtained from eq. (16) is given by

ImΠ(11)(q0, q) = − 1
π

∫∞
pmin

dpmp
q
{sin2θε(~p) + sin2θε(~p)+q0

−2sin2θε(~p)sin
2θε(~p)+q0}

(19)
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where

pmin =
m

p
|q0 − ~q 2

2m
| (20)

The polarization correction replaces the interaction by the induced interac-
tion [21] (see eq. (15) of ref. [13]). Furthermore, we can perform some trivial
integrals and eliminate the δ function with the final result

ImΣ(11)(k) = −σNN

Mπ2

∫∞
0 qdq

∫ 1
−1 dcosθ

∫∞
0 pdpΘ(1− A2)

· 1
|1−Vt(q)U(q)|2

|q0=k0−ε(~k−~q)

·
{

cos2θε(~k−~q)cos
2θε(~p+~q)sin

2θε(~p) − sin2θε(~k−~q)sin
2θε(~p+~q)cos

2θε(~p)
}

(21)

where Vt(q) is the transverse part of the spin-isospin interaction and U(q) =

Π(11)(q) + Π
(11)
∆ (q). The arguments leading to this modifications and expres-

sions for Vt(q) and UN(q), U∆(q) can be found in ref. [13] and we do not repeat
them here. Furthermore the angle in the integral over cosθ in eq. (21) is the

angle between ~q and ~k. The magnitude A in the argument of the step function
is given by

A =
M

pq

{

k0 − k2

2M
− q2

M
+
kqcosθ

M

}

(22)

with k, q the modulus of ~k and ~q respectively.
The value of the chemical potential µ as a function of the density and T is

obtained, as usually done, by the normalization condition

ρ = 4
∫

d3k

(2π)3
1

1 + exp[(ε(k)− µ)/kBT ]
(23)

Eq. (21) provides ImΣ(11) as a function of k0, ~k. In the next section we
show the results which we obtain for this quantity.

4 Results and discussion

In fig. 4 we show the results of −ImΣ̄ at T = 0 for two densities, ρ0
(0.17 fm−3) and ρ0/2, obtained with the present formalism in the limit of
T = 0. The results agree with those in ref. [13] calculated with the T = 0
formalism and also with those of the microscopic approach of ref. [16]. Note
that since only kinetic energies are used as input to evaluate Σ(11), the value
of µ is referred to an origin of energies at |~k| = 0. We are not interested in
ReΣ and to overcome the arbitrary origin of energies we plot the magnitudes
in terms of ω − µ ( ω ≡ k0 ). In fig. 4, |~k| is taken at the value

√
2Mω.

This justifies small differences with ref. [13] where the value of |~k| satisfying
the dispersion relation between |~k| and ω was taken. In fig. 4 we observe the
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typical features that ImΣ̄ is proportional to (ω − µ)2. In the calculations we
find that ImΣ(11) changes sign at ω = µ, with ImΣ(11) < 0 for ω > µ. In this
case

cos2θk0 = 1− 2sin2θk0

= 1− 2n(k0)T=0 =

{

−1 ω < µ
1 ω > µ

(24)

and then

ImΣ̄ =
ImΣ11

cos2θk0
= −|ImΣ11| (25)

The Green’s function G(11), by using eq. (12), will then be

Θ(ω − µ)

k0 − ε(~k)− ReΣ(11)(k) + i|ImΣ(11)|
+

Θ(µ− ω)

k0 − ε(~k)− ReΣ(11)(k)− i|ImΣ(11)|

≡ 1

k0 − ε(~k)− Σ(11)
(26)

as it should be.
In fig. 5 we plot ImΣ(11) at ρ = ρ0 as a function of ω−µ, with |~k| =

√
2Mω

and µ calculated from eq. (23). As can be seen in the figure, ImΣ(11) is
always zero at ω = µ. However, ImΣ̄(µ, k) is different from zero at finite
temperatures, contrary to the situation at T = 0 where it is zero. In order
to envisage this we see that the evaluation of ImΣ̄ from eq. (13) involves a
fraction of the type 0/0 which we determine using l’Hôpital rule and find

ImΣ̄(µ, k) = lim
k0→µ

ImΣ(11)(k0, k)

1− 2n(k0)
= 2kBT

d

dk0
ImΣ(11)(k0, k)|k0=µ (27)

We can see that ImΣ̄(µ, k) vanishes at T = 0, as we already said.
In fig. 6,7,8 we show the results for −ImΣ̄ as a function of ω − µ for

different temperatures, calculated for three different densities, ρ0/2, ρ0 and
2ρ0. We can appreciate that as T increases −ImΣ̄ also increases in all the
range of energies calculated there. We should note that in evaluating ImΣ̄,
the factor cos2θk0 appearing in the denominator of eq. (13) is very important
and makes ImΣ̄ 6= 0 at T 6= 0 for all the range of energies, while ImΣ(11) passed
through zero. This is a genuine temperature dependent property which would
be lost if a T = 0 formalism, changing the Fermi distribution by the thermal
distribution of eq. (1), were used.

At this point it is interesting to compare our results for ImΣ̄ with those
which we would obtain using standard formulae of Fermi-liquid theory [22].
The formula used there in our notation for ImΣ̄, removing the cut off in the
integral, would be given by eq. (18) changing the minus sign in the curled
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bracket (cos2 and sin2 terms) by a positive sign. Instead our formula for
ImΣ̄ uses eq. (18) with a minus sign (which provides ImΣ(11)) and then we
divide by cos2θpo (as shown in eq. (13)) in order to obtain ImΣ̄. The same
prescription would be taken if one uses instead eq. (21) which incorporates
the effects of polarization.

It is easy to see that at T = 0 both formulae are identical. Indeed for
ω > µ only the first term in the curled bracket of eq. (18) (or (21)) (the one
with cos2cos2sin2) contributes, while for ω < µ only the second term in the
bracket (the one with sin2sin2cos2) contributes. Then when dividing ImΣ(11)

by cos2θp0, given by eq. (24), we obtain a formula for ImΣ̄ given by eq. (18)
where the minus sign in the curled bracket is changed to a positive sign, exactly
the formula used in Fermi-liquid theory [22].

The identity of the two formulae holds, however, at any temperature. This
can be seen analytically using eqs. (8) for sinθ, cosθ and x, hence

(cos2θε1cos
2θε2sin

2θε3 − sin2θε1sin
2θε2cos

2θε3)

cos2θk0
δ(k0 + ε3 − ε1 − ε2)

=
1

kBT

ex3 [e(x1+x2−x3) − 1]

(1 + ex1)(1 + ex2)(1 + ex3)

exk0 + 1

exk0 − 1
δ(xk0 + x3 − x1 − x2)

=
1

kBT

ex1ex2 + ex3

(1 + ex1)(1 + ex2)(1 + ex3)
δ(xk0 + x3 − x1 − x2)

= (cos2θε1cos
2θε2sin

2θε3 + sin2θε1sin
2θε2cos

2θε3)δ(k
0 + ε3 − ε1 − ε2)

(28)

where the constraints of the δ-function have been used in the second step.
This is an interesting finding which stresses the value of the results obtained
in Fermi-liquid theory based on the concept of quasiparticles, by comparison
to a method in principle more microscopic, like the one used here.

Next we would like to extract a practical magnitude from these results
which can be used in calculations of heavy ion collisions. Recall that in the
semiclassical approach one has

ImΣ̄ = −1

2
σNN v ρ (29)

One can then define an effective NN nucleon-nucleon cross section at different
T and ρ by means of

σeff
NN = −2

ImΣ̄

vρ
(30)

as done in ref. [23], where σeff
NN ρ defines a probability of collision per unit

length for the nucleon. In order to facilitate the use of this magnitude we
have parameterized vσeff

NN , with v = |~k|/M for the different densities and
temperatures evaluated here. We take the following functional form

9



vσeff
NN =

4
∑

n=0

an(ρ, T ) ω
n (31)

where ω is the nucleon kinetic energy, ~k2/2M . The fit is valid for values of
ω > µ in figures 6,7,8. The coefficients an(ρ, T ) are given in tables I,II,III. One
can obtain vσeff

NN for intermediate values of ρ and T interpolating between the
values of vσeff

NN given by eq. (29).

5 Conclusions

We have used a model to evaluate ImΣ̄ for a nucleon in nuclear matter at finite
temperatures, which combines the formalism of Thermo Field Dynamics with
empirical magnitudes of the NN interaction. This model at T = 0 coincides
with a semiphenomenological approach studied earlier, which proved rather
successful in reproducing nucleon properties in nuclear matter obtained with
more microscopical approaches.

We have obtained ImΣ̄ for different values of the nuclear density and sev-
eral temperatures. One of the interesting findings is that ImΣ̄ grows steadily
with the temperature. The changes produced by the temperature are more
striking at energies around the chemical potential where ImΣ̄ is zero at T = 0
and takes finite values at T 6= 0.

We found that the genuine effects of the temperature, given naturally in
the formalism of Thermo Field Dynamics, were important, and the differences
with respect to simple calculations, where n(~k) at T = 0 is replaced by the
thermal distribution, can be appreciable. In order to facilitate the use of the
results obtained here, we have parameterized them by means of easy analytical
formulae. The parameterization is given for an effective NN cross section in
the medium, such that σeff

NN ρ gives the probability of collision per unit length
for a nucleon in the nuclear medium. With the given formulae one can easily
interpolate the results and obtain this magnitude for different densities and
temperatures. These results should be useful in the analysis of heavy ion
reactions.
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6 Table Captions

Table I Parameters of eq. (28) to evaluate vσeff
NN at ρ = ρ0/2. The parameters

an have dimensions such that, with ω given in MeV , the results for vσeff
NN are

given in mb.

Table II Same as table I for ρ = ρ0.

Table III Same as table I for ρ = 2ρ0.
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7 Figure Captions

Fig. 1. Generic Feynman diagram to evaluate the nucleon self-energy. The
indices a, b, c, d are thermal indices. The nucleon propagator corresponding to
the baryonic lines is given in eqs. (5-9).

Fig. 2. a) polarization, b) correlation graphs contributing to ImΣ at T = 0
and contained in fig. 1. Here the direction of the arrows stands for the
conventional hole ( down ) and particle ( up ) propagators.

Fig. 3. Polarization graphs appearing at T = 0 with the same notation for
the lines as in fig. 2.

Fig. 4. −ImΣ̄(ω, k) at T = 0 as a function of ω − µ, with k =
√
2Mω,

evaluated for two densities.

Fig. 5. ImΣ(11)(ω, k) at ρ = ρ0 for several temperatures as a function of
ω − µ with k =

√
2Mω. The solid line is for T = 0. The other curves

correspond to T = 2MeV ( long dashed-dotted line ), T = 4MeV ( dashed
line ), T = 10MeV ( dotted line ) and T = 20MeV ( short dashed-dotted
line ). At values ω − µ < 0, they appear correlatively with increasing values
of ImΣ(11) as T increases.

Fig. 6. −ImΣ̄(ω, k) at ρ = ρ0/2 as a function of ω − µ for k =
√
2Mω for

several temperatures T = 0, 2, 4, 10, 20MeV with the same notation as in fig.
5. −ImΣ̄ increases with increasing T .

Fig. 7. Same as fig. 6 at ρ = ρ0.

Fig. 8. Same as fig. 6 at ρ = 2ρ0.
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Table I.

T 0 MeV 2 MeV 4 MeV 10 MeV 20 MeV
an
a0 -2.549 -2.305 -1.425 0.982 5.107
a1 9.658 10−2 9.098 10−2 7.043 10−2 3.404 10−2 -2.170 10−2

a2 -9.706 10−5 -3.996 10−5 1.569 10−4 4.367 10−4 8.413 10−4

a3 -4.349 10−7 -6.674 10−7 -1.435 10−6 -2.408 10−6 -3.857 10−6

a4 1.135 10−9 1.456 10−9 2.487 10−9 3.724 10−9 5.709 10−9

Table II.

T 0 MeV 2 MeV 4 MeV 10 MeV 20 MeV
an
a0 0.553 0.411 0.793 1.695 3.192
a1 -3.541 10−2 -2.722 10−2 -3.709 10−2 -4.496 10−2 -4.430 10−2

a2 7.790 10−4 6.834 10−4 7.846 10−4 8.343 10−4 7.542 10−4

a3 -2.860 10−6 -2.458 10−6 -2.861 10−6 -3.027 10−6 -2.651 10−6

a4 3.521 10−9 2.963 10−9 3.501 10−9 3.719 10−9 3.215 10−9

Table III.

T 0 MeV 2 MeV 4 MeV 10 MeV 20 MeV
an
a0 1.493 1.382 1.347 2.205 2.861
a1 -5.370 10−2 -5.017 10−2 -4.795 10−2 -6.283 10−2 -6.065 10−2

a2 5.866 10−4 5.555 10−4 5.355 10−4 6.533 10−4 6.214 10−4

a3 -1.659 10−6 -1.553 10−6 -1.484 10−6 -1.874 10−6 -1.770 10−6

a4 1.695 10−9 1.570 10−9 1.488 10−9 1.940 10−9 1.834 10−9
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Abstract-For a linear control system, we introduce a parallel algorithm to assign a desired subset 
of eigenvalues to a single-input linear invariant dynamic system. We obtain a sequential algorithm as 
a particular case. The proposed algorithms are conceptually simple and are based on the computation 
of left eigenvectors of the state matrix. In addition, the parallel algorithm parallelizes easily as the 
numerical examples show. 

Keywords-Pole eigenvalue assignment, Partial assignment, Single-input, Parallel algorithm 

1. INTRODUCTION 

Consider the linear invariant dynamic system i(t) = Ax(t) + h(t), where A is an rz x n real 

matrix whose spectrum is the set {Xl, . . . , A,}, and b is an n real vector. In the partial assignment 

problem, we search a vector f such that the spectrum {PI,. . . , pp, &+I,. . . , A,} of the matrix 

A - bfT is a conjugated complex set and ~1, . . . , pLp are prescribed conjugated complex numbers. 

This problem is a particular case of the general problem of pole assignment. It is known that 

this problem has solution if the pair (A,b) is controllable. Moreover, in the single-input case 

the solution is unique. Notice that any controllable pair (A, b) can be always transformed into 

the pair (H, c) by orthogonal similarity where H is an unreduced upper Hessenberg matrix and 

c= (cr,O )...) O)T, with (Y # 0 (see [1,2]). 

There are different and effective pole placement algorithms in the literature, see [1,3-51. How- 

ever, these algorithms have been constructed with the idea to change all possible eigenvalues of 

the state matrix A of a linear control system. On the other hand, there exist some algorithms 

which solve directly the partial assignment problem. Saad [6] gave two algorithms. One of them 

is based on a projection method computing an orthogonal basis of the left-invariant subspace 

of A associated with the undesirable eigenvalues, and the second one is a sequential algorithm 

similar to the deflation eigenvalue method. Datta and Saad [7] studied a solution of this problem 

based on the Arnoldi method. The algorithms given in [6,7] can be considered as sequential. 

In this paper, we introduce a parallel algorithm for the partial assignment problem and we 

obtain a sequential algorithm as a particular case. In the proposed parallel algorithm, the vector f 

is given as a linear combination of the left eigenvectors of A associated with the undesired 

eigenvalues with the first component prescribed. That result is based on an algorithm of complete 

assignment given in [3]. A multi-input version of the algorithm in [3] is given in [8]. Algorithms 

given by Saad [6] obtain the same result (which was expected since the solution is unique) but in a 

Supported by Spanish CICYT Grant Number TIC91-1157-C03-01. 
We would sincerely like to thank P. Van Dooren for his valuable comments, which led to improve the quality 

and reading of the paper. 
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sequential way. We want to emphasize that the proposed algorithm computes the left eigenvectors 
solving p triangular systems of size (n - 1) x (n - 1) in parallel. Numerical results implemented 

on a shared memory multiprocessor are given in the last section. 

Let A be an n x n matrix and let Xj be an eigenvalue of A. We call Aj the matrix obtained 
from A - XjI, eliminating its first row and its last column, and ci the vector constituted by the 

first (n - 1) entries of the first row of A - Xj - I. We will use this notation in the algorithms. 

2. THE PROPOSED ALGORITHM 

In this section, we give a parallel algorithm for the partial pole assignment problem in the 

single-input case, and we obtain a sequential algorithm as a particular case. We obtain the 

parallel algorithm when we suppose that we change pairwise distinct eigenvalues by pairwise 
distinct given numbers and the sequential algorithm in the other case. For technical reasons, we 

suppose that a(A) is a pairwise distinct set and (~1, . . . , pp} 0 {X,+1,. . . , A,} = 8 . Otherwise, 

some modifications are needed as is explained briefly in Remark 1. In what follows, the spectrum 
of A and A - bfT are conjugated complex numbers sets. 

Let (A, b) be a controllable pair in Hessenberg form, where A E RnXn and b E IRnxl. If the 

spectrum of A is o(A) = {Xl,&, . . . ,&,&+I,. . . , X,}, we search a vector f such that a(A - 

bfT) = {PI,. . , pp, &+I,. . . , A,} provided that the first p X’s (and the p’s) are pairwise distinct 

sets. 

Algorithm II described in [3] obtains a nonsingular matrix L = [xl x2 . . . xp l,+l . . . In] sat- 

isfying: 

(A - pjI)zj = b, j = 1,2 )...) p, 

(A - XJ)li = 0, 
(1) 

i = p + 1,. . . , n. 

According to that algorithm, one computes the vector f by fTL = (u, ,O, 0, :. . ,O,). Let 

us focus in this equation. We observe P n-P 

fTXj = 1, 

fTl+, = 0, 

j=1,2 )...) p, 

i=p+l,...,n. 

(2) 

(3) 

From the second condition (3), we deduce that f is in span {&+I, lP+s, . . , ln}l. Then f can be 
written as 

f = hr + hz + . . . + h,, (4) 

where hl, h2, . . , h, are left eigenvectors of A associated with Xi, X2,. . . , A,, respectively. Then 

hj(A - XjI) = 0, j = 1,2 (...) p. (5) 

From the expressions (2) and (4), we have 

h; xj + h; xj + . . . +h& = 1, j = 1,2 ,...) p. (6) 

Fix an index s, s = 1,2,. . . , p. Multiplying the expression (5) by the vector x, and using (l), we 

obtain 

0 = hj’ (A - X,1) x, = h3’ b + (ps - Xj) hj’ x, = hlj + (/Jo - xj) hj’ x8, 

where h1.j = hT b and j = 1,2,. . . , P. Therefore, for a fixed s, we have the following p 

(A, - PLY) h; x, = hik, Ic = 1,2 ,..., p. 

equations: 

(7) 
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The addition of the p equations (7) multiplying the kth equation by nT=,,j,, (Xj - pS) gives 

fi (4 - Ps) hll + . . . + fi (Xj - ps) hl, = fI (Xj - /is) ) 

3=1 

j#l 
_?=I 

j#P 
j=l 

where we used the expression (6). Since the index s varies from 1 to p, we have a system of linear 

equations whose matrix is a Cauchy matrix for which the solution is known 

hlj = ‘;’ 

n (Xj -h)' 

j = 1,2 )...) p, 

s=1 
sf3 

(8) 

which is unique because of the conditions on X’s and /.L’s. 

The above discussion yields the following result. 

THEOREM 1. Let (A,b) be a controllable pair. Let a(A) = {X1,X2,. . . , A,, Xp+l,. . . ,A,} be the 

spectrum of A , with Xi # Xj, 1 < i,j 2 p, i # j. Then the vector f, such that u (A - bfT) = 

bl,... , pp, Xp+l, . . , A,} (pairwise distinct set), can be written as the sum of p left eigenvectors 

of A associated with the eigenvalues X1,. . . , A,, respectively. In addition, the first entries hlj of 

the left eigenvectors h, of A, are given by the expression (8). 

Then we can compute in parallel the vectors hl, h2, . . . , h, solving the systems given in (5) 

whose first components hll, h12,. . . , hl, are given by (8). Since the matrix A is an upper unre- 

duced Hessenberg matrix, each of these systems are reduced to an upper triangular system of 
size (n - 1). 

PARALLEL ALGORITHM. Given the spectrum a(A) = {Xl,. . . ,Xp, Xp+l,. . . , A,}, this algorithm 

assigns the pairwise distinct spectrum {PI,. . . , pp, Xp+l, . . . , A,} to the matrix A - bfT. 

1. Compute in parallel h,j by expression (8), for j = 1, . . . , p. 

2. Solve in parallel the systems [hzj ... hnj] Aj = -hljc[1T, for j = 1,. . . ,p. 

3. Compute f = hl + hz +. . . + hp. 

REMARK 1. We supposed {pul,. . . , pp} n {X,+1,. . . ,X,} = 0. If Xp+1 = pp, then the systems to 
solve should be 

(A - /.L~I) xj = b, j=l,...,p-1, 

(A - ~p0 xp = L,+I + Db, 

(A - &I) li = 0, i=p+l,...,n, 

where ,B E R makes consistent the equation. In both cases, one obtains the same solution (see [3, 
Algorithm 31 for details). The technical restriction that a(A) is a pairwise distinct set can be 
weakened changing the above equations by the corresponding Jordan chain systems. 

The restriction of the above algorithm that the set {PI,. . . ,pp} is a pairwise distinct set 
disappears if we work in a sequential way. Then, taking p = 1 in the above algorithm we obtain 
the following result. 

THEOREM 2. Let (A, b) b e a controllable pair. Let the spectrum of A be o(A) = {Xl, X2,. . . , A,}. 
Then the vector f, such that the spectrum of the matrix A - bfT is {p, X2,. . . , A,}, is a left 
eigenvector of A associated with X1 whose first entry is fi = X1 - p. 
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Again, we only have to solve a system similar to systems of Step 2, considering the restriction 
fi = Xi - I*. For assigning p eigenvalues, we can apply this result in a sequential way p times. 

SEQUENTIAL ALGORITHM. Let a(A) = {X1,X2, . . . ,X,} be the spectrum of A. This algorithm 
assigns the spectrum (~1,. . . ,pp, &,+I,. . . , A,} to the matrix A - bfT. 

1. Start with f = 0. 

2. Forj= l,..., p. 

(a) Compute gij = Xj - pj. 

(b) Solve the system [gzj . . . gnj] Aj = -gljc,T, considering Step (2.1). 

(c) Assign A := A - bgT. 

(d) Assign f := f + g. 

3. End. 

3. NUMERICAL EXAMPLES 

We implemented the algorithm on ALLIANT FX-80 using double precision FORTRAN lan- 
guage and BLAS routines. We computed the eigenvalues of all matrices appearing in the algo- 
rithm using LAPACK routine DGEEV. We measured the results computing the eigenvalues of the 

closed-loop system and measured the error between these computed values and the eigenvalues 

assigned. In our case, we checked not only the accuracy in the computed assigned eigenvalues 

bl,.. . , pup} but also the stability of the unmodified spectrum {X,+1,. . . , A,}. The algorithm 
was tested on a different set of unreduced upper Hessenberg matrices: Random and Wilkinson 
matrices. In order to study the behaviour of the algorithm, we ran our code changing the follow- 

ing parameters: size of the matrix (n), number of eigenvalues to be assigned (p), eigenvalues to 
be assigned (~1,. . . , pp}, undesired eigenvalues {Xi, . . . , A,}. 

The results obtained for the previous matrices are the following: 

1. RANDOM MATRICES. We ran several examples up to order n = 513. We considered unreduced 

upper Hessenberg matrices with random elements. We assigned the following eigenvalues: pi = 
x, - (Y. i, i = 1,. . . ,p, where X, is the smallest eigenvalue of the state matrix A and Q is a fixed 

positive quantity (for these random matrices we take (Y values running from 10-l to 1). 
Our experiments suggest that the condition number r;(Aj) of the systems in the Step 2 is closely 

related to the accuracy of the method. We obtained an upper bound of the condition number 

under which the algorithm is highly successful. This value is around 102’. Therefore, we conclude 
this method is very stable for random matrices. In Table 1, we present the results obtained with 

a random matrix of size n = 513. As shown in Table 1, EN stands for the relative error in 
the new eigenvalues, ER and EC stand for the relative errors in the unmodified spectrum (we 
distinguished between real ER and complex EC ones). In the previous example, we generated 
random numbers from 0.5 to 1.5. We took this range to obtain condition numbers below the 

upper bound given above. On the other hand, the election of this range produces eigenvalues 
very close to each other, and then the number of eigenvalues to be assigned must be small. 

The proposed algorithm is an efficient parallel algorithm, as can be seen in Table 2. As shown 
in Table 2, TO, Ti, Tp mean the times (in seconds) computed for the proposed algorithm compiled 
with scalar, vectorial and global (with p processors) optimization, respectively. The different 
values of the speed-up are explicated in the columns Se and 5’1. 

The efficiency of the proposed algorithm in the previous examples is 0.97 in the p = 4 case 
(executed with 4 processors) and 0.76 in the p = 8 case (executed with 8 processors). 

2. WILKINSON MATRICES. The well-known Wilkinson bidiagonal matrix of size n x n with very 
ill-conditioned eigenvalues was used to check our algorithm. The best results were obtained in 
the case that the undesired eigenvalues were Xi = n - i + 1 and the eigenvalues to be assigned 
werepi=-iwithi=l,...,p. 
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Table 1. Relative errors. 

i/ 

Table 2. Computed times and speed-ups. 

11 

n = 513, p = 4 1 4.327 1 2.67 1 0.685 1 6.316 I 3.90 I 

n = 513, p = 8 1 8.68 ( 5.29 1 0.87 9.97 6.08 

Table 3. Relative errors in the Wilkinson matrix. 

P 1 2 3 4 5 6 

EN 0 lo-‘2 10-g 10-s 10-d 10-Z 

ELI 0 0 0 0 0 0 

Under these conditions, we obtained very accurate results running our code for matrices up to 
n = 500 and p 5 6. We present the results of the proposed algorithm for the Wilkinson matrix of 
order 256 and different number of new eigenvalues in Table 3. As shown in Table 3, EN means 
the same as above, and ELJ represents the relative errors in the unmodified spectrum. Because 
of the structure of the Wilkinson matrix and the eigenvalues selected, the vector solution f has 
zeroes in the last (n-p) components. Therefore, the eigenvalues placed in the last (n -p) entries 
of the diagonal are unchanged and then EU is zero everywhere. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
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Abstract: The problem of inclusive muon capture in nuclei is studied by calculating the capture rate in 

asymmetric infinite nuclear matter and using the local density approximation to evaluate the capture 

rates in nuclei. It is shown that the method is rather reliable and allows one to improve on 

approximations used in the past. The need for a strong nuclear renormalization is shown, reducing 
the capture rates by about a factor two in medium and heavy nuclei. By using standard effective 

interactions in the spin-isospin channel one can account for this renormalization and one finds a 

remarkable overall agreement with the measured capture rates for a large list of nuclei through 

the periodic table. 

1. introduction 

In this paper we face the problem of total muon capture in nuclei from an 

unconventional point of view. From the early days of Primakoff ‘) the subject has 

attracted much interest 2”). The usual approach consists in performing the nonrela- 

tivistic approximation in the transition operators, neglecting the nucleon momen- 

tum le4), and then doing a closure sum over the final nuclear states. However, the 

process involves small energy transfers to the nucleus of the order of the typical 

nuclear excitation energies and the results are very sensitive to the average nuclear 

excitation energy chosen “). To eliminate the uncertainties associated to this energy, 

or equivalently, to the average neutrino energies, sum rule approaches have been 

applied 5-7) which reduce considerably the dependence on the average energy and 

hence provide more reliable results. The final results require the evaluation of 

non-trivial two-body matrix elements in the ground state of the nucleus. 

The approximation of an average neutrino energy fixes the momentum transfer, 

q, and thus, the pseudoscalar term to a determined value. However, the dependence 

of this term on q is strong because of its approximate propo~ionality to the pion 

propagator 2). This is particularly relevant since this reaction has been used tradi- 

tionally to extract information on the value of the pseudoscalar coupling con- 

stant 2-8). 

Another approximation used to take into account the finite size of the nucleus is 

the use of the effective charge, ZeE, which introduces a non-negligible source of 

error in the calculation since the capture rate is proportional to Z& and certain 

’ On leave of absence from Institute of High Energy Physics, Academia Sinica, Beijing, China. 

03759474/90/$03.50 @ Elsevier Science Publishers B.V. 

(North-Holland) 
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approximations are involved in its evaluation “). In addition there are strong nuclear 
renormalization effects which are very important and deserve special attention. 

Our approach avoids all of these shortcomings and provides a highly accurate 
method to evaluate the total capture rate in nuclei. Yet the method is much simpler 
technically than the traditional approaches and the same effort is required to evaluate 
the rate in light nuclei and in heavy nuclei. Furthermore, it has the virtue of showing 
that the only relevant nuclear information needed, as normally happens in other 
inclusive reactions ‘O), is the neutron and proton densities of the nuclear ground 
state, which we take from experiment to minimize errors. 

The method consists in evaluating the capture rate of a muon in a Fermi sea of 
neutrons and protons. The calculation can be done exactly in a relativistic framework 
considering the nucleon momenta and the excitation energies of the Fermi sea, thus 
going beyond the closure sum or the sum rule approach. With the neutrino energy 
as a variable of integration, the pion pole structure of the pseudoscalar term is kept 
in the calculations. The step from infinite matter to finite nuclei is done by means 
of the local density approximation. The infinite matter calculation provides the 
muon width as a function of pn,p the neutron and proton densities, then we assume 
P”,~-, pnJ r) and fold this functional with the muon density distribution in the Is 
state of the muon atom, from which the capture takes place. The local density 
approximation is highly accurate in this case, given the very weak q dependence 
of the matrix elements involved, which makes the transition of very short range. 
Only the pseudoscalar term depends more strongly on q because of its dependence 
on the pion propagator, but the moderate contribution of this term (- 1 SO,), together 
with the fairness of the local density prescription in pion nuclear reactions “) 
involving similar pion momenta, makes the use of the local density prescription a 
very accurate tool to obtain the total muon capture rate. 

Then we avoid using the concept of Z,,. Indeed all we need is to calculate the 
1s muon wave function and use it in the folding of the local density prescription. 
Here we also keep up with our aim of a highly accurate evaluation and use a very 
precise method to solve the Schrtidinger equation ‘2), taking into account finite size 
effects and vacuum polarization corrections. 

In addition we include strong nuclear renormalization effects in the operators, 
and also consider the binding energies of the muons. The calculations are performed 
for a large list of nuclei over the whole periodic table and the results obtained are 
very instructive. With the standard coupling constants and form factors for @p + VPn, 
we obtain a very good agreement with all nuclei along the periodic table, showing 
the relevance of the nuclear renormalization in medium and heavy nuclei, which 
reduces the capture rates in about a factor two from the results without renormal- 
ization. The repercussion of such renormalization in other physical processes like 
pionic atoms or ;I hypernuclei is also stressed. 

The paper proceeds as follows. In sect. 2 we evaluate the muon capture rates in 
infinite nuclear matter. In sect. 3 we discuss the nuclear reno~alization and in sect. 
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4 the local density approximation. Sect. 5 contains the results and discussion and 

sect. 6 summarizes our results. 

2. Muon capture rate in infinite matter 

We start from the basic lagrangian for the p-p + nvP reaction depicted in fig. 1, 

L(x) =AGP(x)L;(x) , (1) 

with the leptonic and hadronic currents given respectively by 

q(x)= KY”(l-Y,)qL, JP(x) = S”IFPP ) (2) 

with BF the hadronic current operator. Their matrix elements between spinors give 

ifi++= UL)r”(l- Ys)rq(Pfi) 9 

where we follow Itzykson and Zuber 13) convention for the y-matrices, with q = pn - 

pp, and gv, g,, g,, g, the vector, magnetic, axial-vector and pseudoscalar coup- 

ling constants respectively, including a form factor dependent on q. The values 

of the coupling constants and the expressions for the form factors can be seen in 

appendix A. 

Assume for a moment an infinite nuclear medium with a proton density, pp, and 

the protons at rest. The decay rate of a muon is given by 

(4a) 

with v,,, the relative velocity of the muon with respect to the protons, and (T the 

pp + n vP cross section. We have in Bjorken and Drell convention “) 

W-e’= 

d3p, 2m, 2m, 2m 2m,- 

(2~-)~ 2E, 2E, g 2E,” I=” 

(4b) 

Fig. 1. Diagram for p-p+ nvw process. 
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where the limit M, + 0 is to be taken and three momentum ~onse~ation is implicitly 
assumed. The full expression for z C j 2-I’ is given in appendix B. 

The evaluation of I’ for finite nuclei proceeds in two steps. In the first one we 
evaluate r for a muon in a Fermi sea of protons and neutrons with N # 2. This is 
easily accomplished if one realizes that -rrp$( E, + E, - E, - E,) is the static limit 
of the imaginary part of the Lindhard function i7(p, -p,) [see ref. “)I for the ph 
excitation appearing in fig. 2. This Lindhard function, incorporating the Pauli 
blocking on the neutrons, is given by 

m$_/-pJ=2 - J d3p %(P)tl --nzCP+& -Pv)l 
(27713 E,-E,+E,(p)-E,(p+p,-p,)+i& 

(5) 

where Q(P) are the occupation numbers in the Fermi sea of protons and neutrons, 
respectively. (The Lindhard function contains also the contribution from the back- 
ward going ph excitation, which we do not include in eq. (5) because it does not 
contribute to the imaginary part for E, - E, > 0, as we have here.) We observe that 
the 6 function for energy conservation is substituted in Im u by the same 6 of 
conservation but keeping track of the nucleon momenta, integrating over the Fermi 
sea of the protons and including the Pauli blocking for the neutrons, [ 1 - n,] factor. 

Hence the actual width of a muon in the infinite matter slab is given by 

I” = -2 J d3p,, 2m 2m 2m 2m - 
-L___t4_E!LCC]T\21m ~(~~-~~~. 
(2~)~ 2E, 2E, 2E, 2E, (6) 

For E,, E, in the explicit factors of eq. (6), the average over the Fermi sea of 
appendix B is used, although one can take these energies equal to the respective 
masses with no significant change. 

A different derivation for the analogous case of radiative pion capture has been 
done in ref. 16) where an explicit analytical formula for Im 0 is given in the appendix. 

Eq. (6) provides the muon capture width as a function of kF,p and kF,, , the proton 
and neutron Fermi momenta or equivalently pp and pn, the proton and neutron 
densities of the medium ( pp,n = k:t,,,/3=2). 

Fig. 2. Many-body Feynman diagram for the muon self-energy related to the p-p* v&n process. 
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3. Strong renormalization effects 

595 

The dominant_contribution, (-SO%), to the process comes from the term propor- 

tional to gi in C 11 T12 of appendix B. The nonrelativistic reduction of the axial- 

vector term in the nucleon current is of the type g,a’r”. We know that this external 

source has the virtue of polarizing the axial charge of the nuclear medium “,‘*) 

which can produce a sensible renormalization of the capture rate. Microscopically 

we can depict the situation by saying that the Feynman diagram of fig. 2 is now 

modified to include the series of diagrams implicit in fig. 3, where the wavy line 

stands for the spin-isospin ph or Ah interaction 18) 

(7) 

for the ph case, or a similar one for the case of ph-Ah or Ah-Ah interaction by 

substituting u + S, T+ T, the spin and isospin transition operators, and f + f * 
(j-*/477 = 0.08, f *2/4r = 0.37). The term with gi involves the trace of g:uiiaio, which 

equivalently can be written as g,Z,oiUj CJ[ iiGj + (6, - Giij )], explicitly separated into 

a longitudinal, ($iij), and a transverse part, (6, - Gi& ). The sum implicit in fig. 3 

leads to two independent geometric series, in the longitudinal and transverse 

channels. Hence we have for the case of ph excitation only 

+giTr(aiaj)U 
4i4j 

I-2lJv/ 

+(s,-Bi(ij) 

l-2Uv, 

Fig. 3. Many-body Feynman diagrams accounting for the medium polarization in the spin-isospin 

channel driven by the p-p-f vun transition. 
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where the factor 2 in the denominator comes from isospin dependence of eq. (7), 
since exchange of charged objects is involved in the interaction. Since we had Im ii 
in eq. (6) we have to substitute 3g$, Im 2 0 by the imaginary part of the last expression 
in eq. (8). Hence the renormalization amounts to substituting, 

1 1 Im2U 
giIm2U+gi - 

2 Im2U 

3 [1-2r3v,lz+? II -20v$ . I 
(9) 

Taking account of the Ah excitation and the backward propagating ph excitation 
(see fig. 3), not accounted for by 0, is straightforward and can be implemented by 
substituting 20 by U, the Lindhard function of refs. r5*“). The different coupling 
of N and A is incorporated in IJ,, ( U = U, + U,) and the same universal interaction 
V,, V, is used for the ph or Ah interaction “*‘*). 

Thus, ultimately the renormalization can be taken into account by substituting 

where we have used the fact that U, does not have an imaginary part in the 
kinematical regime where we move. The actual calculations are done by using the 
expressions of U for symmetrical nuclear matter but the expression for Im 0, for 
pn # pP, in the numerator is kept. This approximation, also done in ref. I’), is accurate 
enough for our purposes. 

The pieces involving the pseudoscalar term, g,, behave differently. Indeed the 
g,aq coupling, in the nonrelativistic limit, singles out the longitudinal part of the 

interaction and the renormalization is then 

(11) 

Analogously, the terms involving g, single out the transverse part of the interaction 
and we have 

The other terms, and the g,g, term, which are rather small, are not renormalized. 
For the calculations we take the widely used forms 

vtw=~ ,*2_‘,I-_,; { ($-g+g~}, 
I/,(& q2 ( 4 4o2_q2_112; c, (pjy2+d), (13) 

with A = 1300 MeV, C, = 2, A,, = 2500 MeV and II, mp the pion and p meson masses. 
The magnitude g’ is the Landau-Migdal parameter with accepted values around 
g’ = 0.6-O-8. We have performed calculations with g’ = 0.7 which lead to good results 
compared with experiment. 
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4. The local density approximation 
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After performing the renormalization of sect. 2 in eq. (6) we obtain the new muon 

capture width f( pP, p,). The local density approximation (LDA) to go to finite 

nuclei is obtained by replacing pP+ p,(r), pn + p,(r) for the actual nuclei and 

evaluating 

where Q,,(r) is the muon wave function in the Is state from where the capture takes 

place. The LDA assumes implicitly a zero range of the interaction, or no dependence 

on q equivalently. As we can see in appendix A the q-dependence of the form 

factors is extremely weak and thus the LDA prescription becomes highly accurate. 

Only the terms with g,, which contain a pion propagator, have a stronger dependence 

on q. The LDA prescription would then be less accurate for these terms. However, 

the fact that these terms contribute about 18% (the g,g, term, of sign opposite to 

the gi one, is the most important among them) and that the LDA approximation 

is still fair for pionic processes involving momenta of the range of the pion mass ‘I), 

make globally the LDA a very accurate tool to evaluate r for actual nuclei. 

Note, however, that the approach differs substantially from standard ones, which 

require the evaluation of two-body matrix elements for the ground state of the 

nucleus. Here we do not evaluate any nuclear matrix element and the only nuclear 

information needed is the proton and neutron densities. The proton density is taken 

from the experimental charge distribution j9) and parametrized in terms of two 

Fermi parameter distribution after correcting for the finite size of the proton lo). 

For the neutron density we take ,o,, = (N/Z)p,. For nuclei smaller than “0 the 

harmonic oscillator densities are used. 

As pointed out in the introduction some approaches use a closure sum over the 

nuclear intermediate states ‘-4). Others, more elaborated and accurate 5-7), use a 

sum rule approach which still relies upon an average excitation energy, although 

the dependence of r on this variable is rather smooth, unlike in the closure sum 

case. Here the Lindhard function has summed the contribution from intermediate 

nuclear states (the excited states of neutrons on top of the Fermi sea) by keeping 

track of the energy of such states, which is important when the excitation energy 

is small like in the present case. However, only the kinetic energy of the nucleons 

is considered in the Lindhard function. Note, however, that if a local potential V(r) 

is added to the nucleon energies, it would cancel exactly in the ph propagator of 

eq. (5). Hence, up to nonlocalities in the nuclear potential the Lindhard function 

keeps good track of nuclear_excitation energies. On the other hand, the nucleon 

momentum dependence on 2 C j Ti*, which is rather smooth, has also been con- 

sidered, as shown in appendix B by means of the energy conservation or taking an 

average of p2 in the local Fermi sea. 
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On the other hand, we do not have to rely upon the concept of Z,, . Eq. (14) 
provides r directly from the muon wave function and the function f( p,(r), p,(r)). 
In order to evaluate the muon wave function we have considered the Coulomb 
interaction taking account of the finite size of the nucleus and vacuum polarization, 
as done for pionic atoms 20*2’). The numerical calculations have been done by using 
a very accurate method to solve the Schrodinger equation 12) which gives us the 
muon energy and the wave function. For heavy nuclei like 208Pb the binding energy 
of the muon is about 10 MeV and it is important to take this into account for an 
accurate determination of the muon capture width. 

With all these improvements over previous approaches, it is still remarkable that 
the present method is quite much simpler technically, as revealed by the basic 
formulae, eqs. (5), (6) and (14). This has allowed us to perform calculations for a 
large list of nuclei over the whole periodic table and concentrate on the role on the 
nuclear renormalization, of much relevance in a variety of nuclear processes, from 
pionic atoms to X or A hypernuclei 18). 

It is also interesting to recall that we have used here the same model and value 
of g’ that were used in refs. 22*23) to account for the observed quenching of gA in 
ordinary P-decay. Note, however, that since in P-decay the momentum transfer is 
negligible, V, and V, in eqs. (13) are the same and both repulsive. Also U in the 
denominator of eq. (10) is rather different to the one here because of the different 
kinematics, with the Lindhard function in the P-decay due essentially to Ah exci- 
tation. 

The same model gives good results in these two different kinematical situations 
and in radiative pion capture i6) where gauge invariance produces a quenching from 
the transverse part alone. This is a good test of consistency for the nuclear renormali- 
zation which, as we shall see, is very important in this case. 

6. Results and discussion 

Before we proceed to show the results we discuss a few ideas related to the 
calculations and the results. In the first place, in order to get an approximate idea 
of the importance of the different terms in appendix B we show the approximate 
weight of the terms in 1 T\*, calculated at the peak of the neutrino momentum 
distribution 

g&term g2,-term g,gv-term gAgM-term -=p= 
1 3.5 0.14 = 0.5 

= g&p-term &term 

-0.92 =- 0.17 ’ 
(15) 

with the terms with gL, g,g, and g,g, rather small. These ratios change by about 
20-30% with respect to those in the standard closure approaches 1-4). 
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WSZ also mentioned that taking into account the binding of the muon was important 

in heavy nuclei. Indeed with a binding energy of 11.25 MeV for the 1s state of the 

muon in *“Pb, taking into account this binding reduces the capture width in 35%. 

The neglect of the nucleon momentum in 1 I*]’ also introduces some uncertainties 

in the calculation. We have made p = 0 in 1 T12 in our calculations and have found 

changes at the level of lo-20% in the individual terms, with a global reduction of 

15% with respect to the calculation without neglecting this momentum. 

The Pauli blocking effect is very important. In the p-p+ nvfi reaction the neutron 

is forbidden to go to any of the neutron occupied states. This is taken into account 

in our approach by means of the factor 1 - n*(k) in the Lindhard function of eq. 

(5). Neglecting this factor leads to results for the capture rate about a factor 2.6 

times bigger than with the corresponding Pauli blocking for nuclei around 160 and 

a factor 3.4 for nuclei around “‘Pb. 

We have also estimated the effects of considering the muon momentum in the 

calculations (we have set it equal to zero in our results) and have found them to 

be small, below 5%. We should also note that our calculations of lTl2 have been 

performed using free relativistic spinors for the nucleons and the muon and neutrino. 

The nucleons and muon moving in a potential would lead to different spinors. In 

the case of nucleons in infinite matter, and assuming a scalar potential V(r) given 

by the Thomas-Fermi approach 24), the structure of the spinors would be the same 

but the mass would be changed to M + V(r). We have perfo~ed the calculations 

with these modifications and found corrections at the level of 2%. The muon spinor 

in the presence of a point-like Coulomb source is also modified although the 

modifications are smaller when the finite size of the nucleus is considered *‘). 

However, the evaluation of the muon wave function in the nucleus has been done 

by using the nonrelativistic Schrodinger equation. We have obtained an idea of 

what the relativistic effects could be by treating the muon as a boson and solving 

the Klein-Gordon equation instead of the Schrbdinger equation, as done for pionic 

atoms 2’). We found corrections at the level of 2%. 

Thus it looks that the approximations that we are still doing are rather under 

control. However, we have improved on other approximations which were done 

before in order to make the problem tractable, and which could be easily avoided 

in our approach. 

After this discussion we pass on to present our results. A rather exhaustive list 

of nuclei has been studied and the results appear in table 1. We show results for 

nuclei from ‘Li up to ‘09Bi. The capture rates r vary from 0.3 x lo4 s-’ to 0.15 x 10’ s-l. 

We have included in the table the different experimental results which we have 

extracted from ref. 26). The overall agreement between the theoretical results and 

the experiment is spectacular considering the amount of nuclei studied and the large 

variation of the rates (four orders of magnitude) from light to heavy nuclei. 

One finds larger discrepancies of the order of 30% in some nuclei like ‘Li, 44Ti, 59Co 

and the isotopes of Ni, but for the large majority of nuclei there is agreement with 
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experiment or there are differences at the level of 10%. We present a selection of 
the most stable isotopes as a function of Z in fig. 4 in order to give a visual idea 
of the quality of the agreement. 

As we have mentioned before, the renormalization discussed in sect. 3 has very 
important effects in this problem. Indeed, in fig. 5 we show the results calculated 
with and without the renormalization, as a function of 2. We can see that for medium 
and heavy nuclei the nuclear renormalization reduces the results in about a factor 
two and it is essential to produce agreement with the experimental numbers. This 
reduction factor is much bigger than the estimates of ref. 38), where a small quenching 
due to the axial polarization was suggested. This is a very interesting process, which 
evidences the strong nuclear renormalization on top of a weak interaction process, 
which can be brought under control as we have shown here. Although similar effects 
due to the spin-isospin polarization of the nucleus also appear in many nuclear 
processes “), sometimes it is more difficult to assess their importance since the 
nuclear interaction itself can be less controllable. However, it is interesting to recall 
that these medium polarization effects were considered in connection with the 
problem of X decay in nuclei and led to the interesting conclusion that there should 
be narrow 21 hypernuclear bound states of around r = 5-7 MeV [refs. 27,28)]. The 
first of such states has been found recently, 2 He, with a width of 4.5 MeV [ref. ““)I. 
Similarly using the same concept, in connection with the A self-energy, it was 
hinted 30) and shown recently “), that this medium polarization is the key to under- 
standing the problem of the pionic anomalous atoms - 72*33). The clean effects of this 
medium renormalization shown here can only stress and reinforce the interpretation 
given for these other phenomena. 

Exp. limits 

Theory 

lo3o ’ ’ ’ * ’ ’ I k 
30 60 90 

ATOMIC NUMBER(Z) 

Fig. 4. Total rates for negative muons captured by the most stable isotopes. Circles are our theoretical 

results. Experimental limits from different groups are shown. Data are from ref. “1. 
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O2. 

ATOMIC NUMBER (Z) 

Fig. 5. The nuclear medium renormalization effect in the calculation of total nuclear capture rates of 

p-. Crosses and circles are calculations without and with the renormalization respectively. 

Isotopic effects would appear to be tied to the particular shell structure of the 

nucleus, given the relevance of the Pauli blocking in the problem. It is interesting 

to show our results for different isotopes. Although the absolute numbers for r 

appear in table 1, we have calculated the ratios for several isotopes and show them 

in table 2, comparing the theoretical results with those of refs. 26734-36). There are 

discrepancies of the order of 50% in the Li isotopes, With so few nucleons, shell 

effects are more important and the concept of a Fermi sea of protons and neutrons 

with only 3 particles is a bit extreme. The discrepancies are smaller of the order of 

lo-15% for the C, 0 and Ca isotopes, and for other nuclei the agreement is very good. 

5. Conclusions 

We have used a simple, yet reliable method, to evaluate the total muon capture 

rate in nuclei, which consists in evaluating the muon capture width in infinite nuclear 

matter with N # 2 as a function of pp, pn and then adapt the results to finite nuclei 

via the local density approximation. The method allows for an accurate evaluation 

of the reaction probability without the need for approximations done in the past, 

like neglecting the nucleon momentum, using the closure sum or sum rule approaches 

to sum over nuclear intermediate states, using the concept of an effective Z, neglecting 

the binding of the muon, taking an average neutrino energy, etc. In addition, we 

make a highly accurate determination of the muon wave function for the 1s state 

from where the muon is cabtured. The method has the virtue of showing that the 

relevant nuclear magnitudes are the proton and neutron densities and that nuclear 
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TABLE 1 

Theoretical results for total nuclear capture rates of negative muons compared with data. Experiments 

are taken from ref. a’) and references therein. 

A Z 
Calculation Experiments 

(s-‘) (103 s-1) 

6 3 0.473051 x lo4 

7 3 0.338267 x lo4 

9 4 0.106016x lo5 

10 5 0.270790 x lo5 

11 5 0.215267 x 10’ 

12 6 0.491425 x 10s 

13 6 0.382118x 10’ 

14 0.876191 x 10s 

16 0.146072x lo6 

18 

19 

0.115035 x lo6 

0.212870 x lo6 

6.100* 1.400 

4.680 f 0.120 

4.180 * 0.450 

1.800* 1.100 

2.260 f 0.120 

1.810*0.440 

18*10 

10*2 

5.9kO.2 

7.4 f 0.5 

26.5 * 1.5 

27.8 f 0.7 

21.8* 1.6 

21.9*0.7 

44*10 

36*4 

37.3 f 1.1 

36.1* 1.0 

37*7 

39.7 * 1.3 

36.5 f 2.0 

30.3 * 7.0 

37.6 f 0.4 

35.2*2.0 

37.7 f 0.7 

38.8+0.5 

33.8 + 0.4 

37.6 f 0.7 

86ztll 

65*4 

60.2iO.8 

68.4kO.8 

69.3 * 0.8 

0.159*0.014 

0.098 f 0.003 

0.098 * 0.005 

0.095 + 0.008 

0.1026 f 0.0006 

0.0880 f 0.0015 

0.254 f 0.022 

0.235 * 0.010 

0.23 1 * 0.006 

0.229 * 0.001 

1 
A Z 

Calculation Experiments 

(s-l) (103 s-1) 

20 10 0.346504 x lo6 

23 11 0.398167 x 10’ 

24 12 0.611794x lo6 

27 13 0.698167 x lo6 

28 14 0.967561 x lo6 

32 16 0.147345 x 10’ 

40 18 0.158576 x 10’ 

40 20 0.277102 x 10’ 

44 20 0.212757 x 10’ 

44 22 0.364563 x 10’ 

50 24 0.390693 x 10’ 

52 24 0.345514x 10’ 

53 24 0.323095 x 10’ 

54 24 0.304124x 10’ 

56 26 0.392927 x 10’ 

0.204 f 0.010 

0.167 +0.030 

0.30* 0.02 

0.235 f 0.005 

0.387kO.015 

0.3772 f 0.0014 

0.507 * 0.020 

0.480 f 0.002 

0.52*0.02 

0.4841* 0.0018 

0.691 i 0.020 

0.662 f 0.003 

0.65OiO.015 

0.7054* 0.0013 

0.777 f 0.025 

0.850* 0.003 

0.86 * 0.04 

0.8712*0.0018 

1.39 * 0.09 

1.31*0.03 

1.34*0.01 

1.352*0.003 

1.20 * 0.08 

1.41 f 0.11 

2.55 * 0.05 

2.444 zt 0.023 

2.529 f 0.008 

2.29 f 0.05 

2.557 * 0.014 

1.793 f 0.040 

2.63 * 0.06 

2.60*0.04 

2.590*0.012 

3.825 f 0.050 

3.452 f 0.047 

3.297 f 0.045 

3.057 * 0.042 

4.53*0.10 

4.38 * 0.07 

4.40 * 0.05 

4.411 f 0.024 
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TABLE I-continued 
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A Z 
Calculation Experiments 

K’) (103 s?) 

59 21 0.365026 x 10’ 

58 28 0.439701 x 10’ 

60 28 0.398315 x 10’ 

62 28 0.355090 x 10’ 

64 29 0.397764 x 10’ 

64 30 0.469282 x 10’ 

72 

75 

90 

112 

32 0.464783 x 10’ 

33 0.487336 x 10’ 

40 0.719435 x 10’ 

48 0.927524 x 10’ 

4.89 * 0.09 

4.96 zt 0.05 

4.940 f 0.029 

119 50 0.999416 x lo7 

6.11 jzO.10 122 51 0.100345 x 10s 

5.56*0.10 

4.72ztO.10 

5.791-0.16 

5.47 * 0.20 

5.66 zt 0.09 

5.67 i 0.09 

5.676 * 0.037 

139 57 0.110223 x 10s 

144 60 0.138435 x 10’ 

5.76kO.17 

5.5*0.1 

5.76jzO.05 

5.834* 0.039 

152 62 0.129497 x 10’ 

165 67 0.141022 x 10’ 

184 74 0.149203 x 10s 

5.5450.06 

5.569 * 0.036 

197 79 0.151167x 10s 

6.07 * 0.07 

6.06*0.12 

6.104*0.043 

208 82 

8.59 + 0.07 

8.66 + 0.08 
209 83 

0.153379x lo8 

0.141154x lo8 

10.1*0.5 

10.63*0.11 

10.61 ztO.18 1 

A 2 
Calculation Experiments 

(s-l) (loXs-‘) 

10.5 f 0.4 

10.70*0.14 

10.44*0.18 

10.49*0.14 

10.21* 0.20 

10.71*0.10 

12.32i0.14 

12.50* 0.33 

12.2250.17 

12.95kO.13 

11.92*0.30 

13.5kO.6 

13.07 * 0.21 

12.36 * 0.24 

13.39*0.11 

13.07 *0.2s 

11.70*0.75 

14.5 * 0.75 

12.98*0.10 

13.27kO.22 

13.45iO.18 

12.20 * 0.75 

13.26+0.07 

13.01*0.18 
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isotope effect in the total nuclear capture rates of nega- 
tive muons 

Isotopes Calculation Experiments Ref. 

‘LiPLi 

‘lB/l’B 

%f’2c 

0.71 

0.79 

0.78 

0.79 
0.77 
0.88 
0.83 
0.78 
0.94 
0.88 
0.94 
0.91 
0.81 
0.89 

0.30 f 0.19 
0.43rto.11 
0.83 -i: 0.07 
0.79 * 0.03 
0.90 rt 0.02 
0.97 * 0.02 
0.86kOo.02 
0.7 1 f 0.02 
0.9OkO.02 
0.86iO.02 
0.80 + 0.02 
0.96+ 0.02 
0.89 rt 0.02 
0.91* 0.02 
0.91 zk 0.02 
0.77 rt 0.02 
0.85 i 0.02 

shell effects seem to be relevant only for very light nuclei. With an accurate 

dete~ination of the process involving the weak interaction we paid special attention 

to nuclear renormalization effects in the spin-isospin channel which affect the most 

important terms of the reaction. These effects are very important and we showed 

that they reduce the capture rates by about a factor two for medium and heavy nuclei. 

The overall agreement of our results with experiment is remarkable for the set of 

38 nuclei for which we had experimental data. The ratios of rates for different 

isotopes is also in quite good agreement with experiment except for very light nuclei, 

where our methods are obviously less reliable. 

In summary we can conclude that our present knowledge of the weak processes 

together with the important nucfear renormalization effects lead to a satisfactory 

understanding of the process of inclusive muon capture in nuclei. The process has 

the virtue of showing very clearly the need for the nuclear reno~alization. This is 

of particular importance since a similar renormalization appears in a variety of 

nuclear processes and leads to particular effects like a substantial reduction of the 

calculated 2 widths in 2 hypernuclei and is one of the ingredients leading to a 

solution of the systematic anomalies found in pionic atoms. The results found in 

this paper give an extra support to the interpretation given to the narrow x states 

and the pionic atom anomalies along the lines of this nuclear type of renormalization. 

The continuous discussions with J. BernabCu along the realization of this work 

were both enlightening and delighting and we would like to express our gratitude 
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of Vaiencia University for their hospitality. 
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Appendix A 

COUPLING CONSTANTS AND FORM FACTORS 

We fotlow ref. “) for this information actualized with the new information from 
ref. ‘?). For the vector and magnetic couplings we have 

g&I*) = GE&I*) - G&q*), 

with GE, Gtci the Sachs etectromagnetic form factors 

G+(q2)= l+p 

GM&‘) = G&q’) = 4M; G,,(s2) G(q) -I--~= 
4* CLn 

3 tA.2) 
P l-h 

with ppt pn the anomalous magnetic moments of the proton and the neutron 
respectively, ,+.,= 1.7928, pn = -1.9130 and q2 = qo2--q2. G(q’) is given by 

with Mi = 0.71 GeV2. 
For the axial-vector coupling we have 

(-4.3) 

64.4) 

with gA(0) = -1.259. The coupling G = G, cos B with Go= I.16637 x IOA5 CeV’, 
cos B = 0.974. 

For g, we have taken the value extracted in ref. *), g,= -10.27, which was 
calculated at the kinematics from p capture from hydrogen. However, we have kept 
the pion propagator structure of the pseudoscalar term and taken co~espondingiy 

&( q*) = 15m2, 
q’-my 

(A.51 

which approximately coincides with the numerical value given above for q2= 

-O.@vn: of the kinematics of the p capture, and is also very close to the value 
provided by the Goldberger-Treiman relation ‘*j). 
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+32&&-m,(p,- q)(P1*122+%(P2 *p3Np, ’ 9) 
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and we have taken 

PI=&& =(&,O), P2=Ppp=(&_J,PL 

P3=PY=(PY,PvL P4=Pn=(k,P-PvL 

4 =pp -Pv = (Ep -A, -IhI, (B.2) 

with 

and p. py, from energy conservation, is given by 

P’pv=M 
( 

P,+&E,, , 
) 

03.4) 

with M an average proton and neutron mass. For p2 in the expressions we take an 

average over the Fermi sea 

(B.5) 
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We have evaluated the cross section for coherent pion production in the 3He + =2 C ---, t + 12 C + 7r + reaction. The 
,J peak of the energy distribution is considerably shifted with respect to the peak in the p (3He, t),J + + reaction. The 
coherent pions represent a sizable fraction of all pions produced and are a major ingredient in the interpretation of the 
shift of the A peak in the inclusive (3He, t) reaction in nuclei. The coherent production process qualifies as production 
of virtual pions followed by elastic scattering of the virtual pions with the nucleus and the investigation of this channel 
will offer information about pion nucleus interaction complementary to the one obtained from scattering of real pions. 

The reaction we discuss is 

3He + A(g.s.)  --* t + A(g.s.)  + ~z + . 
t l 

(1) He t ' ' ' / *  In the coherent product ion the nucleus is left in 
its ground state by contrast  with the incoherent  pro- 
duction where the nucleus is either broken or  left in 
some excited state. Some comments  about coherent 
pion product ion with strongly interacting particles are 
done in refs. [1,2] in connection with heavy ion re- 
actions or subthreshold pion product ion [3,4]. Clas- 
sical est imates of  coherent p ion product ion in p nu- 
cleus collision are also done in ref. [ 5 ] and  a Quantum 
Mechanical  evaluat ion o f  coherent r t -  product ion in 
the (n, p )  reaction, leading to deeply bound  states, is 
done in ref. [6]. Very recently the coherent  pion pro- 
duct ion o fp ions  in the cont inuum with the (p, n ) [7 ] 
or (He, t) [8] react ion has also been addressed and 
some experimental  data  are already available [9]. We 
are concerned about  the product ion of  n+ in flight 
with reaction (1) and its relative impor tance  in the 
inclusive (3He, t) cross section in nuclei. The results 
of  our  calculation show that  the coherent pion pro- 
duction represents a sizable fraction of  all pions pro- 
duced in this reaction and that  it is a key ingredient  in 
the shift o f  the A peak observed in the (3He, t) reac- 
t ion in nuclei around the A-resonance region [ 10,11 ]. 

a) 

+ + 

d) 

"'" + "" + 

b) c) 

+ ' " ~  . ~ f "  

He 

e) f) 

Fig. 1. Diagrammatic representation of coherent pion pro- 
duction. The dashed lines indicate the pion, the wavy lines 
the spin-isospin interaction and the dotted line with a cross 
the ingredients in the zth interaction additional to one pion 
exchange. The dashed lines with a dashed circle in the mid- 
dle represent a renormalized pion. The crossed circle indi- 
cates the pion selfenergy. 

The process of  coherent pion product ion is depicted 
diagrammatical ly  in fig. l ,  where for simplicity in the 
figure we have assumed that the pion is renormalized 
exclusively via J h excitation. The dashed line stands 
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for a pion line. The crossed dashed line for the ingre- 
dients in the Ah interaction apart from one pion ex- 
change (OPE) and the wavy line for the complete ph-  
A h interaction. The A h excitation plus the irreducible 
diagrams coming from iterated A h excitation through 
the additional pieces to OPE are all collected into a 
pion selfenergy (denoted by a cross bubble in fig. lf) 
and the diagrammatic series of  fig. 1 is summed up 
into the diagram of  fig. If, where the pion line with 
the dashed circle stands for a renormalized pion (pion 
wave function in coordinate space). This is a gener- 
alized Dyson equation which implies that diagram 1 a 
does not contribute as we shall see. We take a pion 
selfenergy of  the type 

We take g '  = 0.6 as used in the study ofpionic  reac- 
tions [14,15]. The pion selfenergy is also taken from 
[14,15] and the pion wave function is obtained by 
solving the Klein Gordon equation with this selfen- 
ergy. 

The square root factor in (4) guarantees that in IT[ 2 
one obtains the correct relativistic factor ( -qZ)  from 
the n N N  vertex instead of  q 2 which one obtains from 
the implicit use of  a crq nonrelativistic vertex after 
summing over spins. 

Since the 3He and t are rather energetic, and we 
look at the t in the forward direction, their wave func- 
tions are given quite accurately in terms of  the eikonal 
approximation 

II  (r) = 1-I(S) (r) + V H ( P ) ( r )  V ,  (2) 

which contains an s-wave and a p-wave part. We ob- 
tain a cross section for the process of  eq. ( 1 ), 

da 1 MneMtMAptp~ 
dg2tdEtd.Q, - (2n) 5 2I/2(s, M2He, M 2) I:rlz' (3) 

where MHe, Mr, MA are the masses of  He, t and the 
target nucleus and pt, p,, the momenta  of  the t and 
pion. By using a pseudovector coupling in the x N N  
vertex the T matrix for the process is given by 

- iTi  -x /2  f _q2 = u ~ f  d3x~';(x)~°II°(x)F"~'(q) 

( qi Fz (q) 
× \q0~--_ ~-~-- #2 H(')(x) 

- [VZcliOj + V('(Su - 4 i ~ j ) ] H ( P ) ( r ) i V j )  
/ 

x ~bou, ( p , , x ) ,  (4) 

where Fne,t (q) is the (He, t) transition form factor, 
given by eq. (6) of  ref. [12] and 

q 2 g' 
V~(q) - q O 2 _ q 2 _  l.zE F E ( q  ) + 

q2 
V~-(q) = q O 2 _ q 2 _ m z F Z ( q ) C p +  g ', (5) 

are the longitudinal and transverse parts of  the spin-  
isospin interaction, F ( q ), Fp ( q ) the n N N and p N N 
form factor taken of  the monopole type with A = 
1300 MeV and Ap = 1400 MeV and Cp = 3.96 [ 13 ]. 

(~t (X) ~He (X) = exp ( ip  HeX ) 
z 

x e x p ( - l f a ( 1 - i q ) p ( b , z ' ) d z  ' )  
o o  

o o  

( I f )  x e x p ( - i p t x ) e x p  - ~ a ( 1 - i q ) p ( b , z ' ) d z '  

z 

= exp[i~H~ - P t ) x l C ( b ) ,  (6) 

which defines the distortion factor C(b) ,  with a the 
total cross section He (or t) N, q the ratio of  real to 
imaginary part of  the HeN amplitude, which we take 
as for nucleons, q = 0.275, and p (x) the nuclear den- 
sity, with b the impact parameter. We can see now 
that the evaluation of  diagram 1 a requires the inte- 
gral of  the product of  the 3He, t and pion wave func- 
tions. By making use of  eq. (6) and carrying out the 
z integration we obtain ~ (pile - Pt -- p,~z ), with p~z 
the pion momentum component along the direction 
of  3He or t. The argument of  the delta function does 
not vanish for kinematical reasons and the diagram 
does not contribute as we anticipated 

We have evaluated the cross section for (3He, t) 
on 12C at Tm = 2 GeV and t forward in order to 
compare with the experimental results. We show our 
results in fig. 2. Our aim in this letter is to report on the 
relevance of  the coherent channel and all details for 
its evaluation are contained here. However, i n  order 
to place the discussion of  this channel in a broader 
context we also plot in the figure the results obtained 
for the incoherent channels in ref. [ 16 ]. Some details 
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Fig. 2. Different contributions to the cross section for the 
(3He, t) inclusive reaction on 12C. ( 1 ) Incoherent pion pro- 
duction. (2) Coherent n + production. (3) Sum of incoher- 
ent processes (i) to (v). See text. (4) Total: sum of coher- 
ent and incoherent processes. 

and discussion on these channels are reported in ref. 
[17 ]. The channels considered are 

(i) Quasielastic 3HeN ---, t N  collisions. 
(ii) Two steps quasielastic collisions 3HeN 

3He(t) followed by 3He( t )N --~ tN. 

(iii) Two step quasielastic with 3He(t) break up in 
the intermediate states. 

(iv) Virtual pion production followed by two (or 
three body) pion absorption (the virtual pion is in 
practice substituted by the spin-isospin effective in- 
teraction. 

(v) Incoherent inclusive n+ and r~ ° production. 
In fig. 2 we show only the incoherent pion produc- 

tion (before final state interaction of  the pion is taken 
into account, which would redistribute this strength in 
pionic and nucleonic channels), the sum of  all the in- 
coherent channels and the coherent pion production. 

As seen in fig. 2 the coherent pion production chan- 
nel accounts for a sizable fraction o f  the total pion pro- 

duction strength at high t energies. The pion energy 
ranges approximately from the pion mass up to 360 
MeV where the coherent distribution dies out rapidly. 
The peak of  the distribution of  coherent pions appears 
at a pion energy of  250 MeV, or accordingly at a t ki- 
netic energy of  1750 MeV. This is precisely the energy 
where the inclusive (3He, t) spectrum has its maxi- 
mum. It is interesting to note that the peak of  the in- 
coherent pion production is not shifted with respect 
to the position of  the peak in the (3He, t) reaction on 
the p or better on the deuteron. This has been con- 
firmed experimentally in ref. [ 18 ] where a p and a zt + 
are measured in coincidence. The peak of  the coher- 
ent pion distribution is however considerably shifted. 

The shift of  the peak in the coherent channel is due 
to the same reasons as the shift also observed in pion 
nucleus scattering [ 19 ]. They are mainly the effect of  
the nuclear form factor and the distortion of  the pion 
waves. 

It is interesting to see that the sum of  the different 
incoherent channels puts some strength in the region 
of  high energy t but the position of  the peak is still not 
shifted. However, the addition of  the coherent channel 
produces a shift in the peak position and improves the 
agreement with the data. The coherent channels plays 
then an important role in the production of  the shift. 

The calculations ofrefs. [20,21 ] include the coher- 
ent channel and part of  the shift found there can be 
attributed to the contribution of  this channel, as it 
has been made more clear in ref. [ 8 ]. All these works, 
however, do not take into account the quasielastic 
channels discussed in ref. [17], or the excitation of  
the A in the projectile [12], also accounted for in ref. 
[17 ], and which is relevant in the (He, t) reaction on 
neutrons. 

While devoted experiments for coherent pion pro- 
duction are under consideration, the partial results on 
the coherent channel of  ref. [9] are illustrative. They 
show clearly that the peak position is where we find it 
theoretically and also that the cross section is rather 
forward peaked in the direction of  the pion along the 
(3He, t ) momentum transfer. We have also evaluated 
the angular distribution for Tt = 1755 MeV and show 
the results in fig. 3. We find a cross section rather for- 
ward peaked and in qualitative agreement with ref. 
[9] (where other angles of  t and a sum over different 
t energies are considered): We also find that the cross 
section goes roughly as VL 2 cos 2 0 + V~ 2 sin 2 0, and is 
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Fig. 3. Differential cross section da/dg2 dE don  for Ot = 0, 
Tt = 1755 MeV. 

dominated by the longitudinal channel. The fall down 
in angle is due to the nuclear form factor (implicitly 
contained in eq. (4)).  Extra confirmation about the 
peak position of  the coherent channel comes from the 
(p, n) reaction of  ref. [22] where the channel where 
a rr + alone is seen (meaning no other charged par- 
ticles) has a very distinct peak, shifted considerably 
with respect to the position of  the peak, in the elemen- 
tary p (p, n) reaction. As shown in ref. [ 17 ] and in 
the reanalysis of  the data [23], a large fraction of  the 
peak is due to coherent zr + production (there is some 
background from pn ---* nnT~ + events) which peaks 
exactly at the same place as the experimental peak. 

We should note here that the interaction used in eqs. 
(4), (5) differs somewhat from the one used in ref. 
[ 12 ]. There an interaction was used for the HeN 
tA transition which effectively accounted for distor- 
tion effects of  the nucleons and pions through He or t. 
Since here distortion effects are explicitly taken into 
account we can not use that interaction. Instead, we 
have reanalyzed the work of  ref. [ 12 ] with the new in- 
teraction, taking into account explicitly the distortion 
effects, and have found results very similar to those 
obtained before. 

The result obtained here for the coherent pion pro- 
duction are about a factor o f  two smaller than those 
obtained in ref. [8]. Until devoted experiments show 
the strength of  the coherent channel, we can get some 
support for our results from the following discussion: 
The recent experiment (a, a ' )  on a proton target in 
the delta region [24] qualifies as coherent pion pro- 

duction (with the pionic variables integrated) with 
the (p ,p ' )  or (p ,n )  reaction on a 4He nucleus. We 
have carried out the calculations with the same inter- 
action as here and the same method and find a good 
agreement with experiment, both in energy and angu- 
lar distributions, at the level of  20% [25 ]. 

The infinite matter approaches to coherent pion 
production [5,26] base the reaction in the change of  
the pion dispersion relation in the medium and re- 
quire a minimum strength of  the pion selfenergy for 
it to happen. It is a rough approximation to the fi- 
nite nucleus and full quantum mechanical approach 
followed here, which produces always coherent pion 
production even if the strength of  the pion selfenergy 
is small. Incidentally, in the numerical results of  ref. 
[26] the strength of  the pion selfenergy was relatively 
small and the numerical results shown there only ac- 
count for the incoherent processes. 

We should stress once more that we are facing here 
a new brand of  interesting physics: elastic scattering 
of  virtual pions, with the flexibility of  making the ini- 
tial pion arbitrarily off shell by changing the kinemat- 
ical conditions or the mass of  the projectile. These 
investigations would give rise to energy and angular 
distributions for different off shell pions which would 
constitute very valuable complementary information 
to the one obtained from the scattering of  real pions. 
This would be welcome in view of  the present arbi- 
trariness in the description of  pion nucleus interac- 
tions in terms of  a large variety of  very different op- 
tical potentials. 

The fact that the coherent pions come with a unique 
energy (EHe -- Et, neglecting nucleus recoil) is also 
an interesting feature. We have observed that at ener- 
gies around the peak of  the coherent pion production 
the pions are very forward peaked, and with heav- 
ier targets than 12C they would be even more for- 
ward peaked. Hence the coherent pions are a source of  
highly monochromatic and unidirectional pions. As 
one of  the possible applications we can suggest tagging, 
as done for photons. In (p ,p ' )  reactions n ° beams 
would be produced which could be used to study fur- 
ther collisions on the same target, given the short re ° 
lifetimes. Further investigation of  these practical pos- 
sibilities is also very interesting. 
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l . Introduction
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Abstracts We study simultaneously the (3 He, t) and ( 3He, 3He) reactions on proton and neutron targets
in the region of the delta excitation resonance . We observe that the mechanism of delta excitation
in the target dominates the ( ; He, t) reaction on the proton, but the mechanism of delta excitation
in the projectile is important in the (3 He, t) reaction on the neutron, and largely dominates the
(3He, 3 He) reaction on proton and neutron targets . The two mechanisms give rise to different shapes
in the energy distributions of the t or 3 He outgoing particles and the weights and shapes of the
mechanism change appreciably with the energy of the projectile . The combined experimental study
of both reactions as a function of energy is thus a much richer source of information on the
dynamics of these problems than the study of the (3 He ., t) reaction alone, where the experimental
efforts have so far concentrated .

The charge exchange reactions of the (p, n) type, either induced by proton beams
or light ions, like the (;He, t) reaction, are receiving increased experimental and
theoretical attention ' -h ). The famous shift of the delta peak from the ('He, t) reaction
on the proton to the reaction on nuclei''{) has been the subject of intense debate
[see refs . '_a) for recent reviews] .

In ref. '), a part of the shift of the peak is attributed to collective effects in the
pion channel . In ref. "'), the idea of delta excitation in the projectile was exploited
and it was shown to lead to some shift of strength in nuclei . Meanwhile, further
experimental research 4) is showing that the shift is selective and depends on the
reaction channel : while no appreciable shift is seen in the irN final-state channel,
an appreciable shift is observed in the NN emission channel . This detailed informa-
tion represents a challenge for theory, which will have to come down to details on
the dynamical mechanisms of the reaction . The fact that the shift is seen in the 2N
emission channel probably indicates that two-step mechanisms may lay some role
too. o far, all theoretical approaches rely upon one-step excitation of the delta.

(`o,respondence to : l'rof. F. ()set, Dept . de, Ikica Tecirica, Universidcrd de V.,Ileircia, 46100 110r,j , ~~ rtrt
V".alencia ), Spain.
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ur aim here is to pay attention to the mechanisms of delta excitation in the
target and the projectile and to suggest an experimental method to extract relevant
information on these mechanisms . It is important to have a good control of these
mechanisms . Indeed, the most important finding of ref. ") was the fact that the
(3He, t) reaction on the proton and on the neutron had a very different shape . The

reason is that the A -excitation in the target and the projectile lead to different energy
distributions and the weight of these two mechanisms is quite different in the (; He, t)
reaction on the proton or the neutron . As a consequence, the comparison of the

e, t) reaction on nuclei with the one on the proton is rather unfair because nuclei
are made out of protons and neutrons . This is, however, what is done in most
theoretical studies, which also neglect the excitation in the projectile . A fairer
approach is to compare with the deuteron . Indeed, the deuteron already shows a
displacement of the strength of the energy distribution towards higher energies of
the outgoing tritium . This distribution, both in size and shape was well reproduced
in the work of ref. '°) .
What we do in the present work is to show that the related (3He, 3He) reaction,

which can be performed with minor modifications on the presently running experi-
ments, stresses the mechanism of A-excitation in the projectile to the point that it
becomes dominant at energies around TH, = 2 GeV. As a consequence, both the
magnitude and shape of the energy distribution are quite different than in the (He, t)
reaction . The study of the (3 He, 'He) reaction, in connection with the (3He, t)
reaction, is thus a very important tool in order to learn about the dynamical excitation
of deltas in nuclei .

2. The

f5

odel for NN - NNw

The basic model for the NN - NN 7r interaction used in ref. "'), and which we
use here again, is depicted in fig . 1 : a pion is produced in the NN7r vertex and it
rescatters with a second nucleon via an s-wave (1a) or a p-wave (1c) in the TrN- 7TN

scattering matrix . The p-wave amplitude is given in our model by the A-pole . On
the other hand, we can have the pion production in the second nucleon and the
rescattering in the first one . The corresponding terms with s-wave and p-wave
rescattering are depicted in figs . l b and Id, respectively . The basic couplings we
need in order to construct these amplitudes are the NNrcoupling, theAN7coupling
and the -aN- ,7rN s-wave amplitude.
The NN7 coupling is given by

NN7r
A

where q is the momentum of an incoming pion in the NN7r vertex, and ju the pion

mass. The structure of eq . (1) holds exactly from a pseudovector coupling, which
we implicitly assume, in a frame with q"=O. Since this is not the case here, one
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-t(5HN _1 ,r =f

	

+ . qT+A +h.c .

795

Fig. l . Feynman diagrams for NN - NN z with pion production in the target (a), (c) or the projectile
(b), (d) induced by the s-wave (a), (b) or p-wave (c), (d) TrN- 7rN interaction .

must replace q, coming from the vertices in the final results by -q`', the corresponding
invariant magnitude.
We also need the s-wave 7rN-> iTN amplitude given by

- tSH lrr7rNN - - t4Îr8�, r11,

	

2A1
Unt,m;VAA'+ iE,,AA'

2A,
\m~f T ce I mll

where m,, m ;, m,, m, are the spin and isospin variables of the incoming and outgoing
nucleons, and A,, A, the isoscalar and isovector couplings .
The N®7r is given by

for art incoming pion with momentum q. Once again, eq. (3) holds in a frame where
q0 =0, and for virtual, space-like pions, one must substitute

q`,
by -q2 at the end

of the calculations . For real pions where one cannot find the frame with q" = 0, the
invariant vertex is given by the same eq. (3) with q the 7rN centre-of-mass momentum.

We will write q2 in the formulae for simplicity, with the understanding that the
corrections are taken care of at the end.

For the coupling constants we take "')
.f* ,

.i,` =0.08,

	

=0.36,
4 rr

	

47r

A,=A,+0.000222[MeV

	

A ;=0.0075, A,=0.0528, (4)

where s is the IVlandelstam variable for the rN system and

	

the nucleon mass.
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%MS9 %MA the corresponding ones for spin, in the nomenclat
particular the wave function for 'He with spin I is

0(3Hel)=,/(',(-pnplll+npplll-ppnîll+ppnlll+pnplll-npplll),

e(tl)=1/61-(-pnnlll+pnnlll+npnlll-npnlll+nnplll-nnplll) . (17)

Then we can show that
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where the sum runs over the nucleons .
In general we can write these matrix elements ;n the base
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With the help of these results or simply with direct calculation, as in eq . (18), we
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f states of total spin

e or t, we have

(18a)

(18b)

n (18c)

(19)

(20)

ote that in the case of the
(3
He, 0 transition, the matrix element is as in the (p, n)

case except that the spin-flip term has opposite sign. One can also see this in a

different way by recalling that the T-operator is implicit in the transition (it comes

from T"T" = j5,,

	

3 ie,

	

and hence the spin-independent term corresponds
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Fig. 3 . Feynman diagrams for pion production in the ( ;He, -"He) reaction, on proton and neutron targets,
with .1-excitation on the target and the projectile .

C)

no

It is now instructive to look at the weight of the diagrams with A-excitation i

the target or the projectile . As we saw before, the weight for target to projectil
excitation in (Te, t) on the proton is 9. By looking at the coefficients in fig. 3 for

e (3He'3 He) (neglecting the fact that the spin-flip amplitudes are different, because
-1 thethey are small compared to the spin-independent part) we obtain a factor,&7 for

rati
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Conversely the weight of the mechanism of A-excitation in the projectile has
passed from being 4' of the target excitation mechanism in (3 He, t) on the p to being
a factor about 22 in the (3 He, 3He) reaction on the proton.

ith respect to the excitation on the neutron, the ratio of the projectile/target
mechanisms passes from being I in the (3He, t) reaction to

4' in the (3He, 3He)3

reaction . We thus see that in both p and n cases the ( 3 He, 3 He) reaction is dominated
by the 1-excitation in the projectile and, hence, both should have the same shape,
and correspondingly also the ( 3 He, 3 e)) excitation on the deuteron .
The other point worth noting is that due to the large weight of the projectile

excitation mechanisms we expect a much larger cross sections in the (;He, ;He)
than in the (3 He, 0 reaction .

In addition to the diagrams which we have discussed we should consider the
antisymmetric partners, but they are very small when using nuclear projectiles 14)

since they involve exchange between bound and free particles and, hence, extra
form Actors . This is obviously not the case in the (p, n) reaction with free particles
for what some of the results obtained here in the (3He, 0 reaction are not necessarily
similar in the (p, n) reactions.
The cross section for the (3

d
d2u Pt
dE,

	

(27r)5
A''

,(S,

P Amàndez de Cdrdoba, E. Oseî / 1-e.xeitatioti

He )

1 p 2

6

	

p

	

,/-S VS_+
2

q,- = PHe - Pt,

-1 Y_ I T128(EH,+E(YJ

no =Wnet,

-3
qN

-1

e, t) reaction is given by 10)

) - Et - E ( p') - w (p, (22)

where momentum conservation is assumed, PH,+P=A+P+P,,, with pp' the
onomenta of the incoming and outgoing nucleon, and relativistic kinematics is used,
ukh E( p) and w(p-) the total energy of nucleons and pions, respectively, the
function A

	

is the Kdllen function .
For the ( - He, 'He) reaction we replace in ed. (22) the tritium variables by those

of the outgoing 3He and the matrix element as indicated before .
he width of the .1 is taken as ' 5 ) :

(23)

with q, the c . m. nucleon momentum for the decay of the A with invariant mass Nfs
into a pion and a nucleon .

In the magnitude d2u/df2 dE in the lab system the A-excitation in the target and
in the projectile (DEP) give rise to diRerent distributions . Indeed we have for the
-excitation in the target (DET)

(24)
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while for the A-excitation in the projectile we have

The difference is apparent, in the DET mechanism for a fixed angle
of the t, both q,,, and s,, are fixed. The invariant mass of the delta is then fixe
this mechanism. The p,, integration can be carried out and leads to the .1-wi
allowing to cast the DET mechanism in a different way which is widely used i
literature where d2a/dfl dE is proportional to F

dfl dE DET

	

(%/Stg

qpr

	

PH,-A -P,. 9

4. esults and discussion
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(IF(-2 oc -lm
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So»

	

op-X + cy)
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(25)

d eher

(26)

However, the DEP mechanism does not allow this simplification because b
ga r and sp, depend now explicitly on the variable of integration

	

_p_- As a conseque
there is a range of values of the delta invariant mass Nfs-p, which are covered in the
DEP mechanism and this gives rise to a shape quite distinct to the one in the
mechanism. In ref. '0) it was found that at Tie =2 GeV the DEP mechanism peaks
at much larger values of E, than the corresponding DET mechanism. The other
noticeable difference is that, in the DET mechanism, the shape does not depend on
the absolute value of EHe but only on the difference pie-pt, while in the
mechanism it depends on the absolute value of E, and we obtain different sha
at different energies .
We carry out the calculation of the cross section by means of ed. (22) for all the

mechanisms and take into account the interference, although small, of the DEP and
DET mechanisms and the s-wave pieces, which are also rather small by themselves.

t
ce

In fig. 4 we show the results for the (;He,t) reaction on the proton and the
neutron, as a function of Tt for 0=0'. We observe that on proton targets the
contribution of the DEP mechanism is rather small but modifies the cross section
at higher t-energies and leads to a better agreement with the data '6 ) . The effect of
the DEP mechanism is more apparent in the (3He, t) reaction on the n-target and
lead-. to a substantial strength in the region of high T, The shapes of the reaction
on the proton and on the neutron are rather different, as one can see in the figure.
Neglecting screening effects and two step processes in the deuterium nucleus, which
should be small for the inclusive process (3He, t) on the d-target, we can obtain this
cross section by adding the cross sections on the n and the p. The results are shown
in fig. 5 and compared with the experiment 17) . The agreement is rather good but
our peak is too sharp. By adding the p- and n-excitations we are shifting some
strength toward higher T, energies and this is also apparent in the experiment.



804

Fig . 4. Double-differential cross section forOHe, 0 on proton and neutron targets at fixed angle (0 =0°9
as a function of the t kinetic energy . Dotted line : DET on a proton target. Continuous line : DET+ DEP+
s-wave on a proton target . Experimental points for 01-le, 0 on a proton target from ref. ") . Long-dashed

line : DET on a neutron target. Short-dashed line : DET+ DEP+ +s-wane on a neutron target.

We should also mention t
shifts the strength but not the pe
has not the sharp features of

e basic features am
istributions . These corrections and other many body corrections will

ave to be accounted for when looking at the more apparent shift in heavy nuclei .
we that the fact that the peak is not moved in our approach, which considers the

emission channel is in agreement with present findings in ref. 4), where it is
wn that the peak in the explicit -ffN channel in different nuclei appears at the
e place as for proton targets. The peak for 2N emission is however largely
laced at higher t-energies when using nuclear targets and is mostly responsible

r the shift of the peak 4) . The shift of strength apparent in the deuteron is nicely
terprated here in terms of the contribution of the DEP mechanism for the neutron
istribKon and is one element to consider in the study of ( 31-le, t) reactions in nuclei .

he study done here is meant to give further support to the DEP mechanism. by
selecting the analogous reaction to the ( 11-le, t), which however stresses the role of

his reaction is the Qe, 'He) reaction, as we discussed in sect. 3.
the results for the (3He, 3He) reaction on the proton at THe =
of the outgoing He kinetic energy and for 0 = 0'. Two features
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that the cross section with the I~ET mechanism alone is a negligible fraction of the
total . On the other hand, the other apparent feature is that the peak ofthe distribution
is displaced at higher outgoing ~Ie kinetic energies than the corresponding t-energies
in the ( ;

	

e, t) reaction .
As we mentioned, the strength and shape of the I~EI' mec anis

	

depends on the
abso®utr value of the incoming Iie energy . Thus we have calculated the results at
THe = 10.0 GeV. In fig . 7 we show the results for the ( ;

	

e, t) reaction at T~, e = 10

	

eV.
The strength has increased as a consequence of the fact that g' = 0

	

ere and the
nuclear form factor close to unity, but the shape and widths of the distribution is
much like in fig. 4. V~/e can also see in the figure that the role of the

	

I'

	

ec anis
is .ow negligible. On the other hand, in fig . ~ we plot the results for the (~

	

e, ;

	

e)
reaction at THe = 10 Gel/ and we see that the shape is still dii~erent to the one in
the (;

	

e, t) reaction . On the other hand, while the strength of the (~

	

e, t) reaction
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Fig. 8 . As in fig . 7 but for the ('He, 'He) reaction .
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cross section has increased, the one for the (; He, 'He) reaction has decreased with
respect to the values at T,,, = 2 GeV. The decrease of the ('He,'He) cross section
is a consequence of the fact that the DEP mechanism plays now a smaller role,
because the phase space does not favour placing the .1 on-shell in the DEP
mechanism . The DET mechanism plays now a more important role than at 2 GeV,
but the DEP mechanism is still important and leads to a different shape than the
one in the (`He, t) reaction .

Finally, in figs . 9-11 we show the results for the excitation on the neutron : In fig .
9 for the ( - He, 'He) reaction at 2 GeV, in fig . 10 for the ('He, t) at 10 GeV and in
fig . 11 for the ('He, 'He) reaction at 10 GeV.
Our absolute values for 10 GeV should in principle be less accurate, since one is

extrapolating the effective interaction of eq. (15) to a much higher energy regime
than the one where this interaction is tested . The qualitative features about the
relative strength of the different mechanisms should, however, be quite firm .
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5. Conclusions
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TH®(MeV)

Fig. 11 . Results for the ( 3He, 3He) reaction on a neutron target at 10 GeV.

9

We have studied the ( ; He, t) and (;He, IHe) reaction on the proton and the
neutron at THe = 2 and 10 GeV. We have made emphasis in the mechanisms of
A-excitaiivn on the target and the projectile and have found that while the DEP is
rather small for the (; He, t) reaction on the proton, it is quite important for the
reaction on the neratron . This leads to a shift of strength towards higher t-energies
of the differential cross section on the deuteron with respect to the one on the proton
target .

However, the most spectacular effects of the DEP mechanism are found in the
( He, 3 He) reaction, where we find that the DEP mechanism is mostly responsible
for the reaction at THe = 2 GeV, giving rise to a cross section quite different in shape
and magnitude to the (3He, t) one .
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Abstract: The problem of inclusive muon capture in nuclei is studied by calculating the capture rate in 

asymmetric infinite nuclear matter and using the local density approximation to evaluate the capture 

rates in nuclei. It is shown that the method is rather reliable and allows one to improve on 

approximations used in the past. The need for a strong nuclear renormalization is shown, reducing 
the capture rates by about a factor two in medium and heavy nuclei. By using standard effective 

interactions in the spin-isospin channel one can account for this renormalization and one finds a 

remarkable overall agreement with the measured capture rates for a large list of nuclei through 

the periodic table. 

1. introduction 

In this paper we face the problem of total muon capture in nuclei from an 

unconventional point of view. From the early days of Primakoff ‘) the subject has 

attracted much interest 2”). The usual approach consists in performing the nonrela- 

tivistic approximation in the transition operators, neglecting the nucleon momen- 

tum le4), and then doing a closure sum over the final nuclear states. However, the 

process involves small energy transfers to the nucleus of the order of the typical 

nuclear excitation energies and the results are very sensitive to the average nuclear 

excitation energy chosen “). To eliminate the uncertainties associated to this energy, 

or equivalently, to the average neutrino energies, sum rule approaches have been 

applied 5-7) which reduce considerably the dependence on the average energy and 

hence provide more reliable results. The final results require the evaluation of 

non-trivial two-body matrix elements in the ground state of the nucleus. 

The approximation of an average neutrino energy fixes the momentum transfer, 

q, and thus, the pseudoscalar term to a determined value. However, the dependence 

of this term on q is strong because of its approximate propo~ionality to the pion 

propagator 2). This is particularly relevant since this reaction has been used tradi- 

tionally to extract information on the value of the pseudoscalar coupling con- 

stant 2-8). 

Another approximation used to take into account the finite size of the nucleus is 

the use of the effective charge, ZeE, which introduces a non-negligible source of 

error in the calculation since the capture rate is proportional to Z& and certain 

’ On leave of absence from Institute of High Energy Physics, Academia Sinica, Beijing, China. 

03759474/90/$03.50 @ Elsevier Science Publishers B.V. 

(North-Holland) 
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approximations are involved in its evaluation “). In addition there are strong nuclear 
renormalization effects which are very important and deserve special attention. 

Our approach avoids all of these shortcomings and provides a highly accurate 
method to evaluate the total capture rate in nuclei. Yet the method is much simpler 
technically than the traditional approaches and the same effort is required to evaluate 
the rate in light nuclei and in heavy nuclei. Furthermore, it has the virtue of showing 
that the only relevant nuclear information needed, as normally happens in other 
inclusive reactions ‘O), is the neutron and proton densities of the nuclear ground 
state, which we take from experiment to minimize errors. 

The method consists in evaluating the capture rate of a muon in a Fermi sea of 
neutrons and protons. The calculation can be done exactly in a relativistic framework 
considering the nucleon momenta and the excitation energies of the Fermi sea, thus 
going beyond the closure sum or the sum rule approach. With the neutrino energy 
as a variable of integration, the pion pole structure of the pseudoscalar term is kept 
in the calculations. The step from infinite matter to finite nuclei is done by means 
of the local density approximation. The infinite matter calculation provides the 
muon width as a function of pn,p the neutron and proton densities, then we assume 
P”,~-, pnJ r) and fold this functional with the muon density distribution in the Is 
state of the muon atom, from which the capture takes place. The local density 
approximation is highly accurate in this case, given the very weak q dependence 
of the matrix elements involved, which makes the transition of very short range. 
Only the pseudoscalar term depends more strongly on q because of its dependence 
on the pion propagator, but the moderate contribution of this term (- 1 SO,), together 
with the fairness of the local density prescription in pion nuclear reactions “) 
involving similar pion momenta, makes the use of the local density prescription a 
very accurate tool to obtain the total muon capture rate. 

Then we avoid using the concept of Z,,. Indeed all we need is to calculate the 
1s muon wave function and use it in the folding of the local density prescription. 
Here we also keep up with our aim of a highly accurate evaluation and use a very 
precise method to solve the Schrtidinger equation ‘2), taking into account finite size 
effects and vacuum polarization corrections. 

In addition we include strong nuclear renormalization effects in the operators, 
and also consider the binding energies of the muons. The calculations are performed 
for a large list of nuclei over the whole periodic table and the results obtained are 
very instructive. With the standard coupling constants and form factors for @p + VPn, 
we obtain a very good agreement with all nuclei along the periodic table, showing 
the relevance of the nuclear renormalization in medium and heavy nuclei, which 
reduces the capture rates in about a factor two from the results without renormal- 
ization. The repercussion of such renormalization in other physical processes like 
pionic atoms or ;I hypernuclei is also stressed. 

The paper proceeds as follows. In sect. 2 we evaluate the muon capture rates in 
infinite nuclear matter. In sect. 3 we discuss the nuclear reno~alization and in sect. 
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4 the local density approximation. Sect. 5 contains the results and discussion and 

sect. 6 summarizes our results. 

2. Muon capture rate in infinite matter 

We start from the basic lagrangian for the p-p + nvP reaction depicted in fig. 1, 

L(x) =AGP(x)L;(x) , (1) 

with the leptonic and hadronic currents given respectively by 

q(x)= KY”(l-Y,)qL, JP(x) = S”IFPP ) (2) 

with BF the hadronic current operator. Their matrix elements between spinors give 

ifi++= UL)r”(l- Ys)rq(Pfi) 9 

where we follow Itzykson and Zuber 13) convention for the y-matrices, with q = pn - 

pp, and gv, g,, g,, g, the vector, magnetic, axial-vector and pseudoscalar coup- 

ling constants respectively, including a form factor dependent on q. The values 

of the coupling constants and the expressions for the form factors can be seen in 

appendix A. 

Assume for a moment an infinite nuclear medium with a proton density, pp, and 

the protons at rest. The decay rate of a muon is given by 

(4a) 

with v,,, the relative velocity of the muon with respect to the protons, and (T the 

pp + n vP cross section. We have in Bjorken and Drell convention “) 

W-e’= 

d3p, 2m, 2m, 2m 2m,- 

(2~-)~ 2E, 2E, g 2E,” I=” 

(4b) 

Fig. 1. Diagram for p-p+ nvw process. 
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where the limit M, + 0 is to be taken and three momentum ~onse~ation is implicitly 
assumed. The full expression for z C j 2-I’ is given in appendix B. 

The evaluation of I’ for finite nuclei proceeds in two steps. In the first one we 
evaluate r for a muon in a Fermi sea of protons and neutrons with N # 2. This is 
easily accomplished if one realizes that -rrp$( E, + E, - E, - E,) is the static limit 
of the imaginary part of the Lindhard function i7(p, -p,) [see ref. “)I for the ph 
excitation appearing in fig. 2. This Lindhard function, incorporating the Pauli 
blocking on the neutrons, is given by 

m$_/-pJ=2 - J d3p %(P)tl --nzCP+& -Pv)l 
(27713 E,-E,+E,(p)-E,(p+p,-p,)+i& 

(5) 

where Q(P) are the occupation numbers in the Fermi sea of protons and neutrons, 
respectively. (The Lindhard function contains also the contribution from the back- 
ward going ph excitation, which we do not include in eq. (5) because it does not 
contribute to the imaginary part for E, - E, > 0, as we have here.) We observe that 
the 6 function for energy conservation is substituted in Im u by the same 6 of 
conservation but keeping track of the nucleon momenta, integrating over the Fermi 
sea of the protons and including the Pauli blocking for the neutrons, [ 1 - n,] factor. 

Hence the actual width of a muon in the infinite matter slab is given by 

I” = -2 J d3p,, 2m 2m 2m 2m - 
-L___t4_E!LCC]T\21m ~(~~-~~~. 
(2~)~ 2E, 2E, 2E, 2E, (6) 

For E,, E, in the explicit factors of eq. (6), the average over the Fermi sea of 
appendix B is used, although one can take these energies equal to the respective 
masses with no significant change. 

A different derivation for the analogous case of radiative pion capture has been 
done in ref. 16) where an explicit analytical formula for Im 0 is given in the appendix. 

Eq. (6) provides the muon capture width as a function of kF,p and kF,, , the proton 
and neutron Fermi momenta or equivalently pp and pn, the proton and neutron 
densities of the medium ( pp,n = k:t,,,/3=2). 

Fig. 2. Many-body Feynman diagram for the muon self-energy related to the p-p* v&n process. 
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3. Strong renormalization effects 

595 

The dominant_contribution, (-SO%), to the process comes from the term propor- 

tional to gi in C 11 T12 of appendix B. The nonrelativistic reduction of the axial- 

vector term in the nucleon current is of the type g,a’r”. We know that this external 

source has the virtue of polarizing the axial charge of the nuclear medium “,‘*) 

which can produce a sensible renormalization of the capture rate. Microscopically 

we can depict the situation by saying that the Feynman diagram of fig. 2 is now 

modified to include the series of diagrams implicit in fig. 3, where the wavy line 

stands for the spin-isospin ph or Ah interaction 18) 

(7) 

for the ph case, or a similar one for the case of ph-Ah or Ah-Ah interaction by 

substituting u + S, T+ T, the spin and isospin transition operators, and f + f * 
(j-*/477 = 0.08, f *2/4r = 0.37). The term with gi involves the trace of g:uiiaio, which 

equivalently can be written as g,Z,oiUj CJ[ iiGj + (6, - Giij )], explicitly separated into 

a longitudinal, ($iij), and a transverse part, (6, - Gi& ). The sum implicit in fig. 3 

leads to two independent geometric series, in the longitudinal and transverse 

channels. Hence we have for the case of ph excitation only 

+giTr(aiaj)U 
4i4j 

I-2lJv/ 

+(s,-Bi(ij) 

l-2Uv, 

Fig. 3. Many-body Feynman diagrams accounting for the medium polarization in the spin-isospin 

channel driven by the p-p-f vun transition. 
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where the factor 2 in the denominator comes from isospin dependence of eq. (7), 
since exchange of charged objects is involved in the interaction. Since we had Im ii 
in eq. (6) we have to substitute 3g$, Im 2 0 by the imaginary part of the last expression 
in eq. (8). Hence the renormalization amounts to substituting, 

1 1 Im2U 
giIm2U+gi - 

2 Im2U 

3 [1-2r3v,lz+? II -20v$ . I 
(9) 

Taking account of the Ah excitation and the backward propagating ph excitation 
(see fig. 3), not accounted for by 0, is straightforward and can be implemented by 
substituting 20 by U, the Lindhard function of refs. r5*“). The different coupling 
of N and A is incorporated in IJ,, ( U = U, + U,) and the same universal interaction 
V,, V, is used for the ph or Ah interaction “*‘*). 

Thus, ultimately the renormalization can be taken into account by substituting 

where we have used the fact that U, does not have an imaginary part in the 
kinematical regime where we move. The actual calculations are done by using the 
expressions of U for symmetrical nuclear matter but the expression for Im 0, for 
pn # pP, in the numerator is kept. This approximation, also done in ref. I’), is accurate 
enough for our purposes. 

The pieces involving the pseudoscalar term, g,, behave differently. Indeed the 
g,aq coupling, in the nonrelativistic limit, singles out the longitudinal part of the 

interaction and the renormalization is then 

(11) 

Analogously, the terms involving g, single out the transverse part of the interaction 
and we have 

The other terms, and the g,g, term, which are rather small, are not renormalized. 
For the calculations we take the widely used forms 

vtw=~ ,*2_‘,I-_,; { ($-g+g~}, 
I/,(& q2 ( 4 4o2_q2_112; c, (pjy2+d), (13) 

with A = 1300 MeV, C, = 2, A,, = 2500 MeV and II, mp the pion and p meson masses. 
The magnitude g’ is the Landau-Migdal parameter with accepted values around 
g’ = 0.6-O-8. We have performed calculations with g’ = 0.7 which lead to good results 
compared with experiment. 
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4. The local density approximation 

597 

After performing the renormalization of sect. 2 in eq. (6) we obtain the new muon 

capture width f( pP, p,). The local density approximation (LDA) to go to finite 

nuclei is obtained by replacing pP+ p,(r), pn + p,(r) for the actual nuclei and 

evaluating 

where Q,,(r) is the muon wave function in the Is state from where the capture takes 

place. The LDA assumes implicitly a zero range of the interaction, or no dependence 

on q equivalently. As we can see in appendix A the q-dependence of the form 

factors is extremely weak and thus the LDA prescription becomes highly accurate. 

Only the terms with g,, which contain a pion propagator, have a stronger dependence 

on q. The LDA prescription would then be less accurate for these terms. However, 

the fact that these terms contribute about 18% (the g,g, term, of sign opposite to 

the gi one, is the most important among them) and that the LDA approximation 

is still fair for pionic processes involving momenta of the range of the pion mass ‘I), 

make globally the LDA a very accurate tool to evaluate r for actual nuclei. 

Note, however, that the approach differs substantially from standard ones, which 

require the evaluation of two-body matrix elements for the ground state of the 

nucleus. Here we do not evaluate any nuclear matrix element and the only nuclear 

information needed is the proton and neutron densities. The proton density is taken 

from the experimental charge distribution j9) and parametrized in terms of two 

Fermi parameter distribution after correcting for the finite size of the proton lo). 

For the neutron density we take ,o,, = (N/Z)p,. For nuclei smaller than “0 the 

harmonic oscillator densities are used. 

As pointed out in the introduction some approaches use a closure sum over the 

nuclear intermediate states ‘-4). Others, more elaborated and accurate 5-7), use a 

sum rule approach which still relies upon an average excitation energy, although 

the dependence of r on this variable is rather smooth, unlike in the closure sum 

case. Here the Lindhard function has summed the contribution from intermediate 

nuclear states (the excited states of neutrons on top of the Fermi sea) by keeping 

track of the energy of such states, which is important when the excitation energy 

is small like in the present case. However, only the kinetic energy of the nucleons 

is considered in the Lindhard function. Note, however, that if a local potential V(r) 

is added to the nucleon energies, it would cancel exactly in the ph propagator of 

eq. (5). Hence, up to nonlocalities in the nuclear potential the Lindhard function 

keeps good track of nuclear_excitation energies. On the other hand, the nucleon 

momentum dependence on 2 C j Ti*, which is rather smooth, has also been con- 

sidered, as shown in appendix B by means of the energy conservation or taking an 

average of p2 in the local Fermi sea. 
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On the other hand, we do not have to rely upon the concept of Z,, . Eq. (14) 
provides r directly from the muon wave function and the function f( p,(r), p,(r)). 
In order to evaluate the muon wave function we have considered the Coulomb 
interaction taking account of the finite size of the nucleus and vacuum polarization, 
as done for pionic atoms 20*2’). The numerical calculations have been done by using 
a very accurate method to solve the Schrodinger equation 12) which gives us the 
muon energy and the wave function. For heavy nuclei like 208Pb the binding energy 
of the muon is about 10 MeV and it is important to take this into account for an 
accurate determination of the muon capture width. 

With all these improvements over previous approaches, it is still remarkable that 
the present method is quite much simpler technically, as revealed by the basic 
formulae, eqs. (5), (6) and (14). This has allowed us to perform calculations for a 
large list of nuclei over the whole periodic table and concentrate on the role on the 
nuclear renormalization, of much relevance in a variety of nuclear processes, from 
pionic atoms to X or A hypernuclei 18). 

It is also interesting to recall that we have used here the same model and value 
of g’ that were used in refs. 22*23) to account for the observed quenching of gA in 
ordinary P-decay. Note, however, that since in P-decay the momentum transfer is 
negligible, V, and V, in eqs. (13) are the same and both repulsive. Also U in the 
denominator of eq. (10) is rather different to the one here because of the different 
kinematics, with the Lindhard function in the P-decay due essentially to Ah exci- 
tation. 

The same model gives good results in these two different kinematical situations 
and in radiative pion capture i6) where gauge invariance produces a quenching from 
the transverse part alone. This is a good test of consistency for the nuclear renormali- 
zation which, as we shall see, is very important in this case. 

6. Results and discussion 

Before we proceed to show the results we discuss a few ideas related to the 
calculations and the results. In the first place, in order to get an approximate idea 
of the importance of the different terms in appendix B we show the approximate 
weight of the terms in 1 T\*, calculated at the peak of the neutrino momentum 
distribution 

g&term g2,-term g,gv-term gAgM-term -=p= 
1 3.5 0.14 = 0.5 

= g&p-term &term 

-0.92 =- 0.17 ’ 
(15) 

with the terms with gL, g,g, and g,g, rather small. These ratios change by about 
20-30% with respect to those in the standard closure approaches 1-4). 
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WSZ also mentioned that taking into account the binding of the muon was important 

in heavy nuclei. Indeed with a binding energy of 11.25 MeV for the 1s state of the 

muon in *“Pb, taking into account this binding reduces the capture width in 35%. 

The neglect of the nucleon momentum in 1 I*]’ also introduces some uncertainties 

in the calculation. We have made p = 0 in 1 T12 in our calculations and have found 

changes at the level of lo-20% in the individual terms, with a global reduction of 

15% with respect to the calculation without neglecting this momentum. 

The Pauli blocking effect is very important. In the p-p+ nvfi reaction the neutron 

is forbidden to go to any of the neutron occupied states. This is taken into account 

in our approach by means of the factor 1 - n*(k) in the Lindhard function of eq. 

(5). Neglecting this factor leads to results for the capture rate about a factor 2.6 

times bigger than with the corresponding Pauli blocking for nuclei around 160 and 

a factor 3.4 for nuclei around “‘Pb. 

We have also estimated the effects of considering the muon momentum in the 

calculations (we have set it equal to zero in our results) and have found them to 

be small, below 5%. We should also note that our calculations of lTl2 have been 

performed using free relativistic spinors for the nucleons and the muon and neutrino. 

The nucleons and muon moving in a potential would lead to different spinors. In 

the case of nucleons in infinite matter, and assuming a scalar potential V(r) given 

by the Thomas-Fermi approach 24), the structure of the spinors would be the same 

but the mass would be changed to M + V(r). We have perfo~ed the calculations 

with these modifications and found corrections at the level of 2%. The muon spinor 

in the presence of a point-like Coulomb source is also modified although the 

modifications are smaller when the finite size of the nucleus is considered *‘). 

However, the evaluation of the muon wave function in the nucleus has been done 

by using the nonrelativistic Schrodinger equation. We have obtained an idea of 

what the relativistic effects could be by treating the muon as a boson and solving 

the Klein-Gordon equation instead of the Schrbdinger equation, as done for pionic 

atoms 2’). We found corrections at the level of 2%. 

Thus it looks that the approximations that we are still doing are rather under 

control. However, we have improved on other approximations which were done 

before in order to make the problem tractable, and which could be easily avoided 

in our approach. 

After this discussion we pass on to present our results. A rather exhaustive list 

of nuclei has been studied and the results appear in table 1. We show results for 

nuclei from ‘Li up to ‘09Bi. The capture rates r vary from 0.3 x lo4 s-’ to 0.15 x 10’ s-l. 

We have included in the table the different experimental results which we have 

extracted from ref. 26). The overall agreement between the theoretical results and 

the experiment is spectacular considering the amount of nuclei studied and the large 

variation of the rates (four orders of magnitude) from light to heavy nuclei. 

One finds larger discrepancies of the order of 30% in some nuclei like ‘Li, 44Ti, 59Co 

and the isotopes of Ni, but for the large majority of nuclei there is agreement with 



600 H.C. Chiang et al. / Muon capture revisited 

experiment or there are differences at the level of 10%. We present a selection of 
the most stable isotopes as a function of Z in fig. 4 in order to give a visual idea 
of the quality of the agreement. 

As we have mentioned before, the renormalization discussed in sect. 3 has very 
important effects in this problem. Indeed, in fig. 5 we show the results calculated 
with and without the renormalization, as a function of 2. We can see that for medium 
and heavy nuclei the nuclear renormalization reduces the results in about a factor 
two and it is essential to produce agreement with the experimental numbers. This 
reduction factor is much bigger than the estimates of ref. 38), where a small quenching 
due to the axial polarization was suggested. This is a very interesting process, which 
evidences the strong nuclear renormalization on top of a weak interaction process, 
which can be brought under control as we have shown here. Although similar effects 
due to the spin-isospin polarization of the nucleus also appear in many nuclear 
processes “), sometimes it is more difficult to assess their importance since the 
nuclear interaction itself can be less controllable. However, it is interesting to recall 
that these medium polarization effects were considered in connection with the 
problem of X decay in nuclei and led to the interesting conclusion that there should 
be narrow 21 hypernuclear bound states of around r = 5-7 MeV [refs. 27,28)]. The 
first of such states has been found recently, 2 He, with a width of 4.5 MeV [ref. ““)I. 
Similarly using the same concept, in connection with the A self-energy, it was 
hinted 30) and shown recently “), that this medium polarization is the key to under- 
standing the problem of the pionic anomalous atoms - 72*33). The clean effects of this 
medium renormalization shown here can only stress and reinforce the interpretation 
given for these other phenomena. 

Exp. limits 

Theory 

lo3o ’ ’ ’ * ’ ’ I k 
30 60 90 

ATOMIC NUMBER(Z) 

Fig. 4. Total rates for negative muons captured by the most stable isotopes. Circles are our theoretical 

results. Experimental limits from different groups are shown. Data are from ref. “1. 
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O2. 

ATOMIC NUMBER (Z) 

Fig. 5. The nuclear medium renormalization effect in the calculation of total nuclear capture rates of 

p-. Crosses and circles are calculations without and with the renormalization respectively. 

Isotopic effects would appear to be tied to the particular shell structure of the 

nucleus, given the relevance of the Pauli blocking in the problem. It is interesting 

to show our results for different isotopes. Although the absolute numbers for r 

appear in table 1, we have calculated the ratios for several isotopes and show them 

in table 2, comparing the theoretical results with those of refs. 26734-36). There are 

discrepancies of the order of 50% in the Li isotopes, With so few nucleons, shell 

effects are more important and the concept of a Fermi sea of protons and neutrons 

with only 3 particles is a bit extreme. The discrepancies are smaller of the order of 

lo-15% for the C, 0 and Ca isotopes, and for other nuclei the agreement is very good. 

5. Conclusions 

We have used a simple, yet reliable method, to evaluate the total muon capture 

rate in nuclei, which consists in evaluating the muon capture width in infinite nuclear 

matter with N # 2 as a function of pp, pn and then adapt the results to finite nuclei 

via the local density approximation. The method allows for an accurate evaluation 

of the reaction probability without the need for approximations done in the past, 

like neglecting the nucleon momentum, using the closure sum or sum rule approaches 

to sum over nuclear intermediate states, using the concept of an effective Z, neglecting 

the binding of the muon, taking an average neutrino energy, etc. In addition, we 

make a highly accurate determination of the muon wave function for the 1s state 

from where the muon is cabtured. The method has the virtue of showing that the 

relevant nuclear magnitudes are the proton and neutron densities and that nuclear 
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TABLE 1 

Theoretical results for total nuclear capture rates of negative muons compared with data. Experiments 

are taken from ref. a’) and references therein. 

A Z 
Calculation Experiments 

(s-‘) (103 s-1) 

6 3 0.473051 x lo4 

7 3 0.338267 x lo4 

9 4 0.106016x lo5 

10 5 0.270790 x lo5 

11 5 0.215267 x 10’ 

12 6 0.491425 x 10s 

13 6 0.382118x 10’ 

14 0.876191 x 10s 

16 0.146072x lo6 

18 

19 

0.115035 x lo6 

0.212870 x lo6 

6.100* 1.400 

4.680 f 0.120 

4.180 * 0.450 

1.800* 1.100 

2.260 f 0.120 

1.810*0.440 

18*10 

10*2 

5.9kO.2 

7.4 f 0.5 

26.5 * 1.5 

27.8 f 0.7 

21.8* 1.6 

21.9*0.7 

44*10 

36*4 

37.3 f 1.1 

36.1* 1.0 

37*7 

39.7 * 1.3 

36.5 f 2.0 

30.3 * 7.0 

37.6 f 0.4 

35.2*2.0 

37.7 f 0.7 

38.8+0.5 

33.8 + 0.4 

37.6 f 0.7 

86ztll 

65*4 

60.2iO.8 

68.4kO.8 

69.3 * 0.8 

0.159*0.014 

0.098 f 0.003 

0.098 * 0.005 

0.095 + 0.008 

0.1026 f 0.0006 

0.0880 f 0.0015 

0.254 f 0.022 

0.235 * 0.010 

0.23 1 * 0.006 

0.229 * 0.001 

1 
A Z 

Calculation Experiments 

(s-l) (103 s-1) 

20 10 0.346504 x lo6 

23 11 0.398167 x 10’ 

24 12 0.611794x lo6 

27 13 0.698167 x lo6 

28 14 0.967561 x lo6 

32 16 0.147345 x 10’ 

40 18 0.158576 x 10’ 

40 20 0.277102 x 10’ 

44 20 0.212757 x 10’ 

44 22 0.364563 x 10’ 

50 24 0.390693 x 10’ 

52 24 0.345514x 10’ 

53 24 0.323095 x 10’ 

54 24 0.304124x 10’ 

56 26 0.392927 x 10’ 

0.204 f 0.010 

0.167 +0.030 

0.30* 0.02 

0.235 f 0.005 

0.387kO.015 

0.3772 f 0.0014 

0.507 * 0.020 

0.480 f 0.002 

0.52*0.02 

0.4841* 0.0018 

0.691 i 0.020 

0.662 f 0.003 

0.65OiO.015 

0.7054* 0.0013 

0.777 f 0.025 

0.850* 0.003 

0.86 * 0.04 

0.8712*0.0018 

1.39 * 0.09 

1.31*0.03 

1.34*0.01 

1.352*0.003 

1.20 * 0.08 

1.41 f 0.11 

2.55 * 0.05 

2.444 zt 0.023 

2.529 f 0.008 

2.29 f 0.05 

2.557 * 0.014 

1.793 f 0.040 

2.63 * 0.06 

2.60*0.04 

2.590*0.012 

3.825 f 0.050 

3.452 f 0.047 

3.297 f 0.045 

3.057 * 0.042 

4.53*0.10 

4.38 * 0.07 

4.40 * 0.05 

4.411 f 0.024 
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TABLE I-continued 
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A Z 
Calculation Experiments 

K’) (103 s?) 

59 21 0.365026 x 10’ 

58 28 0.439701 x 10’ 

60 28 0.398315 x 10’ 

62 28 0.355090 x 10’ 

64 29 0.397764 x 10’ 

64 30 0.469282 x 10’ 

72 

75 

90 

112 

32 0.464783 x 10’ 

33 0.487336 x 10’ 

40 0.719435 x 10’ 

48 0.927524 x 10’ 

4.89 * 0.09 

4.96 zt 0.05 

4.940 f 0.029 

119 50 0.999416 x lo7 

6.11 jzO.10 122 51 0.100345 x 10s 

5.56*0.10 

4.72ztO.10 

5.791-0.16 

5.47 * 0.20 

5.66 zt 0.09 

5.67 i 0.09 

5.676 * 0.037 

139 57 0.110223 x 10s 

144 60 0.138435 x 10’ 

5.76kO.17 

5.5*0.1 

5.76jzO.05 

5.834* 0.039 

152 62 0.129497 x 10’ 

165 67 0.141022 x 10’ 

184 74 0.149203 x 10s 

5.5450.06 

5.569 * 0.036 

197 79 0.151167x 10s 

6.07 * 0.07 

6.06*0.12 

6.104*0.043 

208 82 

8.59 + 0.07 

8.66 + 0.08 
209 83 

0.153379x lo8 

0.141154x lo8 

10.1*0.5 

10.63*0.11 

10.61 ztO.18 1 

A 2 
Calculation Experiments 

(s-l) (loXs-‘) 

10.5 f 0.4 

10.70*0.14 

10.44*0.18 

10.49*0.14 

10.21* 0.20 

10.71*0.10 

12.32i0.14 

12.50* 0.33 

12.2250.17 

12.95kO.13 

11.92*0.30 

13.5kO.6 

13.07 * 0.21 

12.36 * 0.24 

13.39*0.11 

13.07 *0.2s 

11.70*0.75 

14.5 * 0.75 

12.98*0.10 

13.27kO.22 

13.45iO.18 

12.20 * 0.75 

13.26+0.07 

13.01*0.18 
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isotope effect in the total nuclear capture rates of nega- 
tive muons 

Isotopes Calculation Experiments Ref. 

‘LiPLi 

‘lB/l’B 

%f’2c 

0.71 

0.79 

0.78 

0.79 
0.77 
0.88 
0.83 
0.78 
0.94 
0.88 
0.94 
0.91 
0.81 
0.89 

0.30 f 0.19 
0.43rto.11 
0.83 -i: 0.07 
0.79 * 0.03 
0.90 rt 0.02 
0.97 * 0.02 
0.86kOo.02 
0.7 1 f 0.02 
0.9OkO.02 
0.86iO.02 
0.80 + 0.02 
0.96+ 0.02 
0.89 rt 0.02 
0.91* 0.02 
0.91 zk 0.02 
0.77 rt 0.02 
0.85 i 0.02 

shell effects seem to be relevant only for very light nuclei. With an accurate 

dete~ination of the process involving the weak interaction we paid special attention 

to nuclear renormalization effects in the spin-isospin channel which affect the most 

important terms of the reaction. These effects are very important and we showed 

that they reduce the capture rates by about a factor two for medium and heavy nuclei. 

The overall agreement of our results with experiment is remarkable for the set of 

38 nuclei for which we had experimental data. The ratios of rates for different 

isotopes is also in quite good agreement with experiment except for very light nuclei, 

where our methods are obviously less reliable. 

In summary we can conclude that our present knowledge of the weak processes 

together with the important nucfear renormalization effects lead to a satisfactory 

understanding of the process of inclusive muon capture in nuclei. The process has 

the virtue of showing very clearly the need for the nuclear reno~alization. This is 

of particular importance since a similar renormalization appears in a variety of 

nuclear processes and leads to particular effects like a substantial reduction of the 

calculated 2 widths in 2 hypernuclei and is one of the ingredients leading to a 

solution of the systematic anomalies found in pionic atoms. The results found in 

this paper give an extra support to the interpretation given to the narrow x states 

and the pionic atom anomalies along the lines of this nuclear type of renormalization. 

The continuous discussions with J. BernabCu along the realization of this work 

were both enlightening and delighting and we would like to express our gratitude 
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Spain, the Department of Theoretical Physics and the Instituto de Fisica Corpuscular 
of Vaiencia University for their hospitality. 

The work is supported by the CICYT. 

Appendix A 

COUPLING CONSTANTS AND FORM FACTORS 

We fotlow ref. “) for this information actualized with the new information from 
ref. ‘?). For the vector and magnetic couplings we have 

g&I*) = GE&I*) - G&q*), 

with GE, Gtci the Sachs etectromagnetic form factors 

G+(q2)= l+p 

GM&‘) = G&q’) = 4M; G,,(s2) G(q) -I--~= 
4* CLn 

3 tA.2) 
P l-h 

with ppt pn the anomalous magnetic moments of the proton and the neutron 
respectively, ,+.,= 1.7928, pn = -1.9130 and q2 = qo2--q2. G(q’) is given by 

with Mi = 0.71 GeV2. 
For the axial-vector coupling we have 

(-4.3) 

64.4) 

with gA(0) = -1.259. The coupling G = G, cos B with Go= I.16637 x IOA5 CeV’, 
cos B = 0.974. 

For g, we have taken the value extracted in ref. *), g,= -10.27, which was 
calculated at the kinematics from p capture from hydrogen. However, we have kept 
the pion propagator structure of the pseudoscalar term and taken co~espondingiy 

&( q*) = 15m2, 
q’-my 

(A.51 

which approximately coincides with the numerical value given above for q2= 

-O.@vn: of the kinematics of the p capture, and is also very close to the value 
provided by the Goldberger-Treiman relation ‘*j). 



Appendix B 

+32&&-m,(p,- q)(P1*122+%(P2 *p3Np, ’ 9) 
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and we have taken 

PI=&& =(&,O), P2=Ppp=(&_J,PL 

P3=PY=(PY,PvL P4=Pn=(k,P-PvL 

4 =pp -Pv = (Ep -A, -IhI, (B.2) 

with 

and p. py, from energy conservation, is given by 

P’pv=M 
( 

P,+&E,, , 
) 

03.4) 

with M an average proton and neutron mass. For p2 in the expressions we take an 

average over the Fermi sea 

(B.5) 
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DEEP INELASTIC LEPTON SCATTERING IN

NUCLEI AT x > 1 AND THE NUCLEON

SPECTRAL FUNCTION

P. Fernández de Córdoba, E. Marco, H. Müther, E. Oset and Amand Faessler

Institut für Theoretische Physik, Universität Tübingen, 72076 Tübingen, Ger-
many.

Abstract

The nuclear structure function F2A(x) has been studied in the Bjorken
limit for (l, l′) scattering on nuclei in the region of x > 1 and was found
to be very sensitive to the information contained in the nucleon spectral
function in nuclei, particularly the correlations between momenta and
energies in the region of large momenta. Calculations were done in a
local density approximation using two different spectral functions for
nuclear matter. Results are compared to those obtained for a spectral
function which has been evaluated directly for the finite nucleus, 16O,
under consideration. For values of x around 1.5 and larger the quasi-
particle contribution is negligible, thus stressing the sensitivity of the
present reaction to the dynamical properties of nuclei beyond the shell
model approach. Several approximations which are usually employed in
studies of the EMC effect have been analyzed and their inaccuracy in
this region is demonstrated. The results stress the fact that the nuclear
structure function contains important information on nuclear dynamical
correlations. Therefore further measurements of F2A(x) in that region
and for many nuclei would be most welcome.
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1 Introduction

Deep inelastic scattering of leptons on nuclei in the region of asymptotic free-
dom and the ratio R(x) of the nuclear structure function compared to the
corresponding one for the deuteron (EMC effect [1]) has been one of the top-
ics in the interface of nuclear and particle physics intensively studied in the
recent past [2–5]. After multiple discussions, pionic effects [4, 6–8], binding
effects [9–11] and Fermi motion [3, 6, 12] have turned out to be important
ingredients to describe the main characteristics of the ratio R(x): the small
enhancement beyond unity around x ≃ 0.1, the small depletion around x ≃ 0.6
and the steady increase around x ≃ 0.8 and above, respectively.

The increase of R(x) at x close to one was soon identified to be a con-
sequence of Fermi motion [3, 6, 12] and this is one of the points where there
seems to be consensus among scientists. Probably the lack of controversy on
this issue prevented a systematic exploration of the region of x > 1, in spite of
the fact that in nuclei only the variable xA = −q2/2MAq

0 is limited between
0 and 1, while x = −q2/2Mq0 varies from 0 to MA/M . Since F2N (x), the
structure function of a free nucleon, is zero for x > 1, the fact that F2A(x) is
different from zero for x > 1 must necessarily be attributed to modifications
of the nucleon properties inside nuclei, i.e. to genuine many body effects. The
region of x > 1 is hence a source of very interesting information on nuclear
properties, as we shall see.

The fact that Fermi motion was so important at x ≃ 1 induced people to
investigate the region of x > 1 with the same idea [11–14]. These works es-
sentially employed phenomenological nuclear matter momentum distributions,
with the main conclusion that a nonvanishing value of F2A(x) for x > 1+kF/M
(with kF the Fermi momentum) would require a tail in the momentum distri-

bution n(~k) for k > kF . The occupation number n(~k) is different from zero
for k > kF as soon as the effects of a residual NN interaction are considered
leading to a correlated many-body system of Fermions.

However, it is quite dangerous to reduce the effects of correlations to a dis-
cussion of a momentum distribution only, because in a system of interacting
Fermions the energy and momentum distributions are correlated by means of
the spectral function, and the simultaneous consideration of both distributions
is necessary in principle, and also in the practice of the present case, as we
shall see. Disregarding the energy and momentum correlations leads some-
times to quite erroneous results, like in the study of the Λ mesonic decay in
nuclei where the results for the width based exclusively on the nucleon mo-
mentum distribution in nuclei are three orders of magnitude bigger than the
results obtained with a spectral function, or the experimental results [15]. The
same warning, in the present context, was raised in ref. [16] where F2A(x) was
evaluated for 3He. Further work in this direction was done in refs. [17–19].

In the present work we have evaluated F2A(x) for several nuclei by using
spectral functions of infinite nuclear matter and the local density approxima-
tion. This approximation is good when dealing with volume processes like the
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present one. In order to quantify uncertainties from the many body approach
used, we have performed the calculations using two spectral functions evalu-
ated with rather different methods. On the other hand, since large momentum
components are necessarily involved in the process, relativistic corrections are
bound to be relevant [20,21] and we have worked within a relativistic approach.

We evaluate F2A(x) for values of 1 ≤ x ≤ 1.5. At x = 1.5 the value of the
structure function decreases by about three orders of magnitude with respect
to x = 1, but is still well within measurable range. We also show results using
the momentum distributions alone, within several approximations, and find
appreciable differences (of two or more orders of magnitude) with respect to
the accurate results using the spectral functions. These results show that the
study of nuclear structure functions at values of x > 1 is a very interesting tool
to learn about nuclear dynamical correlations beyond the nuclear properties
described in a shell model approach.

In this paper we not only discuss results obtained within the local density
approximation but also consider a spectral function calculated directly for the
nucleus 16O. After this introduction we discuss in section 2 the calculation of
the nuclear structure function and its relation to the spectral function. The
various approaches for the spectral functions are presented in section 3. The
results of our studies are presented and discussed in section 4. The last section
summarizes the main conclusions.

2 The nuclear structure function

Deep inelastic electron (or muon) scattering on an unpolarized nucleon can
be described in terms of two structure functions, W1(x,Q

2) , W2(x,Q
2), where

the Bjorken variable x is given by

x =
−q2

2pq
=

Q2

2pq
(1)

with q the momentum of the virtual photon and p the momentum of the
nucleon. In the Bjorken limit, q0 → ∞, Q2 → ∞ and x fixed, it is common to
define the structure functions F1 and F2 which depend only on the variable x,
up to some smooth logarithmic dependence on Q2 from QCD corrections. In
this limit one has

p.q
M
W2(x,Q

2) ≡ F2(x)

MW1(x,Q
2) ≡ F1(x)

(2)

and F2(x) , F1(x) are related by the Callan-Gross relation

2xF1(x) = F2(x) (3)

Using these structure functions W1 and W2 the hadronic tensor for the
absorption of the virtual photon can be written:

3



W ′µν = (−gµν +
qµqν

q2
)W1 + p′µp′ν

W2

M2

p′µ = pµ −
p.q

q2
qµ (4)

It is practical to work in a frame where ~q is parallel to the z direction.
Adopting this frame and inspecting the transversal W ′xx component in the
Bjorken limit, one finds that the term proportional to W2 in eq. (4) vanishes
and W ′xx is related to W1 for nucleons in nuclei with the same coefficient
in front as for one nucleon in the vacuum, independent on its momentum or
energy. This allows one to write the structure function F1A derived from lepton
scattering from a nucleus with baryon number A in a nonrelativistic formalism
using eq. (2).

F1A(xA)

MA

=
∫

d3p

(2π)3

∫ µ

−∞

dω Sh(ω, p)
F1N(xN )

M
θ(xN ) θ(1− xN) (5)

where Sh(ω, p) denotes the hole spectral function, i.e. the probability of finding
a nucleon with energy ω and momentum p in the nucleus, the integration limit
µ the chemical potential or Fermi energy and

xA =
−q2

2pAq
=

−q2

2MAq0
; xN =

−q2

2pq
; p ≡ (ω, ~p) (6)

Instead of xA one normally uses the variable x,

x =
−q2

2Mq0
=

MA

M
xA (7)

so we will write F1A and F2A as functions of x from now on.
By means of eq. (3) for nuclear targets we can calculate F2A which is the

structure function used in studies of the EMC effect. We then write

F2A(x) =
∫

d3p

(2π)3

∫ µ

−∞

Sh(ω, p)
x

xN

F2N (xN)θ(xN )θ(1− xN) (8)

Instead of using the spectral function Sh calculated directly for the nucleus
under consideration, it is common practice to employ a local density approx-
imation and represent this spectral function in terms of a spectral function
Sh(ω, p; ρ) evaluated for infinite nuclear matter at various densities ρ which is
normalized by

4
∫ d3p

(2π)3

∫ µ

−∞

dω Sh(ω, p; ρ) = ρ , (9)

with a factor 4 on the left side of this equation to account for the spin-isospin
degeneracy of symmetric nuclear matter. Assuming a density profile ρ(r) for
the finite nucleus to be studied, one can determine the local density approxi-
mation for the spectral function of this nucleus by
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Sh(ω, p) = 4
∫

d3rSh (ω, p; ρ(r)) (10)

which ensures that

4
∫

d3r
∫

d3p

(2π)3

∫ µ

−∞

dω Sh (ω, p; ρ(r)) =
∫

d3p

(2π)3

∫ µ

−∞

dω Sh(ω, p) = A . (11)

For nuclear matter the spectral function can be evaluated in terms of the
nucleon selfenergy Σ(ω, p) by

Sh(ω, p) =
1

π

ImΣ(ω, p)

[ω − ε(~p)− ReΣ(ω, p)]2 + [ImΣ(ω, p)]2
(12)

where we have dropped the variable ρ identifying the density dependence of
the self-energy and spectral function. In eq. (12), ε(~p) is used to represent the
nucleon kinetic energy.

Relativistic corrections accounting for the kinematics of the nucleon have
been included in deep inelastic scattering. Prescriptions based on the normal-
ization of the relativistic current operator lead to corrections of the static, or
shell model, structure function of the nucleus [22]. Further corrections have
been considered in [20, 21] at x ≃ 1. In ref. [23] a different relativistic treat-
ment is developed which allows to write all quantities in terms of the nucleon
propagators. Only the region 0 < x < 1, which was measured by the EMC
collaboration, is studied there. As in ref. [4,6,7], pionic corrections are shown
to be relevant in the region of x < 0.6, but they play no role in the region
x > 1 which we study here.

Employing the treatment described in ref. [23], which uses a relativistic
spectral function from the beginning, one can avoid introducing any flux fac-
tors as in ref. [22] to account for relativistic corrections in non-relativistic
nuclear wave functions.

Since the relativistic corrections are important here we take advantage to
discuss briefly and complement the details of ref. [23].

In fig. 1a we show the Feynman diagram that symbolizes the deep inelas-
tic process on a nucleon. The final hadronic state X will contain at least one
baryon and will have baryonic number one. In a nucleus the nucleon N will
have a certain momentum and energy distribution given by the spectral func-
tion. The most practical way to take this into account and have a covariant
formulation of the nuclear problem is to fold the amplitude in fig. 1a and
convert it into a many body diagram for the selfenergy of an electron in the
nuclear medium, fig. 1b. Here the nucleon N in fig. 1a gets converted into a
hole line and with the baryon existing in X it completes a fermionic loop. In
section 3 of ref. [23] one evaluates this selfenergy in infinite nuclear matter and,
by means of the local density approximation, the (e, e′) cross section, is related
to the imaginary part of the electron selfenergy. The imaginary part of the e
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selfenergy is evaluated using Cutkosky rules and this means that the interme-
diate states e′ and X are placed on shell in the integrations over the momenta
of these states. The formalism is originally covariant in the sense that every-
thing is written in terms of propagators of the particles and we can write the
nucleon propagator in a covariant relativistic way. However, Cutkosky rules
select the imaginary part of the propagator of nucleon N for the occupied
states and when doing that the apparent covariant structure might not show
up clearly.

In our formalism we start from a free nucleon propagator which we split
into its positive and negative energy parts [24]

p/+M

p2 −M2 + iǫ
≡

M

E(~p)

{

∑

r ur(~p)ūr(~p)

p0 −E(~p) + iǫ
+

∑

r vr(−~p)v̄r(−~p)

p0 + E(~p)− iǫ

}

(13)

where M,E(~p ) are the nucleon mass and the relativistic nucleon energy (~p 2+
M2)1/2 and ur(~p) , vr(~p ) are the ordinary spinors which we take normalized as
ūr(~p )ur(~p ) = 1. We recall that ur(~r ) are functions of three momentum and
they are the only spinors which appear in our framework.

In order to account for binding and momentum distribution of the occupied
nucleons we need the nucleon propagator in the nucleon medium.

Note that even if a nucleon is off shell, p0 6= E(~p ), in the propagator of
eq. (13) and we have p/ +M → p0γ0 − ~p~γ +M , the positive energy part has
the Dirac structure 2M

∑

r ur(~p)~ur(~p) = E(~p)γ0 − ~p~γ + M , corresponding to
on shell nucleons of momentum ~p.

Following a standard relativistic notation [25] the nucleon propagator in a
spin saturated system would be

G(p0, p) =
1

p/−M − Σs − Σvγ0
(14)

which includes a scalar and vector terms in the nucleon selfenergy (the inclu-
sion of a term of the type ~γ~p does not change the arguments and conclusions
which follow). The extraction of hole and particle spectral functions requires
the evaluation of ReΣs,v and particularly ImΣs,v, which is a non trivial task.

We respect the structure of eq. (14) but follow a different path in order
to single out the imaginary part of the positive energy piece of the nucleon
propagator. We start from the realization that for this latter purpose, in
a perturbative expansion of the propagator of eq. (14) in terms of the free
propagator of eq. (13), the terms of positive energy will be singular and
dominate over those of negative energy. This allows us to write the desired
part of the propagator as

G̃(p0, p) =
M

E(~p)

∑

r

ur(~p)ūr(~p)
1

p0 − E(~p)
+

M

E(~p)

∑

r

ur(~p)ūr(~p)

p0 −E(~p)
Σ(p0, p)

M

E(~p)

∑

s

us(~p)ūs(~p)

p0 − E(~p)
+ ...
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=
M

E(~p)

∑

r

ur(~p)ūr(~p)

p0 −E(~p)− ūr(~p)Σ(p0, p)ur(~p)
M

E(~p)

(15)

This expansion is rather useful because both Σs and Σvγ0( and ~γ~p) are
diagonal in the base of the ur(~p) spinors, which converts eq. (15) in an ordinary
geometric series, not a matricial series, which can be summed trivially as shown
in the last step of eq. (15).

It might look surprising that one obtains a Dirac structure ur(~p )ū(~p ) in
G̃(p0, p) as for free nucleons, even when the renormalized nucleons will be off
shell. This is less striking if one recalls that also in eq. (13) the positive
energy part (corresponding to G̃) has the same structure ur(~p)~ur(~p) even if
the nucleon is off shell. In any case the structure might not match the one
coming from eq. (14) and one has lost the covariance shown by eq. (14).
The reason for this loss of covariance is that one loses terms with admixture
of the positive and negative parts of the nucleon propagator of eq. (13) in
the perturbative exapansion. This is, in the sum of eq. (15) one is summing
terms of the type of fig. 2a,b,c,d, where in the intermediate fermion lines one
only has the part of positive energy of the propagator. One is missing terms
of the type of fig. 2e (where the line pointing down stands for the negative
energy part of the free nucleon propagator), which would naturally appear in
a covariant expansion of eq. (14).

On the other hand while all the terms of fig. 2c,d etc. are summed up
automatically in eq. (15) in terms of a selfenergy given exclusively by the
term in fig. 2b, the second order terms of fig. 2e is not accounted for. We
argued that this latter term (which has an intermediate propagator of order
1/2M, and is of ρ2 type) should be small with respect to the diagrams contained
in figs. 2b, c, d, ... But in any case it can be included as a nucleon selfenergy
part in the sum of eq. (15) and then diagrams e,f, etc. would be automatically
included. This means that even if the covariance is lost in eq. (15) one can
still regain all the terms in the series by including these mixed terms in the
selfenergy Σ appearing in eq. (15). Of course, this selfenergy is now different
to the one appearing in eq. (14). These mixed terms are also diagonal in ur(~p)
and do not change the structure of eq. (15). This is the philosophy which we
follow, only that the diagrams of fig. 2e, 2f are not evaluated, although they
are implicitly accounted for as we pass to discuss. The reason is that these
diagrams only contribute to the real part of Σ, not to the imaginary part, and
in our scheme, which evaluates accurately ImΣ, there are pieces missing in the
real part of Σ which are added phenomenologically in order to ensure the exact
experimental binding energy of each nucleus [23]. The particular structure of
eq. (15) allows one to write

G̃(p0, p) =
M

E(~p)

∑

r

ur(~p )ūr(~p )[
∫ µ

−∞

dω
Sh(ω, p)

p0 − ω − iη

7



+
∫

∞

µ
dω

Sp(ω, p)

p0 − ω + iη
] (16)

with the relationships

Sh(p
0, p) = 1

π

M

E(~p )
ImΣ(p0, p)

[p0 −E(~p )−
M

E(~p )
ReΣ(p0, p)]2 + [

M

E(~p )
ImΣ(p0, p)]2

for p0 ≤ µ

Sh(p
0, p) = −1

π

M

E(~p )
ImΣ(p0, p)

[p0 −E(~p )−
M

E(~p )
ReΣ(p0, p)]2 + [

M

E(~p )
ImΣ(p0, p)]2

for p0 > µ
(17)

kF,p(~p ) = [3π2ρp(~p )]
1/3 kF,n(~r ) = [3π2ρn(~r )]

1/3 (18)

where for simplicity Σ is now ūΣu which is independent of spin.
By means of this new nucleon propagator the modifications introduced by

our relativistic formalism, described in detail in ref. [23], are rather intuitive,
easy to employ and can be summarized as:

i) The normalization of the spectral function which ensures the proper
normalizations of the charge (or baryonic charge) of a nucleus is exactly
the same as in eq.(9). However, the spectral function of eq.(12) is now
replaced by eq. (17)

ii) On the other hand the structure function F2A(x) of eq.(8) is replaced by

F2A(x) = 4
∫

d3r
∫

d3p

(2π)3
M

E(~p)

∫ µ

−∞

dω Sh(ω, p)
x

xN

F2N (xN )θ(xN)θ(1−xN )

(19)

where the relativistic factor M
E(~p )

plays the role of a Lorentz contraction factor,
appearing in the probability per unit time of electron collision with the nucleon,
and which remains in the formula of the nuclear cross section because one
divides the sum of all probabilities by a unique electron flux, the one of the
electron with respect to the CM of the nucleus.

The questions of normalization and conservation of baryonic number, which
have been the subject of much attention [2], are discussed in detail in [23].

There are other terms which would be included in a covariant formalism
of the (e, e′) reaction and do not appear in our formalism. These are terms
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which have a negative energy state coupled to the hadronization vertex, as
shown in fig. 3. Once again such terms are reduced by the large energy
denominator of the negative energy state. Only in cases when one uses an
operator which magnifies the NN̄ coupling with respect to the NN , as in
the case of the axial charge, such terms can be relevant [26], although more
accurate nonperturbative calculations find smaller results [27]. With the use
of scalar potentials Σs smaller than the typical ones in the Walecka model
when one imposes constraints from information in the negative energy sector,
as done in [28], terms like in fig. 3 would be of the order of 10-15 % if one
has an operator like in the axial charge, γ0γ5, but much smaller than this if
electromagnetic current operators are used [27].

Furthermore, in as much as one assumes that the structure functions for the
positive or negative energy states are the same and one uses a nucleon spectral
function which conserves the baryonic number, one would be including the
strength of these pieces into the scheme which we follow, up to small differences
coming from different medium corrections to the positive and negative energy
states. Estimates based on the findings of [27] would put the difference between
this covariant scheme and ours at the level of 1-2% in the EMC region and
probably a few percent in the x > 1 region that we explore.

In practical terms our scheme respects special relativity in the positive
energy sector and amounts to using free ur(~p ) spinor in the evaluation of the
matrix elements of the γ∗N → X process while keeping the proper energy and
momentum balance in the δ function of conservation of fourmomentum, with
the ω, p distribution of the occupied nucleon given by the spectral function
and the energy and momentum of the final states in X being those of their
asymptotic states. This is in fact the most standard method in the study
of many nuclear processes involving scattering or decay. The aproximations
which we have done here, sacrificing covariance in a controled way, lead us to
this calculational scheme where everything is defined. Covariant formalisms
like those used in [29, 30] generate some off shell dependence in the hadronic
tensor, which are accounted for in terms of new structure functions for which
there is no empirical information, so several different assumptions are made
in [29, 30] which produce moderate changes in the EMC results.

Our relativistic corrections thus stem from the consideration of special
relativity in the positive energy sector, although, as we discussed, it accounts
in an approximate way for the contributions involving negative energy states,
which are small anyway.

We will show results both with the relativistic and non-relativistic formal-
ism. The relativistic corrections are found to be relevant in the region of x > 1,
particularly at large values of x.

It is easy to see qualitatively why eq.(8) or eq.(19) lead to a non-vanishing
structure function for x > 1. The nucleon structure function appears with
argument xN in this equation and in the Bjorken limit one has
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xN =
xN

x
x =

M

ω − pz
x (20)

For certain combinations of ω and pz one can obtain values of xN < 1 even
if x > 1. Since both ω and pz appear in eq.(20) it is very important to take into
account the correlations between ω and p provided by the spectral function
Sh(ω, p), and one sees that approximations which neglect these correlations
are bound to provide unrealistic results.

3 The nucleon spectral function in nuclear mat-

ter and finite nuclei

We have used three different approaches to evaluate the spectral function.
The first one is a semiphenomenological one relating the spectral function
of nuclear matter to the experimental cross section for NN scattering. The
second approach is microscopic in the sense that the spectral function for
nuclear matter is derived from a many-body calculation employing a realistic
One-Boson-Exchange model for the NN interaction. In the third model we
avoid the local density approximation and evaluate the spectral function Sh

directly for finite nuclei. We briefly describe these models below.

3.1 Semiphenomenological approach

This model is described in detail in ref. [31]. It evaluates ImΣ(ω, p) from a sec-
ond order diagram and uses the fact that ladder diagrams evaluated from the
NN potential lead to the NN t matrix. Pauli blocking corrections are taken
into account in the explicit diagram evaluated and |t|2, which appears in the
evaluation of ImΣ, is written in terms of the experimental NN cross section.
Polarization effects from the RPA iteration of ph and ∆h excitations are also
taken into account. The real part of the selfenergy is obtained via a disper-
sion relation and the Fock term from pion exchange is also included. Hartree
terms, which require the explicit knowledge of a potential, are missing in the
approach but these are terms independent of energy and momentum. The
nucleon properties evaluated in [31] as a function of ω−µ compare favourably
with those of more microscopic evaluations [32, 33]. In order to complete the
model and obtain absolute values for ReΣ, another phenomenological piece is
added here. This Hartree contribution is assumed to be proportional to ρ and
its value is adjusted, in order to fit the empirical value of the binding energy
per nucleon in each particular nucleus. For this purpose we recall the sum rule
for the binding energy per nucleon [34]

|εA| = −
1

2

(

< E −M > +
A− 1

A− 2
< T >

)

(21)

and we evaluate < T > and < E > as
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< T >=
4

A

∫

d3r
∫

d3p

(2π)3
(E(~p)−M)

∫ µ

−∞

Sh(ω, p)dω

< E >=
4

A

∫

d3r
∫

d3p

(2π)3

∫ µ

−∞

Sh(ω, p)ω dω (22)

By means of this, one takes also into account empirically contributions
from terms like in fig. 2e, which are in principle small, and even if they are of
ρ2 type would not differ appreciably from a ρ ρeff form, with ρeff an effective
average nuclear density.

The evaluation of ImΣ(ω, p) was done nonrelativistically in [31]. For con-
sistency with the relativistic formalism used here we should have kept the
factors M

E
in the nucleon propagators evaluating ImΣ(ω, p) in ref. [31]. How-

ever, the range of momenta in the loop integrals in ImΣ(ω, p) is quite limited
and they would modify the values of ImΣ(ω, p) by less than 10%. By means of
the explicit calculations carried out here we have observed that an increase of
10 % in ImΣ(ω, k) leads to increases of F2A(x) of the order 2 % at 0 < x < 0.6
and always below the 10 % level for large x, hence we have continued to use
the same ImΣ(ω, p) as obtained in ref. [31].

3.2 Microscopic approach in nuclear matter

The spectral function of nuclear matter which has been used in this sec-
ond approach has been evaluated using the techniques described in ref. [35].
The starting point of this many-body calculation is a Brueckner-Hartree-
Fock (BHF) calculation of nuclear matter considering the realistic One-Boson-
Exchange (OBE) potential B as defined in [36] for the NN interaction. The
G-matrix resulting from this BHF calculation as well as the BHF single-particle
spectrum ǫBHF (p) are used to define the nucleon self-energy including all terms
up to second order in G. The single-particle Green’s function g(p, ω) is derived
from a solution of the Dyson equation

g(p, ω) = g(BHF )(p, ω) + g(BHF )(p, ω)
[

Σ(2)(p, ω)
]

g(p, ω) (23)

Here Σ(2) is the contributions to the self-energy in second order. The
single-particle Green’s function in the BHF approximation is given by

g(BHF )(p, ω) =
Θ(kF − p)

ω − ǫp − iη
+

Θ(p− kF )

ω − ǫp + iη
, (24)

where kF denotes the Fermi momentum of nuclear matter at the density under
consideration. The term with Σ(2) in eq. (23) contains a contribution with
intermediate particle-particle states, which is taken into account already in the
BHF aproximation. This doublecounting is removed as described in [35]. The
spectral function Sh(ω, p) can then be calculated from the imaginary part of
the single-particle Green’s function by

11



Sh(ω, p) =
1

π
Img(p, ω) (25)

This calculation yields a Fermi energy µ depending on the density of nuclear
matter. The energy variable ω is defined with respect to this Fermi energy.
In the local density approximation for the spectral function discussed above,
the empirical Fermi energy of the finite nucleus has been chosen to be the
reference point for the energy variable ω.

3.3 Microscopic approach for finite nuclei

The spectral function can be calculated directly for finite nuclei using the
procedure described and applied to 16O in ref. [37]. For nuclei with spheri-
cal symmetry the self-energy is evaluated in a partial wave basis, Σlj(p, p

′),
assuming that orbital angular momentum l and total angular momentum j
are conserved quantum numbers. As discussed above, the total self-energy is
decomposed in a BHF part and terms of second order in the Brueckner G-
matrix. The corresponding single-particle Green’s function can be evaluated
by solving a Dyson equation of the form

gl,j(p, p
′;ω) = g

(BHF )
l,j (p, p′;ω)+

∫

dk1
∫

dk2 g
(BHF )
l,j (p, k1;ω)

×
[

Σ
(2)
l,j (k1, k2;ω)

]

gl,j(k2, p
′;ω) (26)

The spectral function for the various partial waves is then obtained from the
imaginary part of the Green’s function gl,j(p, p;ω) applying eq.(25). A problem
of this partial wave expansion for the momentum distribution is related to
the fact that non-negligible contributions are obtained at large momenta and
energies in high partial waves. Therefore we prefer to apply an approach
which has been introduced and discussed in ref. [35]. In this approximation
one splits the spectral function, for nuclear matter as well as for finite nuclei,
into a quasiparticle contribution describing the contribution to the spectral
function around the quasiparticle pole and a background contribution which
contains the information about the spectral function at energies away from the
respective quasiparticle pole. For finite nuclei a quasiparticle pole contribution
is only observed for those partial waves, which are occupied in the HF or
independent particle model. Therefore the sum on partial waves in

SQP (ω, p) =
∑

l,j

2(2j + 1)nl,jδ(ω − ǫQP
l,j )|Φl,j(p)|

2 (27)

is restricted to l=0 and 1 in our example of 16O. In this equation ǫQP
l,j stands

for the energy of the quasiparticle pole, Φl,j(p) for the corresponding single-
particle wave function in momentum space and nl,j for the occupation prob-
ability for this pole. This quasiparticle pole contribution is supplemented by

12



the background contribution calculated in a local density approximation from
the background contribution in nuclear matter

Sh,A(ω, p) = SQP (ω, p) + 4
∫

d3rSB
h (ω, p; ρ(r)) (28)

where SB
h stands for the background contribution of the spectral function

calculated in nuclear matter at the local density ρ(r). Care is taken that the
whole spectral function is normalized such that

∫ d3p

(2π)3

∫ µ

−∞

dωSh,A(ω, p) = A (29)

with A the total number of nucleons.

3.4 Approximations to be avoided

If no reliable model for the spectral function for nucleons in nuclear mat-
ter is available, one may be tempted to use certain approximations. One of
such approximations, which has frequently been used [12–14] is to ignore the
special correlations between momentum and energies of nucleons provided by
the spectral function and simply use the energy-integrated spectral function,
which is the momentum distribution. We are going to discuss three differ-
ent approximations and try to explore their reliability by comparing with the
results obtained in the more sophisticated models for the spectral function
discussed above. Although discussions around different approximations to the
nuclear wave functions, and other different approximations, have been com-
mon in the past [2,4,7,38], the comparison of different approximations to the
results obtained using spectral functions has not been exploited, particularly
in the region of x > 1 which we study here.

a) The uncorrelated Fermi sea distribution.
This is the simplest approximation, which is usually very accurate, except of
course in processes which test the momentum distribution at momenta which
are large compared to the Fermi momentum, as is the case in the present
problem. In this approximation the spectral function within the local density
approximation is assumed to have the form

SUFS
h (ω, p; ρ) = nFS(~p)δ(ω − E(~p)− Σ) (30)

with an occupation probability of

nFS(~p) =
{

1 if |~p| < pF (r)
0 if |~p| > pF (r)

(31)

with a local Fermi momentum pF (r) which is related to the local density ρ(r)
by
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pF (r) ≡ (
3π2ρ(r)

2
)1/3 (32)

and an expression for the local single-particle potential

Σ ≡ Σ(r) = VTF (r) +Dρ(r) (33)

where VTF (r) is the Thomas Fermi potential, −p2F (r)/2M andD a phenomeno-
logical constant fitted to reproduce the binding energy per nucleon in the
nucleus, as done in section 3.1.

b) Use of the momentum distribution of the correlated Fermi sea.
Since large momentum components are needed to generate F2A(x) at x > 1,

one is tempted to use the realistic momentum distribution of the nucleus as a
way to improve on this approximation. This means that we assume an expres-
sion for the spectral function SMD

h like in eq.(30) but replace the momentum
distribution of the free Fermi gas nFS by the momentum distribution of the
interacting Fermi gas

nI(~p) =
∫ µ

−∞

Sh(ω, p)dω (34)

where we have used the spectral function of nuclear matter discussed above
to calculate nI . Note, however, that the energy-momentum relation is still
determined by the δ-function in (30), with Σ defined with the same prescription
as in the subsection above, eq. (33).

c) Use of the correlated momentum distribution and the corresponding mean
value for the energy.

Finally we want to consider an approximation in which we assume again
a definite relation between momentum and energy of a nucleon in the hole
spectral function

SMED
h (ω, p; ρ) = nI(~p )δ(ω− < ω(~p) >) (35)

but determine the momentum distribution nI (see eq.(34)) as well as the mean
value of the energy for a given momentum

< ω(~p ) >=

∫ µ
−∞

Sh(ω, p)ωdω
∫ µ
−∞

Sh(ω, p)dω
(36)

from the complete spectral function for nuclear matter discussed above.

4 Results and discussion

In a first step we want to compare the two approaches to determine the spectral
function for nuclear matter, which we describe in sections 3.1 and 3.2 and which
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we are going to employ for the calculation of the structure function. For that
purpose we present in Fig. 4 the momentum distribution nI(p) (see eq.(34))
calculated at the empirical saturation density, ρ = ρ0, of nuclear matter.

The momentum distributions obtained by these two very different methods
are very similar. At small values of p the microscopic approach of [35] provides
an occupation number of the order of 3 % bigger than the semiphenomeno-
logical one [31]. For momenta above the Fermi momentum the distributions
are also similar although for momenta around two times the Fermi momen-
tum (∼ 550MeV/c) the differences become more appreciable. The semiphe-
nomenological approach provides a little less strength below the Fermi mo-
mentum, which is then redistributed to larger momenta where nI(~p ) is larger
than in the microscopic approach. The precise values of nI(~p) calculated in
a microscopic many-body theory, depend on the model of the NN interaction
which is considered and the method which is used to determine the effects
of correlations. For instance in the self-consistent Green’s function approach
of ref. [33], using the Reid soft-core potential, the occupation number for mo-
menta below kF is around 0.85, smaller than in both the approaches considered
here. This demonstrates that the semiphenomenological approach provides
a result which is in agreement with the microscopic calculations within the
uncertainties of the microscopic approach caused by the approximation in the
many-body theory as well as NN interaction. The differences found in nI(~p) in
the two approaches discussed have little repercussion in the values of F2A(x),
which come very close to each other in the two approaches, as we shall see
below.

As a second quantity characterizing the bulk properties of the spectral
functions calculated by these two methods, we show in Fig. 5 the mean value
for the energy as a function of ~p calculated according to eq.(36) at the nuclear
density ρ0. Fig. 5 shows in a qualitative way that there is an important corre-
lation between the momenta and the mean value of the energy for the bound
nucleons. The absolute value of this mean energy | < ω(~p)−M > | decreases
as a function of momentum with increasing momenta for momenta below the
Fermi momentum. This momentum dependence is mainly due to the mo-
mentum of the quasiparticle peak, which is approaching the Fermi energy for
p → pF . There is no quasiparticle contribution to the hole-spectral function
Sh for momenta larger than the Fermi momentum pF . Therefore at these mo-
menta, the mean value is determined only from the background contribution.
The coupling to 2 hole-1 particle and more complicated configurations with
total momenta p, described by these background terms yields a mean value of
< ω −M >, which decreases with increasing momentum. From this figure it
is evident, however, that the energy-momentum relation obtained from a re-
alistic spectral function is quite different from the simple relation used in eqs.
(30), (33), which provides a dispersion relation which is always an increasing
function with increasing momentum.

The values obtained for | < ω(~p) > | in the two approaches discussed in
sections 3.1, 3.2 are very similar, with differences of the order of 10 % at most.
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This is another indication that the basic features of the spectral function are
not very sensitive to the method used in the evaluation and that also the
semiphenomenological approach yields quite a reliable result.

In Fig. 6 we show the results for F2A(x) calculated with the three different
spectral functions introduced in sections 3.1 to 3.3, for the case of 16O. The
density distributions ρ(r) for 16O and the other nuclei, which are required to
apply the local density approximation, are taken from refs. [39, 40]. Since the
microscopic nuclear matter and finite nuclei approaches are nonrelativistic,
we have also taken the nonrelativistic version of the semiphenomenological
approach, for comparison, omitting all the M

E(p)
factors in eqs. (17), (19). The

experimental values for F2N(xN ) are taken from ref. [41]. The results obtained
with the two spectral functions of nuclear matter (solid line and dashed line)
are rather similar. At x ≃ 1 the microscopic spectral function provides results
about 20 % higher than the semiphenomenological one. At values of x ≃ 1.22
the two approaches coincide and for x ≃ 1.5, where the structure function has
decreased three orders of magnitude with respect to the value at x = 1, the
semiphenomenological approach provides values of F2A about 40 % larger than
the microscopic one. This reflects the fact that the former model provides a
larger probability for the momentum distribution at high momenta than the
latter one, as seen in Fig. 4.

The results for the structure function obtained with the spectral function
of eq.(28) evaluated directly for the finite nucleus are represented by the dot-
dashed line in Fig. 6. They should be compared with those displayed by
the solid line since the background contribution to eq.(28) is obtained from
the same nuclear matter result. These two results can hardly be separated
on the logarithmic scale of the figure. We observe that at x ≃ 1 the results
with the spectral function of the finite nucleus are about 8 % bigger than with
the nuclear matter approach. The differences become smaller as x increases
and for values of x ≃ 1.5 the two approaches give the same results. This
latter fact is telling us that at large values of x one is getting practically all
contributions from the background part of the spectral function and none from
the quasiparticle part. The comparison of these two curves also tells us that
the use of the nuclear matter spectral functions, together with the local density
approximation, is an excellent tool to evaluate F2A(x). If one compares the
results at values of x studied in the EMC effect, 0 < x < 0.6, the differences
among the three calculations are of the order of 3 %.

In Fig. 7 we show results obtained with the semiphenomenological ap-
proach using the relativistic and nonrelativistic formalisms. The trend of the
results is similar, however, the relativistic corrections induce a reduction of 25
% around x = 1 and roughly reduce the structure function F2A to one half of
the non relativistic results at x ≃ 1.5. The relativistic effects are significant
in the sense that they are bigger than the differences found between various
nonrelativistic approaches, which reflect the uncertainties in the treatment of
correlations.
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Results obtained for F2A(x) using the different approximations discussed
in section 3.4 are displayed in Fig. 8. The first one, which originates from
the assumption of an uncorrelated Fermi sea, eq. (30), is represented by the
dot-dashed line. We can see that at x ≃ 1 it already provides a structure
function of around a factor two smaller than the one obtained with the proper
spectral function (short dashed-line). However, as one moves to higher x, the
discrepancies get bigger and at values of x ≃ 1.2 the uncorrelated Fermi sea
gives already values for the structure function which are about two orders of
magnitude smaller than the correct ones. It is clear that one is exploring the
region of large momenta, above the Fermi momentum, which are not accounted
for by the uncorrelated Fermi sea.

Another approximation corresponds to using the realistic momentum dis-
tribution nI(~p) of eq. (34) and associating an energy to each ~p given by its
kinetic energy plus a potential, eq. (33). The results (solid line) are outra-
geously wrong. This demonstrates that the naive use of a momentum distri-
bution, although calculated in a realistic way, may lead to results which are
worse than those obtained for an uncorrelated system, if one does not treat the
energy-momentum correlation properly. As we have discussed already in Fig.
5, the mean value of the energy < ω(~p ) > decreases above the Fermi momen-
tum with increasing momenta. On the other hand, the energy associated to
~p in eq. (30) grows like the kinetic energy as |~p| increases. The discrepancies
with the correct results are about a factor three at x ≃ 1 and three orders of
magnitude at x ≃ 1.5, providing a gross overestimate of the results for F2A(x).
The same gross overestimate found here for this approximation was also found
in ref. [15] in connection with the mesonic Lambda decay in nuclei.

In view of the deficiencies of the previous approximations and the reasons
for it, one might think that the results should be improved by replacing the
kinetic plus potential energy, eq. (30), by the mean value of < ω(~p ) > cal-
culated from the spectral function (see eq.(36). This is indeed the case (see
curve with long dashes in Fig. 8), although the discrepancies with the exact
results are still large enough to discourage this approximation too. We can
see in Fig. 8 that at values of x ≃ 1 (and also in the EMC region below) the
approximation turns out to be quite good. However, for values of x ≃ 1.3 and
above the discrepancies with the correct results are already as big as one order
of magnitude or more.

The results discussed here stress the importance of using the spectral func-
tion to evaluate F2A(x) since all the information contained in it, correlating
energies and momenta, is very important, particularly at large x. We showed
that some schemes which use only a partial information from the spectral
function lead to rather inaccurate results and should thus be avoided.

Finally in Fig. 9 we show results obtained for different nuclei. They are
calculated at Q2 = 5 GeV 2. We can see that F2A(x)/A is very similar for
the different nuclei. We have taken nuclei with N = Z or close by, to be
able to use a unique Fermi sea for protons and neutrons as done in symmetric
nuclear matter. For heavier nuclei with N 6= Z the results obtained here could
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be easily extended by dealing with two different Fermi seas, but this would
require the extension of the work of ref. [31] to non symmetric nuclear matter.
We do not expect, however, any special effects apart from those exposed here.

When evaluating absolute values of nuclear structure function, not ratios
to the nucleon or the deuteron, it is very important to take into account the
Q2 dependence of the structure function. This is particularly true for values
of Q2 ≃ 1 − 10 GeV 2, but even at Q2 ≃ 100 GeV 2 and above, where there is
approximate Bjorken scaling, the Q2 dependence is weak but one still has to
consider it if one wants to make accurate predictions.

For the Q2 dependence of the nucleon structure function we have taken the
parametrizations given in ref. [42].

It is interesting to compare our results with the scarce experimental data
available. Our results refer exclusively to the deep inelastic contribution to
electron nucleus scattering. The quasielastic contribution (where only one
nucleon is knocked out in the first step eN → e′N) is not taken into account
in our formalism. At low values of Q2 and x ≥ 1, the quasielastic contribution
is dominant [19] and one has to go to values of Q2 > 20 GeV 2 to have a
dominance of the deep inelastic contribution [17]. For this reason we compare
our results with measurements done at Q2 = 61, 85 and 150 GeV 2 in ref. [43],
which improve the preliminary results reported in ref. [44] where much larger
values were obtained.

The results can be seen in fig. 10. The three theoretical curves correspond
to each one of the values of Q2 and the results decrease as a function of
increasing Q2. The agreement with the data is qualitative. The slope as a
function of x seems well reproduce but the theoretical results are in average
40 % higher than experiment up to x = 1.05. At x = 1.15 and 1.3 there are
only upper bounds which are compatible with our predictions.

Experimental results at Q2 < 5 GeV 2 have however, a large contamination
of quasielastic contribution [17–19]. This is reflected by the large dispersion
of the results as a function of Q2 [45] and in the approximate y scaling of
these results, which is characteristic of the quasielastic collisions. Nevertheless,
we have also evaluated the deep inelastic contribution correspondieng to the
results in [45] with largest values of Q2. We evaluate the structure function
corresponding to the lowest curve in fig. 1 of ref. [45]. This corresponds to
different values of Q2 for each value of x since the data correspond to electron
scattering with fixed initial electron energy (Ee = 3.595 GeV ), fixed scattering
angle, θ = 390 and variable final electron energy. We show the results in fig. 11.
The values of Q2 increase with increasing x. At x = 1 , Q2 = 3.11 GeV 2 and
at x = 1.25 , Q2 = 3.42. We can see that our results lie below the experimental
data, particularly at large values of x. However, one can observe a tendency
to be in agreement with the data at values of x < 0.8 if one extrapolates the
data smoothly. In fact in fig. 1 of ref. [45] we see a confluence of the data for
different values of Q2 in the region of x = 0.4 − 0.6 with values which agree
with our results of fig. 11. This would be in agreement with the conclusions
reached in [45] where the large dispersion of the results as a function of Q2
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for large values of x indicates the dominance of the quasielastic contribution,
while the tendency to stabilize the results at values of x < 0.8 indicate that
this region of x is dominated by the deep inelastic contribution. In such case
our results should be comparable to the data and this is indeed the case.

5 Conclusions

We have evaluated the nuclear structure function F2A(x) at values of x bigger
than unity, especially in the range 1 < x < 1.5 where the values obtained are
well within measurable range. For this purpose we have used sophisticated
nuclear spectral functions which account for nuclear correlations and relativis-
tic effects. The structure function decreases three orders of magnitude from
x = 1 to x = 1.5.

The strength of F2A(x) in that range of x is tied to the components of the
nuclear wave function with nucleons of large momenta. These components are
due to the two-nucleon correlations originating from realistic NN interactions.
The momentum distribution of nucleons in the nuclear many-body system,
however, is strongly correlated with the energy distribution of these nucleons.
These are dynamical effects which go beyond the shell model picture of the
nucleus and which are taken into account in terms of the nucleon spectral
functions. The results for F2A(x) are very sensitive to the correlations between
ω and p, to the extreme that usual approximations made in calculations of the
EMC effect fail badly in the region of x > 1. In particular, at x ≃ 1.5 the
quasiparticle bound states (the occupied states of the shell model), which are
only partly occupied in an interacting nucleus, give a negligible contribution
to F2A(x) and all the strength comes from the background part of the spectral
function.

We have discussed in detail the results obtained with several approxima-
tions which use only rough spectral functions or partial information from re-
alistic ones, and which are often used. We showed that in this region of x
none of them can be taken as a substitute of the calculation using the whole
information of the spectral function.

In order to quantify the intrinsic theoretical uncertainties of the results
we used two different models for the spectral function evaluated in infinite
nuclear matter and F2A(x) for nuclei was calculated using the local density
approximation. A version of the spectral function for finite nuclei was used
also for 16O. The differences between the models were small, of the order of
10-30 % depending on the region of x. We also found that the use of the local
density approximation was an excellent tool, providing results very close to
those obtained by direct evaluation for the finite nucleus.

Relativistic effects were checked and found to be important. They re-
duce the results for F2A(x) obtained with the nonrelativistic approximation
by amounts ranging from 25 % at x ≃ 1 to nearly a factor two at x ≃ 1.5.

On the other hand we have evaluated F2A(x) for different nuclei and find
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that F2A(x)/A becomes very similar for N = Z nuclei from 40Ca on.
The experimental results at x > 1 are scarce, particularly at large values

of Q2. We compared our results with available data at Q2 = 61, 85, 150 GeV 2

and found our results about 40% higher than experiment, although the fall
down with x was well reproduced. At values of Q2 significantly smaller, Q2 <
4 GeV 2, we found that our results for x > 1 where much smaller than the
experimental data, which was in agreement with theoretical and experimental
findings that this region is dominated by quasielastic scattering. At lower
values of x, around x = 0.4 − 0.6 our results matched the experimental data,
in agreement with the theoretical and experimental findings that this region
is dominated by the deep inelastic contribution.

The present investigation and the importance of the nucleon spectral func-
tion for the precise determination of F2A(x) is telling us that measurements
of this quantity for different values of x and a wide range of nuclei would pro-
vide important information on the components of the nuclear wave function at
large momenta and energies and the strong correlations between momenta and
energy. This information would be very important as a test of the many body
theories which are employed for the determination of the spectral function and
would unveil interesting details on nuclear correlations, which complement our
knowledge of nuclear structure beyond the basic information contained in the
shell model wave functions.
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Figure Captions:

Fig. 1: a) Feynman diagram for deep inelastic electron-nucleon scattering and,
b) electron selfenergy diagram associated to it.

Fig. 2: a,b,c,d) Feynman diagrams of the Dyson series in the evaluation of
the nucleon propagator including only intermedite positive energy states. e)
Feynman diagram of the Dyson series with a negative energy intermediate
state. f) Higher order terms in the Dyson series originated from the selfenergy
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term of diagrame and its iteration through positive energy intermediate states.

Fig. 3. Feynman diagram for deep inelastic electron scattering with an in-
terating nucleon, through the coupling of the photon to the negative energy
components.

Fig. 4: Momentum distributions at ρ = ρ0. Solid line: microscopic model
of [35]; dashed line: semiphenomenological model [31].

Fig. 5: Mean value of the energy of nucleons as a function of ~p, from eq. (36),
at ρ = ρ0. Solid line: microscopic model [35]; dashed line: semiphenomeno-
logical model [31].

Fig. 6: Results obtained for the structure function of 16O. Solid line: mi-
croscopic nuclear matter model [35]; dot-dashed line: microscopic finite nuclei
model eq.(23); dashed line: nonrelativistic semiphenomenological model [31].

Fig. 7: Results obtained for the structure function of 16O using the semiphe-
nomenological model [31]. Solid line: nonrelativistic formalism; dashed line:
relativistic formalism.

Fig. 8: Results obtained for the structure function of 16O using different
approximations. Dot-dashed line: uncorrelated Fermi sea, eq. (25); solid line:
momentum distribution of the correlated Fermi sea, eq. (29); long dashed
line: momentum distribution of the correlated Fermi sea and average energy
< ω(~p ) >, eq. (30); short dashed line: spectral function, eq. (13). Q2 =
5 GeV 2.

Fig. 9: Results obtained for the structure function per nucleon for different
nuclei. Solid line: 40Ca; short dashed line: 56Fe; dot-long dashed line: 12C;
dot-short dashed line: 16O; long dashed line: 6Li. All results are obtained
using the relativistic version of the spectral function, eq. (13). Q2 = 5 GeV 2.

Fig. 10: Results for the structure function of 12C at Q2 = 61, 85 and 150 GeV 2

(solid, short-dashed and long dashed lines respectively). The data are from
ref. [43] crosses for 61 GeV 2, squares for 85 GeV 2 and triangles for 150 GeV 2.
The data for the two largest values of x are upper bounds.

Fig. 11: Results for the deep inelastic structure function of 56Fe at different
values of Q2 around 3 GeV 2, see text, compared with experimental inclusive
data results of [45]. The experimental data for values of x > 1 are dominated
by the quasielastic contribution while for values of x < 0.8 the deep inelastic
contribution dominates the reaction.
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[35] H. Müther, G. Knehr and A. Polls, Phys. Rev. C., C52 (1995) 2955.

[36] R. Machleidt, Adv. Nucl. Phys. 19 (1989) 189.
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Abstract: The Pauli exclusion principle forbids mesonic A decay in nuclear matter at normal density 

and leads to very small values of the mesonic width in heavy nuclei. The intuitive idea is that, 

because the Fermi sea is only partly occupied, the mesonic width should be of the order of 
1 - n(k) = 0.15 times the free width. The problem is analyzed in detail in terms of the Lehmann 

representation for the nucleon propagator and the intuitive idea is found to be only a beautiful 

fallacy. 

1. Introduction 

Assume a A particle at rest in a slab of infinite nuclear matter at normal density. 

In the mesonic decay, A + NGT, the nucleon carries about 100 MeV/ c momentum 

while the Fermi momentum is k, = 269 MeV/ c. Hence this decay is forbidden by 

the Pauli exclusion principle. In finite nuclei the A momentum distribution, together 

with the fact that k, is smaller in the surface, lead to non-zero values of the A 

mesonic width, r,. Actual evaluations of r, with a finite nucleus treatment of the 

Pauli blocking ‘), or infinite nuclear matter treatment complemented with the local 

density approximation *), are in good common agreement and lead to widths in 

heavy nuclei around 10U4 times the free A width. Experimentally the existence of 

the mesonic decay channel, as well as a fast decrease of r, with the mass number, 

are well established 3-5). One of the interesting findings 2,6) in the A mesonic decay 

is that renormalization of the pion properties in matter leads to a substantial increase 

of r, with respect to the unrenormalized results. The reason is that for a given 

momentum of the pion the attraction of the medium lowers the pion energy, thus 

giving more energy to the nucleon and increasing the chances that it overcomes the 

Fermi energy. A different formulation of this effect, leading to the same conclusion, 

can be seen in refs. 7,8). There the pion wave carries a certain energy but, inside the 

nucleus, picks up larger momentum components than those corresponding to the 

pion on-shell and this makes the population of the unoccupied states easier. 

A different effect seems intuitively to lead to very drastic changes in r,,, . As noted 

before, the reason for the small values in I’, for heavy nuclei is Pauli blocking, but 

the results are based on an uncorrelated Fermi sea ‘> or exact shell-model nuclear 

wave functions ‘). However, we know that when nuclear correlations are considered, 
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Fig. 1. Schematic representation of the nucleon occupation number for an interacting Fermi sea. 

the Fermi sea is only partly occupied and some strength is moved to states above 
the Fermi sea “)_ This is depicted qualitatively in fig. 1. The occupation number for 
states of momentum k below the Fermi momentum is n(k) ^- 0.85 or equivalently 
the level of unoccupancy around 15%. We could expect that these states are occupied 
by the nucleons from the I4 + Nrr decay and hence I’, would saturate at values 
around 0.15 r,,, , up to small corrections for the absorption of the final pions 
(low-energy pions). At first sight, this argument appears correct and in fact it has 
already been exploited in the literature. Indeed, in ref. lo) the level of occupancy 
was assumed to be 90% and using the above arguments it was concluded there that 
the mesonic width for nuclei with A = 100 was substantially increased with respect 
to a calculation assuming full occupancy of the states. In what follows we make a 
detailed derivation of the mesonic width and show that, although intuitive and 
appealing, the idea is not correct. 

2. Formal derivation of the A width 

We follow the derivation of the mesonic A width as given in refs. 2,11). We start 
from a basic lagrangian coupling the A to the NT system given by 

L vhN= Gmt@N(A-By,)&!PA+h.c., (11 

with G the weak coupling constant and A, B the terms with parity violation and 
parity conse~ation, respectively. We have (Grn~~‘/8~ = 1.945 x lo-‘*, mw the pion 
mass, A = 1.06, B = 7.10. We assume the A to behave as the state Ii-i) of an isospin 
doublet and then eq. (1) implements automatically the AT = $ rule 12), 

In order to obtain the A decay width, we evaluate the A self-energy, Z*, 
corresponding to the diagram in fig. 2 and then use I’ = -2 Im 2”. After a non- 

Fig. 2. Feynman diagram for the A self-energy. 
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relativistic reduction “), we obtain 

z*(k) = 3j(Gm,) 2 2 1 d4q [A2+(~)2”2]G(k4)o,0, (2T)4 (2) 

with M the nucleon mass, D,(q) the free pion propagator and G(p) the nucleon 

propagator. For a Fermi sea of nucleons the non-interacting nucleon propagator is 

G(k-q)= 
1-%(k-4) no(k - q) 

k”-q”-8(k-q)+is+k’-go-%(k-q)-is’ 

with no(p) = 1 for 1~1~ k F and no(p) = 0 for 1 p\ > kF, (k, is the Fermi momentum). 

Hence, for the variable q” we get the pole structure shown in fig. 3 for the integrand 

of eq. (2). This suggests that we perform the Wick rotation indicated in the figure. 

We use Cauchy’s theorem 

-2~iB(%(k-q)-k”) Res (q”= k”- 8(k-q), n,term) (4) 

and the fact that the integral along the circles vanishes at infinity, plus the fact that 

the integral along the imaginary axis gives rise to a real part in I*, and then we obtain 

1 1 

‘k”-%(k-q)-w(q)+ia k”-%(k-q)+w(q)-ic 

x{B(k”-8(k-q))(l-n,(k-q))-B(iY(k-q)-k’)n,(k-q)}. (5) 

i 

C 
--qo- _ _ 

k”-;(m (1-n term) 

Fig. 3. Analytical structure of the integrand of eq. (2) in the complex variable q”, 
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The second term in the curly brackets does not contribute since k”= 

MA -M - BA = 160 MeV (BA is the binding energy of the A) and the maximum 

value of %‘(k- 4) = (k- q)‘/2M, with k-q below the Fermi surface, is k$/2M = 

39 MeV at p = po. This value becomes zero when the potential energy of the nucleons 

is included, as we do below. 

Hence 

xe(k’-8(k-q))(l-no(k-q)) &2~~(k"-W-q)-o(d) (6) 

with w(q) = (q*+ WI~)“~, which exhibits explicitly the Pauli blocking factor in the 

A decay. The &function can be omitted in the presence of the S-function. 

Eq. (6) gives the A width in nuclear matter. In order to obtain the width in finite 

nuclei we make use of the local density approximation and take the average over 

the momentum of the A in the nucleus, as was done in ref. ‘). Hence 

We take a Fermi distribution 13) for the density of the nuclei and for the A wave 

function we take the Is,,, wave function of a harmonic oscillator with parameter 

ho = [45A-“3 -25A-2’3] MeV (where A is the mass number). The binding of the 

A is taken as the lowest eigenvalue of a Woods-Saxon potential with depth 32 MeV 

and the shape of the nuclear density. The magnitude 8(k - q) is the nucleon energy 

@P> =&+ V,(r) (8) 

and V,(r) is taken from the Thomas-Fermi model 

Vi-Jr) = -& (3r'p(r)/2)'/'. (9) 

We show the results for several nuclei in table 1. As we can see, for heavy nuclei 

T,/T,,, is of the order of 10p4. 

TABLE 1 

rln/r,,, 

Fermi sea propagator 

Spectral function representation 

I60 

8.63 x lo-’ 

9.20 x 1o-z 

%a 

1.84x lo-* 

2.06 x lo-’ 

“‘Pb 

1.95x1o-4 

3.06 x 1O-4 



740 P. Femindez de Co’rdoba, E. Oset / A mesonic decay 

It might look at first sight as though an improved result could be obtained by 
replacing nO( p) in eq. (3) by the occupation number found in realistic calculations 
of an interacting Fermi sea9), n(k). Then, since n(k) -0.85 for nucleons with 
momentum smaller than kF and the &function in eq. (6) allows only such momenta 
(for small values of k), we should expect a width in nuclear matter of about 
1 - n(k) = 0.15 times the free width. However, we show below that such a procedure 
is highly incorrect. 

Indeed, the proper way to include the effects of the nuclear interaction is to 
replace the non-interacting nucleon propagator of eq. (3) by the exact interacting 
nucleon propagator in the nucleus. This propagator can be written by means of the 
Lehmann representation in terms of the spectral functions for particles and holes 

S, (w, k), Sh (w, k) as 14) 

G( k”, k) = 
’ (10) 

with p the chemical potential. 
By substituting the new nucleon propagator, eq. (lo), in eq. (2) and performing 

the Wick rotation again we obtain 

x - 
(I 

P 
-Lw 

d&,(o,k-@(w-k*) ku_-o_;(qj+iE 

1 

Xk”-o+o(q)-ia 
+ dwS,(o,k-q)8(k0-o) 

1 1 
x 0 k -w-w(q)+is) k”-w+o(q)-i& 

01) 

Once again the hole part (S, term) does not contribute because w is restricted to 
below p = kc/2M and cannot be bigger than k*. The same holds when the potential 
energy of the nucleons is included. This is exactly the same argument as in the 
non-interacting case. Hence we finally obtain 

T(k) = 3(Gd’r)2 I d3q (AZ+ (B,2M)"q2) & (2rjs 

cc 

X I dwS,(o, k-q) 2a6(k0-o-w(q)), 
P 

(121 

where we have omitted the &function because it becomes inoperative in the presence 
of the S-function. 
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We recover eq. (6) by noting that in the non-interacting case we have 

p = k;/2M. (13) 

In practice for lkl> k,, SJo, k) peaks around 8(k) (see fig. 4a) (8(k) is the 

physical energy for a particle of momentum k in the medium, k2/2M + Re 2,). We 

make arguments using the kinetic energy for simplicity. The extension to include 

the potential energy is straightforward. Hence the contributions from eqs. (6) and 

(12) for values of [k - q[ > k, are very similar. For k = 0 this contribution is however 

zero in nuclear matter at p = p0 because the S-function forces 141 <k, in eq. (6). 

This is also the case with eq. (12), since with k” - w < k”- p no values of 141 above 

k, are allowed at p = p. and for a wide range of densities below p. only values of 

141 below k, are allowed. However, eq. (12) has now the virtue of allowing the 

contribution of components with [k - q/ < kF. This is so because SJo, k) for Ikl< kF 

does not vanish, but it has a shape like the one shown in fig. 4b, instead of the peak 

of fig. 4a for Ikl > k,. 
Next, imagine for a moment that we can replace o in the argument of the 

a-function in eq. (12) by an average value o = (k-q)2/2M and then use the 

property 15) 

I 

m 
dw SJo, k) = 1 -n(k), (14) 

where n(k) is the occupation%umber, (O(a+(k)a(k)lO). 

We obtain again eq. (6), however, with no(k - q) replaced by n(k - q). Once again, 

with values of n(k - q) = 0.85 for ]k - q/ < k, we would expect r = 0.15 &,, . However 

there are several fallacies in this argumentation. First is that we cannot replace w 

by JR-q12/2M if this momentum is going to be below the Fermi surface, because 

o is strictly forced to be larger than p. This means that with o > ,u in eq. (12), the 

range of q momenta allowed by the a-function is much more restricted than in the 

integral for the free width (eq. (6) omitting n,(k - q)). On the other hand eq. (14) 

requires the integration over w in the whole range allowed, but if we have the 

combination S,S of eq. (12) it is clear that there are severe restrictions in the w 

Fig. 4. Schematic representation of the spectral function, S,(o, Ikl), as a function of o for two cases, 

(a) ]k[ > kF; (b) Ikl< k,. 8(k) is the physical energy associated to the particle with momentum k 
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integration. This is clearly visualized if we take k = 0 and use the q integration to 

eliminate the &function. Eq. (6) gives us a result proportional to 1 - n,(q) while 

eq. (12) would give us something proportional to 

I 

k”- mm 

dw &b, 4) (1% 
IL q=[(k”-o)*-my’* 

As we can see we have two problems if we wish to extract 1 - n(q) from eq. (15). 

The first one is that q is not fixed but is a function of o in the integrand. The second 

one is that the integration variable now runs from p to k” - rn_. instead of from p 

to co, which restricts the integration domain very much. 

The above discussions have illustrated clearly that substituting 1 - no( k - q) in 

eq. (6) by 1 - n(k - q) is highly fallacious and overcounts the contribution to r 

It would however, be, interesting to compute r of eq. (12) with a realistic spectral 

function. S, (0, k) is given in terms of the nucleon self-energy by 16) 

S&o, k) = -L Im X(o, k) 

GT (o-k2/2M-ReE(o, k))*+(ImZ(W, k))’ for @“’ (16) 

So all that is needed is to evaluate the nucleon self-energy in the whole range of 

energy and momentum. 

For such a purpose we have followed a rather phenomenological line and taken 

a model ‘*) that relies upon the elementary NN cross sections, satisfies the low- 

density theorem 17), has the right analytical properties and introduces a quenching 

mechanism to reproduce the results of ref. “) at high densities. We do not elaborate 

further on the model but the results that it produces are rather similar to those of 

ref. 16), which is sufficiently realistic for the purposes of this paper. 

Once T(k) is calculated as,a function of p with eq. (12), we take the averages of 

eq. (7) and evaluate r for different nuclei. The results can be seen in the second 

row of table 1. Once again the results range from 10-l in I60 to 1O-4 in *“Pb. The 

remarkable thing to note is that the results are very similar to those obtained with 

the non-interacting Fermi sea with variations of the order of 6% in light nuclei and 

45% in heavy nuclei. However, there is nothing close to the change in three orders 

of magnitude as naively we could expect. 

The renormalization of the pion wave has, however, drastic consequences as noted 

in refs. 2*7,8). On the one hand the real part of the pion-nucleus optical potential, 

attractive for the pions from the A mesonic decay, reduces the pion energy for a 

certain value of the momentum and the nucleons carry more energy thus reducing 

the effect of Pauli blocking. On the other hand the imaginary part of the potential 

takes into account the loss of pion flux. However, one should note that a distortion 

of the pion by the full optical potential removes from the pion channel all events 

that go into quasielastic collisions or into v absorption 7,8). Since the pions that 

undergo quasielastic collisions do not disappear, one should not remove them in 

the calculations. This means that the only pions that should be removed are those 
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which undergo pion absorption. We have done this here using the same procedure 
as in ref. 19> and we observe reductions of 13% in 160 and 30% in ‘08Pb with respect 
to those in table I. 

3. Conclusions 

We have analyzed in detail the appealing idea that because Pauli blocking is 
responsible for a large reduction of the A mesonic width in nuclei, the fact that the 
Fermi sea is only partly occupied would have a large effect on this mesonic width, 
giving rise to values of the order of 10% of the free width. A thorough study of the 
mesonic decay was done by using the spectral representation of the nucleon propa- 
gator in the medium, which allowed us to see the fallacies that go into that appealing 
idea. The fact that energy has to be conserved in the reaction puts severe constraints 
that did not allow the A mesonic width in the medium to be represented in terms 
of the occupation number of an interacting Fermi sea. The actual results by using 
a realistic spectral function representation lead to mesonic widths which differ only 
at the level of 6% in light nuclei to 45% in heavy nuclei with respect to those obtai:ned 
from a non-interacting Fermi sea. With the effects on the nucleon renormalization 
being so small, the effects on the pion renormalization studied before 2,6-8) stand 
as the major factor in enhancing the A mesonic decay with respect to the calculations 
based on free nucleons and pions but taking into account the Pauli blocking. 

The ideas discussed here are also of particular value in order to put into the 
proper context some approximations made in the literature where the nucleon 
propagator is approximated by the non-interacting one, eq. (3), substituting ~*(~) 
by n(k). As shown clearly here, such substitution can be highly unrealistic in many 
problems similar to the present one where energy conservation is at stake. 

This paper is partially supported by CICYT. One of us, P. Fernandez de Cordoba, 
wishes to acknowledge a fellowship from the Consejo Superior de Investigaciones 
Cientificas. Discussions with V.R. Pandha~pande and A. Polls are appreciated, 
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Abstract 

We study the charge-exchange C3He,t) reactions on unstable nuclei theoretically. Since 
this charge-exchange reaction takes place on the nuclear surface, this reaction is very 
sensitive to the neutron skin, and we show that the calculated cross sections are affected 
strongly by the existence of the neutron skin. This reaction can be observed using the 
inverse-kinematics method. We think the t3He,t) reaction is very useful to observe the 
neutron skins and also to get new information on isospin dependence of the A excitation 
mechanism in nuclei. 

1. Introduction 

The properties of nuclei far from stability have been one of the most interesting 
subjects in nuclear physics since we got a new tool, “beams of unstable nuclei” 
[1,2]. Many experimentalists have studied the properties of unstable nuclei exten- 
sively in the laboratories where secondary beams of unstable nuclei are available. 
Many theorists, on their side, have also studied them using the models which were 
established for stable nuclei [3]. One of the most exciting findings in this field was 
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Valencia, Spain. 
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the neutron halo around the “Li core in l1 Li [I], and the properties of “Li have 
been studied extensively [3]. Recently the existence of a thick neutron skin, which 
has a much larger neutron density than the neutron halo of “Li, was strongly 
suggested both theoretically and experimentally [4,5] as a general feature of 
neutron-rich nuclei. The existence of a proton halo was also suggested [6]. So we 
are very interested in the surface of unstable nuclei which are expected to have the 
thick neutron skin or proton skin. And we think that we need to study the neutron 
skin and proton skin for various nuclei systematically using a proper method. 

We consider that the charge-exchange C3He,t) reactions at intermediate ener- 
gies are suitable to study the nuclear surface since (1) the reaction takes place in 
the nuclear surface due to the large distortion effects of “He and t, (2) the 
charge-exchange reaction depends strongly on the numbers of neutrons and/or 
protons which participate in the reaction, (3) the reaction mechanism is relatively 
simple at intermediate energies and (4) we can perform the experiments using the 

(4 

pp [Em”1 

pn [fm”l 

33Ca 

R Vml 

0.14 
33Ca. 

0.12 - 

0.10 - 

0.08 - WS 

0 2 4 6 6 

R WI 

Fig. la. The calculated density distributions for “3Ca, which is the proton-drip nucleus in SHF. The 
dotted lines indicate densities by SHF and the dashed lines indicate densities by the empirical WS 
density. 



796 S. Hirenzaki et al. /Nuclear Physics A 587 (1995) 787-801 

The elementary cross sections of pc3He,t) and nc3He,t) are very different since 
(1) positively-charged particles like rTT+ must be produced in pc3He,t) because of 
the charge conservation, while n(3He,t) can occur in the Q N 0 region without any 
particle production, (2) the A-excitation spectra are different for p(3He,t) and 
nc3He,t) [lo]. To see this clearly we show the experimental results of c3He,t> for 
proton-target and deuteron-target cases in Fig. 2. Roughly speaking the cross 
section from a neutron target can be obtained by subtracting the spectrum with a 
proton target from that with a deuteron target. These very different shapes of the 
cross sections make it possible to know if the neutron and/or proton skin exist or 
not. 

In Fig. 3 we show the calculated IV, and IV, for 0, Ca and Zr isotopes as a 
function of the neutron numbers of the nucleus and compare the results calculated 
with two different kinds of densities, WS and RMF, which were explained in 
Section 2. We can see that the RMF densities predicate the rapid change of 
effective numbers with neutron numbers for all three isotopes. This is a natural 
result from the density distribution of RMF, which provides the neutron skin for 
neutron-rich nuclei, and thus A(, can be larger and NP can be smaller than those 
calculated with the empirical WS densities for neutron-rich nuclei. We find that 
the N, with the RMF densities could even be twice the N, with the WS densities. 
From the qualitative study using effective numbers we can expect that the cross 
sections of the c3He,t> reactions are very sensitive to the existence of neutron and 
proton skins. 

1.5 

I .a 
7 

0.0 
1400 1500 1600 1700 1800 1900 2000 

T [MeV] 

Fig. Sb. As Fig. 5a, using the cascade model for 38Ca, which is the proton-drip nucleus in RMF. The 
solid line indicates the spectrum with RMF density. The density distributions are shown in Fig. lb. 
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Fig. 4b. As Fig. 4a, using the cascade model with RMF nuclear densities. Here the dashed line is for 
3sCa and the dotted line for 60Ca 
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Fig. 5a. Calculated energy spectra of the (3He,t) reaction at 2 GeV using the cascade model for “sCa, 
which is the proton-drip nucleus in SHF. The cross sections are integrated for the angular range 
e rat, = O-3.2 (degree). The dotted line indicates the spectrum calculated with SHF density and the 
dashed line indicates the spectrum with the empirical WS density. The density distributions are shown 
in Fig. la. 
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Fig. 3. Proton and neutron effective numbers as a function of the neutron number of the nucleus. The 
solid lines are the proton effective numbers (Np) and the dashed lines are the neutron effective 
numbers (N,,). The thick lines are the results with densities of the relativistic mean-field model (RMF) 
and the thin lines are the results with the empirical Woods-Saxon densities (WS). 
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Fig. 4a. Calculated energy spectra of the (3He,t) reaction at 2 GeV using the cascade model with SHF 
nuclear densities. The cross sections are integrated for the angular range eLab = O-3.2 (degree). The 
solid line is the spectrum for 40Ca, the dashed line for 33Ca, and the dotted line for “Ca. 
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reactions to the nuclear surface qualitatively, we calculate the effective number of 
protons and neutrons which participate in the reaction [15]. This method is a good 
approximation when the incident energy is high enough for the impulse approxi- 
mation. The effective number of protons and neutrons in the inclusive AZ(3He,t)X 
reactions can be written as follows: 

(1) 

where the index i indicates the p(roton) and/or n(eutron1 and a = (atN + ahN)/2. 
The triton-nucleon and 3He-nucleon total cross sections are written as a,, and 
ahN, respectively. Here p(r) = p,(r) + p,(r) is the density distribution of the 
nucleus and p(b,z) indicates the nuclear density at an impact parameter b and 
beam-direction coordinate z. Using the NP and N, we can write the cross section 
approximately as 

da 

( ) 

da da 

d0 dE 
=N - 

AZ(3He,t)X ’ ( ) do dE p(‘He,t)X 
+N,, ___ 

( ) dfi dE nc+wx 
(2) 

with the elementary cross sections of a proton and neutron target. In this 
expression the many nucleon contributions and Fermi motion are neglected. 

_&L[mb] 
dEdC2 wMeV 

7 I 

t3Hes) 
2GeV, Odegree 

1600 1800 

Tt [Mevl 

Fig. 2. Double differential cross section for the (3He,t) reaction in the laboratory system for the targets 
p, d and “C. Experimental results are taken from Ref. [7]. 
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Fig. le. The calculated density distributions for “Ca, which is the neutron-drip nucleus in SHF. Lines 
as in Fig. lb 

These three kinds of density distributions for Ca isotopes are shown in Fig. 1. 
We show the densities for 33Ca which is the proton-drip nucleus in SHF in Fig. la, 
for 38Ca which is the proton-drip nucleus in RMF in Fig. lb, for 40Ca which is the 
typical stable nucleus in Fig. lc, for 60Ca which is the neutron-drip nucleus in 
RMF in Fig. Id, and for “Ca which is the neutron-drip nucleus in SHF in Fig. le. 
We can see from Fig. lc that all three models provide almost the same distribu- 
tions on the surface of the stable nucleus. However, the three models provide 
different surface distributions for unstable nuclei. For example, for the neutron-rich 
nucleus ‘%a, different tail shapes of neutron distributions are given by the three 
models. This means that the theoretical models for the nuclear-surface distribution 
have certain ambiguities and further studies are necessary. 

3. Effective number approach 

The data of t3He,t> reactions go like A1/3 which indicates that the reaction 
takes place in the nuclear surface [7]. In order to show the sensitivity of the c3He,t> 
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2. Nuclear-density distributions 

191 

In this section we summarize the density distributions of the target nucleus 
which we use in this paper to get the C3He,t) reaction cross sections. 
(1) 

(2) 

(3) 

The Woods-Saxon (WS) density distribution with the radius parameter R = 
1.18A’/3 - 0.48 (fm) and the diffuseness a = 0.5 (fm). This distribution was 
established by the study of the stable nuclei and does not provide the neutron 
skin. 
The calculated density distribution by the relativistic mean-field model (RMF) 
[12]. All the details of the RMF are described in Ref. [4] including the 
definitions of parameter sets used in the model. Here we used the parameter 
set NLl. It provides the thick neutron skin of neutron-rich nuclei. 
The calculated density distributions by Hatree-Fock theory with the standard 
SIII Skyrme interaction (SHF) [13]. All details of the calculation are given in 
Ref. [14]. This model also provides the thick neutron skin. 
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Fig. Id. The calculated density distributions for 60Ca, which is the neutron-drip nucleus in RMF. Lines 
as in Fig. lb. 
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inverse kinematics with unstable-nuclei beams. These conditions are also satisfied 
for other charge-exchange reactions such as (p,n), (14N, 14C), and so on. They are, 
roughly to say, the same as the c3He,tI reactions except for a few differences; those 
are: (1) the (p,n) reaction is not so sensitive to the nuclear surface because of a 
smaller distortion than c3He,t>, and (2) the charge-exchange reactions with heavier 
projectiles are restricted to a smaller Q-value region because of their form factors. 
We consider here the c3He,t> reactions since the reaction has been studied 
extensively for stable nuclei 171, and we can calculate the reaction cross section 
reliably using the model of Ref. [8]. 

In addition to the possible sensitivity to the nuclear surface of the unstable 
nuclei, the A-excitation by the c3He,t) reactions is an interesting subject since the 
A-peak shifts were found in stable nuclei. The A-peak position in nuclei was found 
to be shifted from the position of the A-excitation in the proton, and this shift was 

(b) 

Pp mf31 

6 8 

Fig. lb. The calculated density distributions for 38Ca, which is the proton-drip nucleus in RMF. The 
dotted lines indicate densities by SHF and the dashed lines indicate densities by the empirical WS 
density. The solid lines indicate densities by RMF. 
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found to be independent of the target mass [9l for stable nuclei. We think that to 
observe the A-resonances in unstable nuclei is a method to see the nucleon isospin 
dependence of the reaction mechanism since the unstable nuclei are expected to 
have a thick neutron/proton skin. In other words we can observe the A-excitation 
on a neutron target by C3He,t> reactions on neutron-rich nuclei because of the 
neutron skin. In the models [8,10,11] the isospin dependence is essential to 
understand the peak shift. Therefore, we can expect to obtain new information on 
the A-excitation mechanisms by C3He,t> reactions on unstable nuclei. 

In Section 2 we summarize the proton and neutron densities which we use in 
this paper. We apply the effective number approach to the C3He,t> reaction and 
show qualitatively the sensitivity of the neutron and proton skin to the reaction 
cross section in Section 3. We calculate the quantitative cross sections in Section 4. 
Section 5 is devoted to the summary. 
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Fig. lc. The calculated density distributions for 4oCa, which is the typical stable nucleus. Lines as 
in Fig. lb. 
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4. Cross sections of C3He,t) reactions 

In this section we show the calculated cross sections of the C3He,t> reactions. To 
get realistic results, we used the cascade program which was developed to study 
the inclusive C3He,t) reaction on nuclei in Ref. [8]. 

In Figs. 4a and b we show the isospin dependence of the calculated C3He,t> 
spectra in SHF and RMF. We can see the isospin dependence well in both models. 
For proton-rich nuclei the peak of the A-excitation can be seen clearly, while for 
neutron-rich nuclei the spectra have a flat shape in the region of T= 1650-1800 
MeV. This feature reflects directly the fact that the C3He,t> spectrum from a 
neutron target does not have a clear peak [lo]. With these results we can expect to 
get new information on the A-excitation mechanism by the C3He,t> experiments on 
unstable nuclei. Especially we can expect to have the spectrum from the neutron 
target using the neutron skin. We can also see that the quasi-elastic region 
(TN 1950 MeV) depends strongly on nuclear isospin. Because of the charge 
conservation, the proton target can not contribute to the quasi-elastic region. So 
the quasi-elastic cross section is larger for neutron-richer nuclei. 

We would like to check next if we can distinguish the model of nuclear structure 
by the C3He,t> reactions. For this purpose, we compare the spectra that are 
calculated using the three nuclear-structure models in Fig. 5. The models of 
nuclear structure are described in Section 2. We see from Fig. 5c that all models 
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ig. SC. As Fig. Sb, using the cascade model for 40Ca, which is the typical stable nucleus. The density 
distributions are shown in Fig. lc. 
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Fig. 5d. As Fig. 5b, using the cascade model for ‘“Ca, which is the neutron-drip nucleus in RMF. The 

density distributions are shown in Fig. Id. 
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Fig. 5e. As Fig. 5b, using the cascade model for “Ca, which is the neutron-drip nucleus in SHF. The 
density distributions are shown in Fig. le. 
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Fig. 6. Energy-integrated cross section at 19 Lab = O-O.5 (degree) for Ca isotopes. The dotted line 
indicates the cross section calculated with the SHF density, the dashed line indicates the cross section 
with the empirical WS density, and the solid line indicates the cross section with the RMF density. 

provide almost the same spectrum of 4o Ca. This is natural since all models have 
been checked in the stable nuclei. The discrepancies are small for proton-rich 
nuclei, 33Ca and 38Ca. For the neutron-rich nucleus ?2a we can see a certain gap 
between each spectrum. The gap is, however, still small and we must have both 
excellent data and theory of the reaction to distinguish the models of nuclear 
structure. We show the energy-integrated differential cross sections at forward 
angles in Fig. 6. The cross sections of 40Ca are almost the same for the three 
densities again. We can see from the figure that the cross section strongly depends 
on the neutron number and the model of nuclear structure. This is mainly due to 
the isospin dependence of the quasi-elastic contribution. The energy-integrated 
cross section will be a good observable to distinguish the nuclear structure models. 
Our results for the Woods-Saxon case have a similar dependence on the neutron 
and proton number as the one found in Ref. [16]. 

5. Summary 

In summary, we have studied the charge-exchange AZ(3He,t) reactions on 
unstable nuclei. Since the reaction takes place in the surface region and is a 
charge-exchange reaction, it is sensitive to the structure of the nuclear surface, 
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especially to the neutron and proton skin. And we think that this feature makes it 
possible to study the nuclear surface and/or the isospin dependence of the 
reaction mechanism. 

We applied the effective number approach to the reaction and showed that the 
existence of the neutron skin changes the cross section of AZ(3He,t) considerably. 
Then we studied the reaction using a realistic cascade model with three kinds of 
calculated density distributions. The results show that (1) the isospin dependence 
of the reaction mechanism, especially in the A-excitation region, will be seen in the 
shape of the energy spectrum of the reaction, and (2) the energy-integrated cross 
section will be a good observable to check the model of the nuclear structure. For 
the study of the reaction mechanism, the present work is complementary to the 
work of Ref. [ll]. 

Experiments of this c3He,t) reaction can be performed for unstable nuclei using 
the inverse-kinematics method in which the target 3He is bombarded by a sec- 
ondary unstable nuclear beam. The reaction, therefore, can be a powerful tool for 
a systematic study of the neutron skin of unstable nuclei. Finally we mention that 
heavier projectiles are more sensitive to the nuclear surface than 3He and t 
because of larger distortion effects. Hence, it is also interesting to use heavier 
particles in experiments. In these cases, however, the A-resonance peak may not 
be seen well because of the projectile-ejectile form-factor effect. 
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Abstract

Recent experiments at Saturne at 4 GeV showed that the (α,α′)
reaction on the proton shows two distinctive peaks, which were as-
sociated to ∆ projectile excitation and Roper target excitation. A
subsequent theoretical analysis has shown that this picture is qualita-
tively correct but there are important interference effects between the
two mechanisms. Futhermore, at this energy the ratio of strengths for
the Roper and ∆ peak is about 1/4. In the present paper we show
that by going to the 10 − 15 GeV region the interference effects be-
come negligible, the signal for the Roper excitation is increased by
more than an order of magnitude and the ratio of cross sections at
the peaks for Roper and ∆ excitation becomes of the order of unity,
thus making this range of energies ideal for studies of isoscalar Roper
excitation.
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The (α, α′) reaction on proton targets at kinetic energy Tα = 4.2 GeV

was studied at SATURNE [1] and two distinctive peaks were identified (see

Fig. 1), which were associated to ∆ excitation in the α projectile and Roper

excitation in the proton target (see Fig. 2). In a recent theoretical analysis

we showed that the two mechanisms of Fig. 2 were dominant in the reaction

and that other possible mechanisms, like Roper excitation on the projectile

or two ∆ excitation, were negligible [2]. However, it was found that the

interference between the two mechanisms in Fig. 2 was appreciable and it

was important to consider for a proper analysis of the data and the excitation

of the isoscalar NN → NN∗ transition amplitude.

In Fig. 1 one can see the results for the projectile ∆ excitation, Roper

target excitation and interference. One observes there that the interference

term is large and that the strength of the Roper is about 1/4 of the strength

of the ∆ excitation at their peaks.

It would be interesting to have other experiments which magnified the

strength of Roper excitation, both in absolute terms and relative to the ∆

and if possible diminished the interference term, which makes a theoretical

model necessary in order to separate the Roper contribution. All these things

are accomplished by performing the (α, α′) reaction at higher energies, as we

explain here.

We take the same model which was used in [2] to analyse the (α, α′)

reaction at 4 GeV . The cross section for the processes

α + p → α+ p + π0

2



α + p → α+ n + π+ (1)

is given by

d2σ

dEα′dΩα′

=
pα′

(2π)5
M2

αM
2

λ1/2(s,M2,M2
α)

∫

d3pπ
1

EN ′ωπ

× Σ̄Σ|T |2δ(Eα + EN − Eα′ − EN ′ − ωπ), (2)

where λ(...) is the Källen function and s the Mandelstam variable for the

initial p− α system.

By means of eq. (2) we can take into account the mechanisms of ∆

excitation in the projectile, Fig. 2a, and the Roper excitation in the target,

Fig. 2b, with the Roper decaying into a nucleon and a pion (which accounts

for about 65% of the N∗ free width). The contribution of the Roper decay

into ππN is also accounted for in [2] and is included in the final results here

but it does not interfere with the amplitude of ∆ excitation in the projectile,

since the final states are different.

The T matrix for the diagram 2a is evaluated taking into account π +

ρ exchange together with the Landau Migdal induced correction. For the

diagram of Fig. 2b, which enforces the exchange of an isoscalar object, we

take an effective ”σ” exchange, which incorporates the possible exchange

of an ω meson and the effect of nuclear correlations. The strength of this

isoscalar exchange piece is determined by making a fit to the experiment of

ref. [1]. The expressions for the ∆ and Roper terms and the interference can

be seen in eq. (4) of ref. [3] and eqs. (4), (20) of ref. [2]. Their reproduction

here is not necessary to understand the results.
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We have evaluated the cross section for the (α, α′) reaction on the proton,

using the same model, for kinetic energies 10 GeV and 15 GeV of the α

particle. We show in Fig. 3 the results obtained for 15 GeV . Those at 10

GeV are qualitatively similar but the Roper and ∆ peaks have a strength of

about 4 [mb/(sr·MeV )]. In Fig. 3 we show the results of the Roper excitation

(with decay of the Roper into πN), those of the ∆ projectile excitation,

their interference and the sum, which includes also the contribution of the

N∗ → ππN decay (with the distortion of the two pions by the 4He nucleus

which must remain unbroken). Comparison of Fig. 3 with Fig. 1 shows the

welcome feature of the 15 GeV reaction:

i) The cross section for the Roper excitation is increased by more than an

order of magnitude with regard to the one at 4 GeV .

ii) The strength of the Roper and ∆ peaks is similar, while at 4 GeV the

former had a strength of about 1/4 of the latter.

iii) The interference term is practically negligible compared to the Roper

contribution. This is in contrast with the 4 GeV case where the strength of

these two terms was similar.

A situation like the one in Fig. 3 makes experimentally much easier the

extraction of information on the properties of Roper excitation by an isoscalar

source. Such experiments can be easily implemented in the Synchrophasotron

of Dubna which accelerates nuclei up to Tkin ≃ 4 GeV/A and in the new

superconductive synchrotron, the Nuclotron, which accelerates nuclei up to

Tkin ≃ 6 GeV/A [4]. In fact in a related experiment carried out at Dubna
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on the C(d, d′)X reaction [5] at 8.9 GeV/c, a reanalysis of the data in terms

of MX calculated for the p(d, d′) kinematics shows a clear peak around the

Roper mass [6].

It is relatively easy to understand the features observed in the results at

15 GeV . In the first place the small interference. It is easy to see that as

the energy of the beam increases it becomes progressively more difficult to

have the same kinematic configuration of α,N, π in the final state for the

two mechanism of Fig. 2. Indeed, in the lab. system the pion coming from

the decay of the Roper in the mechanism of Fig. 2b will be distributed in a

wide range of angles ( it would be isotropic for the N∗ decay at rest, but the

effective σ brings some momentum along). However, the pion coming from

the ∆ decay in the mechanism of Fig. 2a will be directed in a very narrow

cone along the direction of motion of the α particle in the frame where the

initial proton is at rest. The cone becomes narrower as the α particle energy

increases and, hence, the overlap of the final state configurations in the two

mechanisms of Fig. 2 (and the interference term) becomes smaller as Tα

increases.

In order to understand the change of strength of the Roper and ∆ exci-

tations and their relative weight we must look at another factor. The reason

in this case lies in the nucleus form factor which one has in this reaction.

Indeed, in both the mechanisms of Fig. 2 the amplitude contains the

nuclear form factor [3]

FHe(~k) =
∫

d3rρHe(~r)exp
[

−
1

2

∫

∞

−∞

σNNρHe(~b, z
′)dz′

]

ei
~k·~r
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× exp

[

−
i

2

∫

∞

0

1

pπ
Π(pπ, ρHe(~r′))dℓ

]

, (3)

where

~r′ = ~r +
~pπ
| ~pπ|

ℓ,

~k = ~pα − ~pα′ . (4)

The momenta ~pα, ~pα′ , ~pπ appearing in eqs. (3), (4) are evaluated in the frame

where the initial α particle is at rest. In eq. (3) ρHe(~r) is the Harmonic -

Oscillator density distribution of the α particle, σNN the nucleon-nucleon

total cross section and Π(pπ, ρ)/2ωπ is the pion nuclear optical potential,

taken from ref. [7] up to Tπ ≃ 250MeV and extrapolated at high energies

when needed using the lowest order optical potential [2].

The form factor of eq. (3) is the 4He nuclear form factor incorporating the

distortion of the proton and pion waves, both in the eikonal approximation.

Now when Tα increases, for a same energy transfer the momentum transfer

is smaller. Indeed in the forward direction of the α′ we have

pα − pα′ =
√

E2
α −M2

α −
√

E2
α′ −M2

α

≃ Eα − Eα′ −
M2

α

2Eα

+
M2

α

2Eα′

= (Eα − Eα′)

(

1 +
M2

α

2EαEα′

)

. (5)

Hence, the invariant four momentum transfer squared will be

− q2 ≃ (Eα − Eα′)2





[

1 +
M2

α

2EαEα′

]2

− 1



 (6)
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which decreases as Eα increases. The magnitude −q2 is equivalent to ~k2 in

the Breit frame of the nucleus and is essentially also ~k2 of eqs. (3), (4) for the

4He at rest. Hence, we should expect an increase of the value of the nucleus

form factor, FHe(~k) as Eα increases. Futhermore the relative increase in the

form factor (think in terms of the undistorted exp[−~k2/4α2] form factor of

4He with α2 = 0.76fm−2 ) will be bigger if the excitation energy Eα − Eα′

is bigger. This is actually what we see in Fig. 4, where we plot the ratio of

|FHe(~k)|
2 at two different Tα energies , 10 GeV and 4.2 GeV , and 15 GeV

and 4.2 GeV .

We observe in Fig. 4 that at ω = Eα − Eα′ around 200 MeV , where

the ∆ peak appears, the increase of the form factor is moderate. However,

at ω = 550 MeV , where the Roper peak appears, the ratio of form factors

squared has a value of the order of four to five. This factor is the one

responsible for the relative increase of strength of the Roper excitation versus

the ∆ excitation at Tα = 15 GeV with respect to the experiment of [1] at 4.2

GeV .

The absolute increase in strength both for the Roper and ∆ excitation

can be traced back both to the form factor effect and the phase space factor

pα′ in the numerator of the cross section formula of eq. (2).

One might think that performing more exclusive experiments, i.e., de-

tecting a pion and a nucleon in coincidence and making a plot in terms of

the πN invariant mass, one would magnify the Roper peak with respect to

a background. We have checked theoretically, within our model, that this is
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not the case and the invariant mass distribution which one obtains resemble

very much the ω distributions of Fig. 1 and 3.

In our theoretical model we have neglected any dependence of the inter-

action on the energy, since we have no elements to think that this might be

the case. Obviously a certain energy dependence cannot be ruled out, an in-

formation which would be provided by the same experiment and which would

be much useful to help construct microscopic models for the interaction.

The results obtained here should encourage the implementation of the

experiments. After decades of studies around the ∆ region the time has come

to study in detail the properties of the next nucleon excitation. Quark models

have difficulties to explain the properties of the Roper [8]; the authors of ref.

[1] suggested that the Roper could be interpreted as a monopole excitation

of the nucleon (breathing mode); the decay of the Roper into two pions in

S-wave plays an important role in the πN → ππN reaction close to threshold

[9, 10], which must be brought under control in order to make predictions

about the ππ scattering length, etc.

The proposed experiments exciting the Roper with an isoscalar source

will bring new information about this resonance, its decay and its coupling

to different hadronic components and will pose new challenge to models of

this resonance.

We would like to acknowledge useful discussions with E. Strokovsky. One

of us (S. H.) acknowledges the hospitality of Departamento de F́ısia Teórica,
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supported by CICYT contract no. AEN 93-1205.
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Figure Caption

Fig. 1 Calculated cross sections of the target Roper process [2] and the

projectile ∆ process [3] at Eα = 4.2 GeV and θLab = 0.8o. The variable ω

is the energy transfer defined as ω = Eα − Eα′ . The thick line indicates the

sum of all contributions. Experimental data are taken from ref. [11]. Here

we used g2σNN∗/4π = 1.33,M∗ = 1430MeV,Γ∗(s = M∗2) = 300MeV .

Fig. 2 Diagrams for the (α, α′) reaction which we consider in this paper.

They are (a) ∆ excitation in the projectile [3], (b) Roper excitation in the

target [2]. The σ exchange must be interpreted as an effective interaction in

the T = 0 exchange channel [2].

Fig. 3 Same as Fig. 1. Here Eα = 15 GeV and θLab = 0o.

Fig. 4 The squared ratio of the α form factor is plotted as a function of

the energy transfer ω = Eα−Eα′ . The line (1) indicates the squared ratio of

the form factor of Eα = 10 GeV, θLab = 0o case to Eα = 4.2 GeV, θLab = 0.8o

case, and the line (2) the squared ratio of Eα = 15 GeV, θLab = 0o to Eα = 4.2

GeV, θLab = 0.8o. The form factor F is defined by eq. (3) in text.
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Abstract

We study the Roper excitation in the (α,α′) reaction. We consider all processes which

may be relevant in the Roper excitation region, namely, Roper excitation in the target,

Roper excitation in the projectile, and double ∆ excitation processes. The theoretical

investigation shows that the Roper excitation in the proton target mediated by an isoscalar

exchange is the dominant mechanism in the process. We determine an effective isoscalar

interaction by means of which the experimental cross section is well reproduced. This

should be useful to make predictions in related reactions and is a first step to construct

eventually a microscopic NN → NN∗ transition potential, for which the present reaction

does not offer enough information.
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1 Introduction

We investigate theoretically the (α,α′) reaction on a proton target at intermediate

energies in order to obtain new information on the reaction mechanism and the properties

of hadron resonances, especially the Roper resonance. The fact that the α particle has

isospin T=0 is particularly useful, since, due to isospin conservation, it reduces the number

of reaction mechanisms which contribute to the reaction and allows an easier interpretation

of the results.

The experimental study of the (α,α′) reaction on the proton target was done in ref. [1].

Two clear peaks were observed there; a large one, which was associated in ref. [1] with ∆

excitation in the projectile (DEP), and a small one, at higher excitation energies, which was

attributed in ref. [1] to the Roper excitation in the target. This latter assumption requires

the Roper to be excited by the mediation of an isoscalar interaction which stimulated the

author of ref. [1] to interpret the Roper resonance as a monopole excitation of the nucleon.

The idea of the DEP mechanism was suggested theoretically in ref. [2] in connection

with the (3He, t) reaction on nucleons and nuclei. It was found there that this mechanism

produced small changes in the (3He, t) reaction on proton targets with respect to the

dominant mechanism of ∆ excitation in the target (DET), but the changes were important

in the reaction on neutron targets. Thanks to this mechanism, the excitation function of

the (3He, t) reaction on deuteron targets [3] was well reproduced [4]. However, the clearest

proof of the DEP mechanism was found in the experiment of ref. [1] since, for reason of

isospin conservation, the DET mechanism is forbidden and all the strength for ∆ excitation

comes from the DEP mechanism. A theoretical study was done in ref. [5] along these lines

and the large peak corresponding to ∆ excitation was nicely reproduced.

Another interesting aspect of the work of ref. [5] is that it provides an accurate tool to

evaluate the ”background” of the (α,α′) reaction which is necessary in order to obtain the

strength for the Roper excitation. Given the fact that this background is much larger than

the Roper signal, the precise determination of the background is important in order to asses

the magnitude of the Roper excitation. In ref. [1] some approximations and assumptions

were done to determine the shape of the ∆ projectile contribution, and the strength was
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fitted to reproduce the peak. In ref. [5] a more elaborate microscopic evaluation was done

and both the shape and magnitude of the cross section were determined. As a consequence

there are some differences (not too large) in the ∆ background evaluated in refs. [1] and

[5], and the strength of the Roper at its peak is about 20% larger if the background of [5]

is subtracted instead of the one in [1].

In the present paper we study the different mechanisms that can lead to the Roper

excitation in the (α,α′) reaction on the proton. However, instead of extracting the Roper

signal by subtracting the ∆ background from the experimental cross section, we use the

theoretical model of ref. [5], which provides the ∆ excitation, and add to it the new

mechanisms that excite the Roper. This includes also the interference term between

the target Roper and the projectile ∆ excitation, which are found to be the dominant

mechanisms. With this global model we obtain cross sections which are compared to the

data in order to extract new information on the Roper resonance. We find that the reaction

provides the strength of an effective isoscalar exchange for the NN → NN∗ transition.

In section 2 we calculate all processes which may be relevant in the energy region of

ref. [1], namely: Roper excitation in the target, Roper excitation in the projectile, and

double ∆ excitation process. We compare the calculated results with experimental data

in section 3. We summarize this paper in section 4.

2 Model for the (α,α′) reaction

In this section we consider a theoretical model of the (α,α′) reaction on the proton

target in the ∆ and Roper energy region. The reaction mechanisms which we consider

here are summarized in Fig. 1. We include all processes which may be important in this

energy region. In Fig. 1 (a), we show the ∆ excitation in the projectile. Since the ∆

can not be excited in the target [5], this is the only process to excite the single ∆ in the

reaction. We can find the detailed description of the calculation and the results for this

channel in ref. [5]. All the other channels are new and they are discussed below.

We consider the diagrams for the Roper resonance excitation depicted in Figs. 1 (b-d).

3



In Fig. (b) the Roper is excited in the target by the exchange of some isoscalar objects

between the α and the proton. Because of isospin conservation of the α, the isovector

mesons (π and ρ) do not contribute in this process. The cross section for this process is

given by

d2σ

dEα′dΩα′

=
pα′

(2π)3
2M2

αM

λ1/2(s,M2,M2
α)

Σ̄Σ|T |2|G∗(s∗)|2Γ∗(s∗), (1)

where λ(...) is the Kallen function and G∗(s) is the propagator of the Roper resonance

defined as

G∗(s) =
1√

s−M∗ + i
2
Γ∗(s)

, (2)

where M∗ is the mass of the N∗, M∗ = 1440MeV and Γ∗(s) is the energy dependent

Roper width [6],

Γ∗(s) = Γ∗(s =M∗2)
q3cm(s)

q3cm(M∗2)
, (3)

with Γ∗(s =M∗2) = 350MeV and qcm(s) the π momentum in the center of mass frame of

πN system with the energy
√
s. Eq. (3) assumes for the s dependence that the dominant

decay channel is N∗ → πN . We will modify the width in the next section as described in

the Appendix in order to be more consistent with the experimental data. In what follows,

for simplicity, we construct a model assuming σ exchange alone as responsible for the

isoscalar part of the NN → NN∗ transition. Further on we shall reinterpret the meaning

of this phenomenologically derived ”σ” exchange. The spin sum and average of |T |2 can

be written as

Σ̄Σ|T |2 = 16F 2
αg

2
σNN∗g2σNN |Dσ(q)F

2
σ (q)|2, (4)

where we are assuming couplings of the σ to the N and N∗ of the type gσNN ψ̄ψφ and

gσNN∗ ψ̄N∗ψφ+ h.c.. In eq. (4) Dσ(q) is the propagator of the σ-meson defined as

Dσ(q) =
1

q02 − ~q 2 −m2
σ

, (5)

4



with mσ = 550 MeV , Fσ(q) is the σ form factor [7],

Fσ(q) =
Λ2
σ −m2

σ

Λ2
σ − q2

(6)

with Λσ = 1700 MeV. In Eq. (4) Fα is the α − α′ transition form factor which includes

the distortion effects and depends on the momentum transfer between α and α′. The

form factor is the same as that explained in ref. [5] and accounts for the distortion of the

nucleon wave plus the distortion of a pion wave from the point of production of the pion.

It thus implicitly assumes that the resonance will decay into the πN system. The pion

distortion is slightly changed here. We use the same eikonal form as in ref. [5] but take

ImΠ = −pπσρ with σ the πN experimental cross section and ρ the nuclear density. This

is appropriate at the higher energies met in the present problem where the model of ref. [5]

is not meant to be applied. The σNN coupling constant is taken from the Bonn potential

[7], g2σNN/4π = 5.69, and the σNN∗ coupling constant, gσNN∗ , is an unknown parameter

which we shall determine from the experimental data. We should however bare in mind

that we are constructing an effective isoscalar interaction and those couplings have not to

be taken literally as the meson baryon couplings of a microscopic model like in [7]. Yet

it is useful to take gσNN as in the Bonn model since it already provides the appropriate

scale of the interaction strength.

In order to get eq. (1) we have replaced the energy conservation δ-function in terms

of the Roper propagator and width as follows;

δ(Eα + EN − Eα′ − E∗) → Γ∗(s∗)

2π

E∗

M∗
|G∗(s∗)|2, (7)

so as to include all decay channels of the Roper resonance.

In the process shown in Fig. 1 (c), the Roper is excited in the projectile, α particle,

and decays into πN . The Roper is excited by π and ρ exchange between the target and

the projectile. We include both π+ and π0 for the final state. We can write the cross

section as:

d2σ

dEα′dΩα′

=
pα′

(2π)5
M2

αM
2

λ1/2(s,M2,M2
α)

∫

d3pπ
1

EN ′ωπ
Σ̄Σ|T |2δ(Eα+EN−Eα′−EN ′−ωπ). (8)

5



The spin sum and average of |T |2 for this process is ;

Σ̄Σ|T |2 = 48F 2
α

(

f

µ

)2 (f ′

µ

)4

|G∗(s∗)|2

× [(V ′2
l (q)− V ′2

t (q))(~pπCM · q̂)2 + V ′2
t (q)~p 2

πCM ]

(

−q2
~q 2

)

, (9)

where q = pN − pN ′ , ~pπCM is the pion momentum in the Roper rest frame and f2/4π =

0.08, f ′ = 0.472 [6]. The factor (−q2/~q 2) arises from the relativistic invariant πNN vertex

[5]. V ′

l , V
′

t stand for the longitudinal and transverse part of the NN → NN∗ interaction.

We have taken,

V ′

l (q) =

(

~q 2

q02 − ~q 2 − µ2
F 2
π (q) + g′

)

(10)

V ′

t (q) =

(

~q 2

q02 − ~q 2 −m2
ρ

F 2
ρ (q)Cρ + g′

)

, (11)

where Fπ(q) and Fρ(q) are the pion and ρ-meson form factor in the form of eq. (6) with

Λπ = 1300MeV and Λρ = 1400MeV , Cρ = 3.96 [7], and g′, the Landau-Migdal parameter,

is taken to be 0.60. The momentum q in eqs. (10), (11) are taken in the Roper rest frame

[5]. The invariant mass
√
s∗ of the Roper is approximated to be

s∗ = (q0 +M)2 −
(

~q + ~pπ
2

)2

(12)

using the momentum variables in the α rest frame [5]. In this approximation the momen-

tum transfer is shared equally by the initial and final nucleon in the α.

Now we consider the process of Fig. 1 (d), the projectile Roper excitation which decays

into the nucleon and the two pions in the T = 0, S-wave channel, which carries a certain

fraction of the Roper width [8]. We have again only the isoscalar exchange contribution

because of isospin conservation, which is accounted for by means of the effective σ exchange

used for diagram (b). The cross section can be expressed as,

d2σ

dEα′dΩα′

=
pα′

2(2π)8
M2

αM
2

λ1/2(s,M2,M2
α)

∫

d3pπ2

1

ωπ2

∫

d3pπ1

1

EN ′ωπ1

6



× Σ̄Σ|T |2δ(Eα +EN − Eα′ − EN ′ − ωπ1
− ωπ2

). (13)

The spin sum and average of |T |2 is now,

Σ̄Σ|T |2 = 3

2
64F 2

αC
2g2σNNg

2
σNN∗ |G∗(s∗)|2|Dσ(q)F

2
σ (q)|2, (14)

where C is the coupling constant of the N∗ → N + 2π decay and C = −2.66µ−1 [6]. The

variable s∗ is obtained in a similar way as in eq. (12),

s∗ = (q0 +M)2 −
(

~q + ~pπ1
+ ~pπ2

2

)2

(15)

with the momenta in the α rest frame.

We omit details of the effective Lagrangians and couplings used for the different ver-

tices. All of them are compiled in appendices A and B of ref. [6] and we follow them

strictly. The factor 3
2
in front of eq. (14) is an isospin factor which sums the contribu-

tion of the π+π− decay channel and the π0π0 decay channel (which has the factor 1
2
of

symmetry).

In addition to this decay channel we could add the N∗ → π∆ channel which carries

a fraction of 20 − 30% of the N∗ decay width. However, as we shall see, the projectile

Roper excitation mechanism with the dominant N∗ decay channel, N∗ → πN (Fig. 1(c)),

which we have studied before, gives a negligible contribution, basically because of the

small πNN∗ coupling. Since in this case one has again the exchange of π and ρ mesons

as in Fig. 1(c), and the fraction of the N∗ → π∆ decay is smaller than that of N∗ → πN ,

this mechanism should give even a smaller contribution and we do not evaluate it here.

Finally we consider the double ∆ excitation process as shown in Fig. 1 (e). We have π

and ρ meson exchange in this process and we have two ∆ resonances, one is in the target

and the other one in the projectile. The cross section is,

d2σ

dEα′dΩα′

=
pα′

(2π)6
M2

αM

λ1/2(s,M2,M2
α)

∫

d3pπ
ωπ

Σ̄Σ|T |2|G∆T
(s∆T

)|2Γ∆T
(s∆T

) (16)

where the propagator and the width of the ∆ are defined as,
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G∆(s) =
1√

s−M∆ + i
2
Γ∆(s)

, (17)

and

Γ∆(s) =
2

3

1

4π

(

f∗

µ

)2 M√
s
q3cm (18)

with M∆ = 1232MeV , f∗2/4π = 0.36 and qcm the π momentum for ∆ decay at rest with

mass
√
s in the πN system. The index ∆T indicates the ∆ resonance in the target. Here

we replaced the energy conservation δ-function in terms of the ∆ propagator and the width

in the target in the same way as eq. (7). The sum and average over spin of |T |2 is given

as,

Σ̄Σ|T |2 =
(

16

9

)2 4

3
F 2
α

(

f∗

µ

)6

|G∆P
(s∆P

)|2[(V ′2
l (q)− V ′2

t (q))(~pπCM · q̂)2 + V ′2
t (q)~p 2

πCM ],

(19)

where V ′

l , V
′

t are defined in eqs. (10) and (11). The index ∆P indicates the ∆ resonance

in the projectile. The magnitude of s∆P
is defined as eq. (12). Eq. (19) already accounts

for the possibility of π0, π+, π− decay of the projectile ∆ and all isospin channels of the

target ∆.

As we shall see later on, the diagrams of Figs. 1 (c), (d), (e) are negligible and the two

important mechanisms are given by the diagrams of Figs. 1 (a), (b). When we compare

our calculated results with the data [1], we include the interference of the two processes.

Obviously we must select only the N∗ → πN decay channel in Fig. 1 (b) and evaluate

the amplitude for this process explicitly in order to have the same final state as in Fig.

1 (a) and thus have some interference. The interference contribution is given by eq. (8)

replacing Σ̄Σ|T |2 by

Σ̄Σ(T ∗

N∗T∆ + T ∗

∆TN∗)

= 2Re

[

64

3
F 2
α

(

gσNNFσDσgσNN∗FσG
∗
f ′

µ

)∗
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×




f∗

µ
G∆

f∗

µ
[(V ′

l − V ′

t )(~pπ∆ · q̂)(~pπ∗ · q̂) + V ′

t (~pπ∆ · ~pπ∗)]
f

µ

√

−q2
~q 2







 (20)

where TN∗ is the T matrix of the target Roper process followed by πN decay, T∆ is that

of the projectile ∆ process, and ~pπ∆ is the pion momentum in the ∆ rest frame and ~pπ∗

is in the N∗ rest frame. This last expression sums the contribution from the production

of a π0 and a π+.

We should note that the interference between the T = 1/2 and T = 3/2 excitations

(with the simultaneous different spin excitation) has appeared because they occur on

different nucleons, one in the target and the other one in the projectile. Should these exci-

tations had occured both on the target nucleon there would have been no interference. In

our case the ∆ excitation in the target is forbidden but it would have appeared if we had

a 3He projectile instead of 4He, and there would be no interference between ∆ excitation

and Roper excitation on the target.

3 Numerical Results

We should mention first the gross features of the data. As can be seen in ref. [1], the

observed cross section has a peak around ω = 550MeV after subtracting the contribution

of the projectile ∆ excitation ( Fig. 1 (a)) of ref. [1], which indicates the Roper excitation

[1]. The data of the energy integrated cross section of this N∗ peak are also available at

several angles [1]. The data of ref. [1] has been reanalysed with a more precise background

subtraction [9]. With these corrections the height at the ∆ peak is about 15% lower than

in ref. [1]. In Fig. 2 we show the new spectrum [9] with the appropriate normalization

deduced from the scales in the energy integrated cross section of ref. [1] and the correction

in ref. [9]. By subtracting the ∆ background evaluated in ref. [5] we can see that the

strength of the Roper excitation at its peak is of the order of 0.25 [mb/sr/MeV].

We evaluate the cross section with the mechanisms discussed in the former section and

show the results in Fig. 3. As we said, in the diagrams Fig. 1(c) and Fig. 1(e) all the

couplings are known. Hence, we can calculate the cross section from these diagrams, which
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we show in the figure. As we can see there, their strength is very small and by no means

can they account for the strength in the Roper region. This leaves diagrams Fig. 1(b) and

1(d) to do the job. The cross sections for these two processes are both proportional to

g2σNN∗ . Even without knowing anything about this coupling, we can determine the ratio

of the cross sections for these two mechanisms. We found that the target Roper process is

much more important than the projectile Roper process followed by ππN decay by about

a factor 100. The cross section of the projectile process is suppressed because of the final

state phase space which involves two pions.

Hence, diagram Fig. 1(b) for Roper excitation in the target stands as the only likely

mechanism to explain the data. Thus we fix for the moment the strength of gσNN∗ , the

only unknown in the theory, in order to reproduce a strength of the peak of about 0.25

[mb/sr/MeV]. The value of the coupling constant that we get is g2σNN∗/4π = 1.79. With

this coupling we can now evaluate the diagram Fig. 1(d) and we find, as shown in the

figure, a very small contribution.

We can explain the reasons why those terms are so small here. The cross section of

the projectile Roper excitation can be compared with that of the projectile ∆ excitation

(Fig. 1(a)) in ref. [5] directly. They have the same phase space and the same T matrix

except for some factors. We found that the cross section is so small simply because of

the small coupling constants. The cross section of the projectile Roper excitation can

be evaluated from that of projectile ∆ excitation using a ratio of the coupling constants,

(f ′/f∗)4 = 2.4× 10−3.

For the double ∆ process the reasons are the following: first, the peak position of the

target ∆ excitation is different from that of the projectile ∆ excitation because of the

kinematics [2,4]. Hence, the cross section is the result of a small overlap of two different

resonance peaks. Second, the resonant strength associated to ∆ excitation in the projectile,

which peaks at small excitation energies, is now considerably reduced because the phase

space available is very restricted when one forces another ∆ to be excited simultaneously

in the target. To confirm our results we try to evaluate the result of the double ∆ process

using the available ones, from that of the projectile ∆ process. The T matrix is the same

in both processes except for some factors. The phase space is now different due to the
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different final states. To simulate the double ∆ process we increase the final nucleon mass

of the projectile ∆ process. We found that the projectile ∆ process with 940+250 [MeV]

final nucleon mass has a peak at the same position of that of the double ∆ process, and

its height is around 1/100 of the original projectile ∆ process because of the phase space

differences. In addition the peak height of the double ∆ process must be even lower than

this peak because of the ∆ width in the target. Hence, we can reconfirm qualitatively the

small contribution of the double ∆ process.

All there things considered, the Roper excitation in the target of Fig. 1 (b) is the

only mechanism which is left to explain the data. All other processes (Fig.1 (c-e)) provide

typically two orders of magnitude smaller cross section than the experimental data. As we

can see in the figure, we need only the target Roper excitation and we neglect all the other

processes hereafter, except for the projectile ∆ excitation which is large and has already

been evaluated [5].

We show the target Roper contribution together with the projectile ∆ contribution

[5] and their interference in Fig. 2 and compare them to the data. Here we take the

g2σNN∗/4π = 2.35. We found that the Roper excitation produces a wide peak around

ω = 520MeV . The interference has a negative contribution to the cross section and

peaks around ω = 350MeV . The calculated cross section provides a fair account of the

cross section but the dip region between N∗ and ∆ excitation is poorly reproduced. We

have chosen a particular sign for gσNN∗ , the same as gσNN , which leads to destructive

interference. If the opposite sign is chosen, the constructive interference leads to a cross

section in large disagreement with the data.

In order to obtain a better agreement with the data we change the expression of the

width of the Roper resonance in eq. (3). Experiments tell us that the Roper resonance

decays not only into π +N (65%) but also into π + π +N (35%) [8]. We describe in the

Appendix how we take into account the 2π+N decay. The Roper width Γ∗ in eqs. (1) and

(2) is replaced by this new form and the distortion effects of final 2π are also considered in

Fα. Then we take the freedom to change the Roper mass and width in the range of their

uncertainties [8] and try to obtain a best fit to the data by changing M∗,Γ∗(s = M∗2),

and gσNN∗ . The calculated results depend generally on these parameters in the following
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way: the peak moves to a lower ω value for larger width and smaller mass, the peak is

higher for smaller width and larger gσNN∗ , the peak is steeper for smaller width, and the

interference is relatively more important for smaller gσNN∗ . The result for our best fit is

shown in Fig. 4, where we see that the data are well reproduced. The best fit parameters

have been : M∗ = 1430MeV,Γ∗(s =M∗2) = 300MeV , and g2σNN∗/4π = 1.33.

We show the calculated angular distribution of the Roper excitation in Fig. 5. The

interference contribution is not included in this distribution. The data are from ref. [1] and

they should be corrected by the new background subtraction [9]. We should also notice that

the fact that the interference term between the projectile ∆ and target Roper mechanism

is not small does not allow a clean experimental separation of these mechanisms. With

this caveat, the comparison of our results with the experimental data should only be taken

as qualitative. The main point we want to stress here is that the monotonous fall down of

the cross section is reproduced and, in our theoretical analysis, it is mostly a consequence

of the (α,α′) transition form factor and not a property tied to the Roper itself. We found

that our results reproduce the trend of the data well.

Finally we want to comment on the πN scattering amplitude of P11 channel. In this

channel the observed amplitude [11, 12] has a different form than the standard Breit-

Wigner form of the Roper resonance due to the coupling to the nucleon. In the energy

region which we consider in this paper, the differences are as follows; first the real part of

the observed amplitude has the opposite sign to the Breit-Wigner form at
√
s ≤ 1.2GeV

and second the shape of the real part of the observed scattering amplitude is steeper than

the Breit-Wigner form at 1.2 ≤ √
s ≤ 1.3GeV because of the off-shell nucleon effect . In

order to see the effect of these differences we calculated the α spectrum with a modified

Roper propagator which has a steeper real part at 1.2 ≤ √
s ≤ 1.3GeV according to the

data of the scattering amplitude. We have checked that including these modifications in

the ”Roper” excitation changes only a bit the results of Fig. 4 in the region of the dip,

reducing moderately the cross section there. Theoretically the inclusion of the nucleon

pole term in addition to the Roper pole would help producing the shape in the P11 channel.

Now we would like to comment on the meaning of the ”σ” exchange interaction ob-

tained. In a more microscopic description of the NN → NN∗ transition along the lines of
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the boson exchange model, in the isoscalar channel which we have investigated we would

also have a contribution from ω exchange and from uncorrelated 2π exchange. It is easy to

see that assuming a similar scaling here for ω exchange and the uncorrelated 2π exchange,

with respect to σ exchange, as one has in the NN potential [7], the effect of ω and uncor-

related 2π exchange are very important and one finds large cancellation between σ and ω

exchange. In addition one should use this as input for a transition potential and initial

and final state interactions of the NN or NN∗ systems (correlations) should also be taken

into account. For all these reasons the ”σ” exchange potential which we have obtained

should not be interpreted as a σ exchange for the NN → NN∗ transition along the lines

of a one boson exchange model. It is simply an effective interaction which accounts for all

the ingredients in the T = 0 exchange channel, (σ, ω and correlations). One may wonder

why using there the explicit σ mass in the exchange. There is certainly no justification for

it, except that a posteriori one finds that the mass of the object exchanged is irrelevant in

the description of the cross section and it can be equally reproduced using any other mass.

Hence the ”σ” exchange obtained stands only as a useful and intuitive parameterization

of the effective interaction in the T = 0 channel. With this easy interaction one can make

predictions for analogous reactions using other nuclei, one can evaluate cross sections at

other energies of the beam, etc.

Obviously, although the limited information of the present reaction does not allow one

to extract enough information to construct a one boson exchange model for the NN →
NN∗ transition, the job done here, separating the ∆ projectile excitation from the Roper

excitation, provides some partial, but useful information, on the NN → NN∗ transition

to be used in the future in attempts to construct a microscopical model for this interaction.

Some steps in this direction, by looking at the role of uncorrelated 2π exchange, have been

given in ref. [13].

4 Summary

We have studied the Roper excitation in the (α,α′) reaction on the proton target.

All processes which may be relevant in this energy region were investigated. We found

that the experimental α′ spectrum can be reproduced by two processes, the projectile
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∆ excitation and the target Roper process. The target Roper process is mediated by

an isoscalar exchange between the α and the proton and we have determined from the

experiment the effective isoscalar NN → NN∗ transition t matrix.

We could find a good reproduction of the data with values of M∗ and Γ∗ close to the

average values quoted in the particle data table [8]. We found a good agreement with

the data with M∗ = 1430MeV , Γ∗(s = m∗2) = 300MeV and a certain choice of the

parameters of the effective interaction.

The experimental dependence of the cross section on the α′ angle was qualitatively

reproduced and found to be tied to the α form factor, not to the properties of the Roper.

The present work also lays the ground for extension of studies of N∗ excitation in

nuclei in order to study the modification of the N∗ properties in a nuclear medium. The

excitation of the N∗ with the (α,α′) reaction, because of the large strength and clean

signature, would be probably one of the ideal tools for such studies.
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Appendix Decay Width of the Roper resonance

In this appendix we will explain our model of the widths of the Roper resonance. We

include the N∗ → π +N and N∗ → π + π +N decay channels. Writing the decay width

of each channel by Γ∗

π and Γ∗

ππ, we define the total decay width as,

Γ∗(s) = Γ∗

π(s) + Γ∗

ππ(s). (21)

The width of the π +N decay channel has the same form as that of ref. [6],

Γ∗

π(s) = Γ∗

π(s =M∗2)
q3cm(s)

q3cm(M∗2)
, (22)

where Γ∗

π(s = M∗2) = PπΓ
∗(s = M∗2), with Γ∗(s = M∗2) the experimental Roper width

and Pπ the πN decay branching ratio. The magnitude qcm(s) is the π momentum in the

center of mass frame of the πN system with energy
√
s.

For the width of the π + π + N decay channel, we assume the N∗ → π + ∆ as an

intermediate state in this paper and express the width as follows,

Γ∗

ππ(s) =

∫

d3pπ
(2π)3

d3p∆
(2π)3

M∆

E∆

1

2ωπ
Σ̄Σ|T |2(2π)4δ4(p∗ − pπ − p∆), (23)

where p∗µ is the four momenta of the Roper resonance and is (
√
s,~0) in the Roper rest

frame. The π∆N∗ coupling is taken to be of the same form that of πN∆ with the

coupling strength fπ∆N∗ [6]. After replacing the energy conservation δ-function into the

∆ propagator and width as in eq. (7) in the text, we find the Γ∗

ππ is described as,

Γ∗

ππ(s) =
1

3π2

(

fπ∆N∗

µ

)2 ∫

dpπ
p4π
ωπ

|G∆(s∆)|2Γ∆(s∆), (24)

which has included all the isospin channels, where G∆ and Γ∆ are defined in eqs. (17)

and (18), respectively. The coupling constant, fπ∆N∗ , is determined by the normalization

condition, Γ∗

ππ(s = M∗2) = PππΓ
∗(s = M∗2) with Γ∗(s = M∗2) the experimental Roper

width and Pππ the ππN decay branching ratio. We obtain fπ∆N∗ = 2.47 for M∗ =

1440MeV,Γ∗(s =M∗2) = 350MeV and Pππ = 0.35 [8].

15



References

[1] H. P. Morsch et al., Phys. Rev. Lett. 69 (1992) 1336.

[2] E. Oset, E. Shiino, and H. Toki, Phys. Lett. B224 (1989) 249.

[3] C. Gaarde, Nucl. Phys. A478 (1988) 475c.
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Figure Caption

Fig. 1 Diagrams for the (α,α′) reaction which we consider in this paper. They are

(a) ∆ excitation in the projectile calculated in ref. [5], (b) Roper excitation in the target,

(c) Roper excitation in the projectile with decay into πN , (d) Roper excitation in the

projectile with decay into ππN , and (e) double ∆ excitation. The σ exchange must be

interpreted as an effective interaction in the T = 0 exchange channel (see text).

Fig. 2 Calculated cross sections of the target Roper process and the projectile ∆ process

[5] at Eα= 4.2 GeV and θ = 0.8 deg. The variable ω is the energy transfer defined as

ω = Eα − Eα′ . The thick line indicates the sum of all contributions. Experimental data

are taken from ref. [11]. Here we used g2σNN∗/4π = 2.35.

Fig. 3 Calculated cross sections dσ/dΩdE for (α,α′) on the proton at Eα= 4.2 GeV

and θ = 0.8 deg. The variable ω is the energy transfer defined as ω = Eα−Eα′ . Each line

indicates the contribution from the process shown in Fig. 1. Here we used g2σNN∗/4π =

1.79.

Fig. 4 Same as in Fig. 2. Here we used g2σNN∗/4π = 1.33,M∗ = 1430MeV,Γ∗(s =

M∗2) = 300MeV and the Roper width discussed in the appendix.

Fig. 5 Calculated differential cross sections, dσ/dΩ, of the target Roper process as a

function of the scattering angle in the laboratory frame. The parameters are the same as

in Fig. 4. The experimental data are taken from ref. [1]. See warnings in the text about

the interpretation of the results.
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Abstract

We calculate cross sections for coherent pion production in nuclei
induced by neutrinos and antineutrinos of the electron and muon type.
The analogies and differences between this process and the related
ones of coherent pion production induced by photons, or the (p, n) and
(3He, t) reactions are discussed. The process is one of the several ones
occurring for intermediate energy neutrinos, to be considered when de-
tecting atmospheric neutrinos. For this purpose the results shown here
can be easily extrapolated to other energies and other nuclei.
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1 Introduction

Electron and muon neutrinos and antineutrinos at intermediate energies are
produced in cosmic ray interactions with the earth’s atmosphere and they
are classified as “atmospheric neutrinos”. From basic counting from pion and
muon decays one expects twice as many muon neutrinos and antineutrinos
as the corresponding electron ones, which seems to be in contradiction with
measurements at IMB [1] and Kamiokande [2], where the ratio obtained by
studying charged current neutrino nucleus reactions in large underground wa-
ter detectors is about one. One of the attractive hypothesis is the existence of
neutrino oscillations. However, firm conclusions on the reasons of the puzzle
can only come if we have a good control on the neutrino nucleus reactions
occurring in the detectors, as well as the detector characteristics.

The neutrino nuclear reactions at intermediate energies can be rather com-
plicated if one compares with analogous reactions induced by photons [3]. Most
of the studies of neutrino nucleus collisions only consider the ph excitation
channel [4, 5, 6]. Others include ∆h excitation as a source of renormalization
of the ph excitation channel but not as an excitation channel by itself [7, 8].
All these approaches are fine in order to evaluate the nucleon emission chan-
nel, and at energies below 300-400 MeV they can also provide accurate results
for the total neutrino cross section. Indeed, most of the neutrino energy is
transferred to the lepton (in charged currents reactions) and only a fraction
of it is used to excite the nucleus. Hence, one has to go to relatively large
neutrino energies in order to excite ∆’s and other resonances in the nucleus.
Yet, whenever this happens the cross sections for ∆h excitation are large and
comparable in size with those of ph excitation. A recent evaluation of these
cross sections is done in ref. [9] and the astrophysical consequences of the
consideration of these channels are discussed in ref. [10].

One of the interesting channels discussed in ref. [10] is the coherent pion
production following ∆ excitation in the nucleus. The reaction is

νl + A → l− + A+ π+ (1)

where the final nucleus is the same as the original one and it is left in its
ground state. The cross section for the reaction is evaluated in [10] using the
impulse approximation (IA), neglecting the ∆ renormalization in the medium
and using plane waves for the pion. The authors, however, make a call for ac-
curate calculations which would take those elements into account. Fortunately,
such elements have been thoroughly tested in pion nuclear reactions and are
readily available. The ∆ selfenergy in a nuclear medium has been evaluated
theoretically [11] and tested in all sorts of pion nuclear reactions: elastic [12]
absorption, inclusive quasielastic, charge exchange and double charge exchange
[13], as well as in pion production processes like coherent π0 photoproduction
[14] or coherent pion production in (p, p′) and related reactions [15].

Coherent pion production in (p, n) or (3He, t) reactions ressembles much
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the present process and the findings of those reactions can serve as a guideline
for the study of the present one. Coherent pion production in the (3He, t)
reaction has received most of the attention [16, 17, 18] since it is one of the
channels contributing to the inclusive (3He, t) reaction in nuclei, where an
apparent shift of the ∆ peak with respect to the peak of the elementary reaction
on proton targets was observed [19, 20]. In fact the coherent pion production
channel shows the peak of the ∆ shifted towards lower excitation energies in
all the calculations [16, 17, 18], something already observed in pion elastic
scattering as a consequence of the pion multiple scattering [21].

Coherent pion production in neutrino reactions can offer additional infor-
mation over the (p, p′), (3He, t) and (p, n) reactions on ∆ properties and pion
propagation in the medium. The reason is that in neutrino reactions the range
of energy and momentum transferred to the nucleus is different than the one
in the hadron induced reactions. On the other hand in the hadronic reac-
tions one has to fight the distortion of the nucleons, or 3He, t in their passage
through the nucleus, which makes the pion production reaction quite periph-
eral. Instead, in the neutrino induced reaction neither the neutrino nor the
lepton is distorted by the nucleus and one can test the ∆ and the pions in
the interior of the nucleus. One may argue that the same occurs in coherent
π0 photoproduction. However, in this latter case the combination of the spin
transverse photons and the spin longitudinal pions leads to a factor sin θ in
the amplitude which eliminates the contribution of small angles to the cross
section. As a consequence the cross section picks up its strength from finite
angles where the momentum transfer is larger and hence the nuclear form fac-
tor smaller. This reduction due to the form factor becomes more apparent as
the energy increases, for a given angle, and as a result of this the ∆ peak is
shifted to much smaller energies than in coherent pion production induced by
(p, p′), (3He, t), etc. The contribution of bigger densities is partly to be blamed
for the shift, but to a much smaller extent than the reasons discussed above.

In the neutrino induced coherent pion production reaction we do not have
the circumstances explained in the photon case and, as we shall see, the largest
contribution to the cross section comes from small angles. Then the situation
is rather different and we can obtain new information with respect to both
the photonuclear and strong interaction induced processes of coherent pion
production.

In this sense the neutrino induced coherent pion production reaction is a
nice complement to other existing reactions which can enrich our understand-
ing of the nuclear excitation mechanisms at intermedite energies providing new
tests for the present theoretical models.

We shall follow the steps and the formalism developed in refs. [15, 17].
Although accurate experimental data on coherent pion production from the
(p, p′) or (3He, t) reactions do not exist, the results of ref. [17] and the prelim-
inary data of ref. [22] for the (3He, t) induced reaction are in relatively good
agreement, which gives us a certain confidence to extend the method to the
neutrino induced reaction.
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2 Coherent pion production amplitude

The experiments on (3He, t) induced pion production [19, 20, 22] show that
the process is dominated by ∆h excitation, even at energies of the beam of 10
GeV. The excitation of other resonances is suppressed with respect to the ∆.
Only in experiments where the ∆ excitation on the target is forbidden, as in
the (α, α′) reaction on a proton target, has the Roper some chances to show up
[23], and even then, the Roper signal is small compared to a large background
of ∆ excitation in the projectile [23, 24, 25]. The coherent production process
still restricts more the excitation of higher resonances since this requires larger
momentum transfers which make the nuclear form factor smaller.

The mechanism for coherent pion production in the (ν, l−) induced reaction
proceeds as shown in fig. 1. The W+ emitted from the (ν, l−) vertex excites a
∆ in the nucleus, which decays to Nπ later on, the nucleon remaining in the
same original state in order to ensure the coherence.

In order to construct the amplitude for the process we recall the νn → lp
weak interaction Lagrangian

L =
G√
2
cos θcl

µJµ (2)

with

lµ = ū(k′)γµ(1− γ5)u(k)

Jµ = ū(p′)[F
(v)
1 (q2)γµ +

i
2M

F
(v)
2 (q2)σµνq

ν

+F
(v)
A (q2)γµγ5 + F

(v)
P (q2)qµγ5]u(p)

(3)

where G is the Fermi weak coupling constant, M is the nucleon mass and θc is
the Cabbibo angle. We follow the nomenclature and use the same form factors
as in ref. [7]. The momenta involved in eqs. (3) are depicted in fig. 2.

In order to construct the νN → l−∆ transition we make the nonrelativistic
reduction of the terms in eqs. (3), neglecting only terms of order O( p

2M
)2. Lin-

ear terms in ~p
2M

, ~p ′

2M
, ~q
2M

are kept, but those terms linear in ~p, the momentum
of the occupied nucleons, also give rise to O( p

2M
)2 corrections when integrating

over the momenta. Hence these terms are dropped, which is equivalent to tak-
ing ~p = 0, ~p ′ = ~q. For the νN → l−∆ transition we take the terms involving
spin operators in the νN → l−N transition and make the substitution

f

µ
σiτλ → f ∗

µ
S† iT †λ (4)

where Si, T λ are the spin, isospin transition operators from 1/2 to 3/2, nor-
malized as

< 3/2 Ms|S†
µ|1/2 ms >= C(1/2 1 3/2 ;ms, µ,Ms) (5)
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and the same for T †λ. The couplings f, f ∗ correspond to the NNπ and N∆π
vertices, f 2/4π = 0.08, f ∗2/4π = 0.36 and µ in eq. (4) is the pion mass.
The current Jµ of eq. (3) contains implicitly a factor

√
2 of the operator τ+

responsible for the n → p transition.
Hence we must substitute

σi → f ∗

f

1√
2
S† i T †

+ (6)

and from the ∆ decay into πN we take f ∗/f = 2.12, a value in between the
factor 2.2 taken in ref. [26] and the factor 2 considered in ref. [9]

We find

J∆
µ = 1√

2

f∗

f
{ i[F

(v)
1 (q2) + F

(v)
2 (q2)] 1

2M
(~S † × ~q)iδµi

+[F
(v)
A (q)2 − q0F

(v)
P (q2)]

~S †~q
2M

δµo − F (v)
p (q2)

~S †~q
2M

qiδµi

+F
(v)
A S†iδµi }T †

+

(7)

For the ∆ coupling to a nucleon and a real pion in fig. 1 we use the standard
vertex

− iδH̃ = −f ∗

µ
~S · ~pπT λ (8)

where ~pπ is assumed in the ∆ CM frame. The amplitude corresponding to fig.
1 is readily evaluated for a spin saturated nucleus using the property

∑

Ms

SiS
†
j =

2

3
δij −

i

3
ǫijlσl (9)

One of the findings in coherent pion production induced by the (3He, t)
reaction was the negligible contribution from the transverse part of the NN →
N∆ transition amplitude. This occurred because the emitted pion couples
longitudinally to the ∆ and the transverse part of the interaction contributes
to the cross section with the factor sin2 θ, as we indicated for the case of
coherent pion photoproduction. This forces the contribution at finite angles
where the nuclear form factor reduces the cross section. This is also the case
here, where in addition the transverse terms are further reduced by a factor
q/2M . Hence we neglect the transverse parts from the beginning.

With all these considerations, the coherent pion production cross section
corresponding to the process of fig. 1, on summing over all occupied nucleons
in the amplitude, is given by

dσ

dΩedEedΩπ
=

1

8

|~k′||~pπ|
|~k|

1

(2π)5
Πf2mf Σ̄Σ|t|2 (10)

where the product of the fermion masses, 2mf , appears because of our normal-
ization of the spinors as ūu = 1. The T matrix squared, summed and averaged
over spins, is given by
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Πf2mf Σ̄Σ|t|2 = L00|V 0|2 + L33|V 3|2 + 2L03Re{V 0V 3∗} (11)

where Lµν is the leptonic tensor

Lµν = 4[kµk
′
ν + k′

µkν − k · k′gµν ] (12)

and

V µ ≡



















V 0

0
0
V 3



















V 0 = B[F
(v)
A (q2)− q0F

(v)
P (q2)]

V 3 = B[F
(v)
A (q2)2Mq

~q 2 − F
(v)
P (q2)q]

(13)

with

B = −f ∗

f

f ∗

µ

G

6
cos θcG∆(p∆)F (~q − ~pπ)

1√
s∆

(14)

In the factor B, G∆(p∆) is the ∆ propagator and F (~q − ~pπ) is the nuclear
form factor modulated by the isospin factors. We have

G∆(p∆) =
1

√
s∆ −M∆ + i Γ̃

2
− Σ∆

(15)

where s∆ = p02∆ −~p 2
∆, and Γ̃, Σ∆ are the Pauli blocked ∆ width and the rest of

the ∆ selfenergy which contains pieces related to quasielastic scattering, 2N
and 3N pion absorption. The evaluations are done in ref. [11] and we take
the analytic expressions derived there. We also include in the selfenergy the
term 4

9
(f

∗

µ
)2g′ρ to account for irreducible pieces of ∆h propagation mediated

by the Landau-Migdal effective interaction [12].
On the other hand the nuclear form factor is given by

F (~q − ~pπ) =
∫

d3r[ρp(~r) +
1

3
ρn(~r)]e

i~q·~r~pπ · ~qe−i~pπ·~r (16)

where for convenience we have included the factor ~pπ · ~q.
In the derivation of eq. (11) we have taken ~q in the z direction for simplicity

and furthermore we have also kept only the longitudinal part of ~pπ along the
q axis for consistency with the neglect of the transverse parts. The structure
of eq. (11) is also the same as the one found in ref. [10].

It is interesting to note that when ~k′ is paralel to ~k, which leads to the
largest cross sections, the contribution of FP cancels. Hence, the axial term
F

(v)
A (q2) is the relevant term in the process.
So far the formalism has used the bound wave functions of the nucleus,

which appear in the nuclear form factor via the proton and neutron densities,
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eq. (16), but has considered only a plane wave for the pion. The renormaliza-
tion of the pion is a very important thing in this process. Hence, in the next
step we replace

~pπ · ~q e−i~pπ·~r → i~q · ~▽φ∗
out(~pπ, ~r) (17)

where φ∗
out(~pπ, ~r) is an outgoing solution of the Klein Gordon equation for the

pion, which we solve along the lines of ref. [27] and with the pion nucleus opti-
cal potential developed there, which gives rise to good pion elastic, absorption
and quasielastic cross sections [27].

3 Results and discussion

In fig. 3 we plot dσ/dΩedEedΩπ, for θe = 00 with respect to the neutrino
direction, for coherent pion production in νe +

16O → e− + 16O + π+ as a
function of the pion angle measured with respect to ~q. We choose a neutrino
energy of 800 MeV and an electron energy of 545 MeV which lead to a value
of q suited to excite the ∆ resonance. The dashed line corresponds to the
impulse approximation, meaning free ∆ width and no ∆ selfenergy in the ∆
propagator and no pion distortion. The solid line is the accurate calculation,
which accounts for both effects. We can see that there is a net reduction of
about a factor three from both renormalizations, bigger than what appears
in coherent pion production induced by the (3He, t) reaction, which is more
peripheral.

The cross section is forward peaked, as was also the case in the (3He, t) or
(p, n) reactions. However the fall down with angle is not so drastic here as in
the hadronic reactions because in the latter ones, for the same energy of the
pion, the momentum transferred to the nucleus is bigger than in the neutrino
case, as a consequence of the large mass of the nucleons, and the nuclear form
factor reduces more the cross section. The cross sections are of the order of
10−15fm2/MeV sr2.

In fig. 4 we show the cross section for the same reaction integrated over
the pion angles. Here we plot it as a function of q0, the total pion energy (we
neglect the nucleus recoil energy). We observe again the sizeable renormaliza-
tion factor from dressing the ∆ and the pion in the nuclear medium. It is also
worth looking at the shift to lower energies of the peak of the excitation func-
tion, with respect to the one of the impulse approximation. This is mostly due
to the distortion of the pion, as we already indicated in the introduction. The
argument goes as follows: since the πN cross section and pion absorption are
largest at resonance, there is a depletion of the pion wave when the pion goes
through the nucleus, and much of the pion flux is lost into quasielastic channels
or pion absorption. On the other hand the pion production step is resonance
peaked. The combination of these two factors has as a consequence a shift of
the peak to lower excitation energies where the pion depletion is not so strong.
Note, however, that the free ∆ position would appear at q0 = 338 MeV in the
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plot. Hence, we see a shift of the peak already in the IA due to the nuclear
form factor, as indicated in the introduction, and a further shift due to the
pion distortion.

The nuclear form factor acts as follows: from energy conservation we have
ωπ = q0, pπ = (q02 − µ2)1/2. Hence, the momentum transfer to the nucleus,
~q − ~pπ, is always finite since q > q0 and it increases as q0 increases. As a
consequence, the nuclear form factor decreases with increasing q0 and this has
the same effect as the distortion when one approaches the ∆ energy, leading
to a shift of the ∆ peak to lower excitation energies.

The ∆ peak in fig. 4 appears around q0 = 255 MeV , which is lower than
the value 275 MeV found in coherent π+ production with the (p, n) reaction.
Once again the peripheral character of the (p, n) reaction should be blamed for
it. However, it is interesting to note that, in spite of the fact that here we are
exploring the whole volume of the nucleus, like in coherent π0 photoproduction,
the peak appears at higher values of q0 in the neutrino case than in the (γ, π0)
[14, 28] case. In the latter case the ∆ peak was shifted to energies around
190 − 220 MeV depending on the nucleus. The reason, already discussed in
the introduction, is the factor sin2θ of coherent π0 photoproduction which
forces finite angles in the cross section where the momentum transfer is larger
and the nuclear form factor smaller.

As we can see, the combination of results of coherent pion production
induced by photons, neutrinos or hadronic reactions presents complementary
aspects related to the nuclear properties and the propagation of the ∆ and the
pion in the nuclear medium.

In fig. 5 we show the results for the cross section of the same reaction
integrated now over the electron angles. We observe similar features as in
fig. 4. The magnitude of the cross section has now decreased more with
respect to the case where we integrate over the pion angles (see figs. 3 and
4), indicating that the cross section as a function of the electron angle is more
forward peaked than with the pion angle. This is intuitive since the electron
momentum is bigger than the pion momentum and a change in angle generates
larger momentum transfers in the case of the electron, which would lead to a
larger reduction of the nuclear form factor.

In fig. 6 we show the results for dσ/dEe as a function of q0 for different
neutrino energies. We can see that the cross section increases with the neutrino
energy, but at energies above 1GeV the increase is more moderate. This is
also reminiscent of the findings of ref. [15] in the (p, n) reaction.

In fig. 7 we show the results of dσ/dEe as a function of q0, for neutrinos
of 1 GeV scattering from three different nuclei, 16O, 37Cl and 71Ga used as
neutrino detectors in several experiments. We observe that the cross section
grows with A. This is quite different from the results found for the (p, n)
reaction where the cross section decreased from 12C to 40Ca and 208Pb. The
reason for the decrease in the hadronic reaction was the distortion of the p
and n waves, which does not occur now, since the neutrino and the electron
are not distorted by the nucleus. Finally in fig. 8 we show the results for the
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reaction

νµ + A → µ− + A+ π+ (18)

corresponding to fig. 7 with electrons.
The evaluation of the cross section in the νµ case is simple since both the

leptonic tensor and the vector V µ have the same expressions. The only change
is in the kinematics in the (νµ, µ) vertex because of the finite mass of the muon.
The cross sections for the νµ case are decreased by about 20% with respect to
those of νe in all nuclei. The reason for the decrease is that for a given value
of q0 the corresponding value of q is larger in the µ case and hence it leads to
larger momentum transfers to the nucleus and smaller nuclear form factors.

Since the Laboratory energetic neutrinos are muon neutrinos, the reaction
studied here could be implemented with muon neutrinos in present Laborato-
ries.

As for the evaluation of cross sections with antineutrinos, the changes to
be done to obtain them from the ones evaluated in this work are minimal, once
the transverse parts are neglected as done here. One should change

ρp +
1

3
ρn → ρn +

1

3
ρp (19)

which in practice amounts to multiplying the neutrino cross sections by the
factor (3N + Z)/(3Z + N), which is unity for isospin symmetric nuclei, as
noted in ref. [10].

4 Conclusions

We have calculated cross sections for coherent pion production in neutrino
(antineutrino) nucleus collisions, of both electron and muon type. The cal-
culations have been done accurately taking into account the renormalization
of the ∆ and pion properties in the nuclear medium. We observed that the
cross section was quite sensitive to these properties, and their inclusion in the
calculation decreased the cross section by about a factor three with respect to
the impulse approximation, and shifted the peak position to lower excitation
energies.

Some of the features, like the shift of the ∆ peak, were reminiscent of similar
findings in coherent pion production in (3He, t) or (p, n) reactions, but the fact
that the latter are rather peripheral because of the distortion of the hadronic
beam, by contrast to the neutrino reaction which occur throughout the nuclear
volume, confers the neutrino reaction some peculiar features. These features
are also different to those found in coherent π0 photoproduction, also testing
the whole nuclear volume, because in the latter case there is a factor sin2θ in
the cross section which reduces the contribution of forward angles from where
the neutrino cross sections get most of their contribution.

9



All these analogies and differences tell us that the coherent pion production
induced by neutrinos is an important complement of the hadronic and pho-
tonuclear processes of pion production in order to give information on pion
and ∆ renormalization in a nuclear medium.

On the other hand it is clear that in order to obtain proper information
about atmospheric neutrinos one has to have a control on the different ν-
nuclear reactions occuring at intermediate energies of the neutrinos, to inter-
pret properly the results of the neutrino detectors. The present reaction is one
of them.

In order to test the validity of the model used to obtain the present results,
which can be easily extrapolated to other nuclei and other energies, it would be
interesting to perform some experiment. The cross sections, although small,
are in the same range as in many experiments performed at present facilities
[29] and hence are experimentally accessible.
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Figure Captions

1. Diagrammatic representation of the coherent pion production process
νe + A(g.s) → e− + A(g.s.) + π+.

2. Kinematics of the νn → e−p process.

3. Angular distribution of the pions from coherent π+ production on 16O
with neutrino beam of energy 800 MeV, Te = 545 MeV and θe = 00. The
solid curve corresponds to the full calculation which includes renormal-
ization of the ∆ and pion in the nuclear medium. The dashed curve is
the impulse approximation calculation.

4. Energy spectrum of the coherent pions produced on 16O with neutrinos
of beam energy 1 GeV, and θe = 00. The solid curve corresponds to the
full calculation with renormalized pions and deltas and dashed line is the
impulse approximation calculation.

5. Same as fig.4, but integrated over the electron solid angle.

6. Energy spectra of the coherent pions produced on 16O, at three different
neutrino energies, with the ∆ and pion renormalizations included in the
calculations.

7. Energy spectra of the coherent pions scattered from three different nuclei
by neutrinos of 1 GeV energy.

8. Energy spectra of the coherent pions scattered from three different nuclei
by muon type neutrinos of 1 GeV energy.

13



ar
X

iv
:n

uc
l-

th
/9

51
00

60
v2

  1
8 

D
ec

 1
99

6

MESONIC AND BINDING
CONTRIBUTIONS TO THE EMC EFFECT

IN A RELATIVISTIC MANY BODY
APPROACH

E. Marco1, E. Oset1 and P. Fernández de Córdoba2
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Abstract

We revise the conventional nuclear effects of Fermi motion, binding

and pionic effects in deep inelastic lepton scattering using a relativistic

formalism for an interacting Fermi sea and the local density approxima-

tion to translate results from nuclear matter to finite nuclei. In addition

we also consider effects from ρ-meson renormalization in the nucleus.

The use of nucleon Green’s functions in terms of their spectral functions

offers a precise way to account for Fermi motion and binding. On the

other hand the use of many body Feynman diagrams in a relativistic

framework allows one to avoid using prescriptions given in the past to

introduce relativistic corrections in a non relativistic formalism.

We show that with realistic nucleon spectral functions and meson

nucleus selfenergies one can get a reasonable description of the EMC

effect for x > 0.15, outside the shadowing region.
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1 Introduction

The EMC effect [1] is probably one of the topics in the interplay of nuclear
and particle physics which has attracted more attention. Pioneering work
on Fermi motion and pionic effects [2, 3, 4] was followed by many different
ideas like binding of the nucleons in the nucleus, multiquark cluster effects or
Q2 rescaling (see refs. [5, 6, 7] for reviews on the topic). Here we shall pay
attention only to conventional nuclear degrees of freedom, mesons (π and ρ)
and nucleons. One of the interesting ideas along these lines was the effect of
the nuclear binding [8, 9, 10], which, with ups and downs, has come to be
accepted as, largely or at least partly, responsible for the depletion of R(x) =
2F2A(x)/AF2D(x) in the region of the minimum.

Criticism on this latter works was raised in [11], where it was shown that
the introduction of relativistic corrections in the usual nuclear nonrelativistic
treatment of the binding effects resulted in a flux factor which reduced the
conventional binding effects [11, 12]. This flux factor led to a different normal-
ization of the spectral function which preserved the baryonic number calculated
relativistically [11]. The argument of the normalization of the baryonic number
is an important one and the idea has met with followers [12, 13, 14]. However,
it is a prescription on how to convert the nonrelativistic nuclear wave func-
tion into a relativistic spectral function [15] and the prescription is not shared
by others [6]. Furthermore, these are not the only relativistic corrections as
shown in [16, 17].

This issue justifies a work like the present one, where we construct from the
beginning a relativistic nucleon spectral function and define everything within
a field theoretical formalism which uses the nucleon propagators written in
terms of this spectral function. The relativistic formalism is taken from the
beginning and the baryonic number is naturally well normalized. Since all the
nuclear information needed is contained in the nucleon spectral function, one
does not need to use ordinary nuclear wave functions, which are anyway static
(no spreading in the energy distribution, which is just concentrated in the
single particle energies of the shell model) and hence one does not need any
step to introduce relativistic effects into the nonrelativistic wave functions, as
done in [11]. Furthermore, the use of non static spectral functions is important.
This was already seen in refs. [13, 15] which showed that the use of more
realistic spectral functions accounting for nuclear correlations resulted in an
enhancement of the binding effects. The reason is that, for a given average
binding energy, the approach with a realistic spectral function leads to a larger
kinetic and potential energy in absolute value than the shell model approach.

The other issue that we have revisited here is the pionic contribution. Large
effects from the pionic cloud associated with the pion excess number in the
nucleus were found in [2, 3, 7]. We have taken up the idea and recalculated
these effects within the many body field theoretical approach using input which
has been checked in a variety of nuclear reactions testing real and virtual pions:
pionic reactions [18], muon capture [19], inclusive neutrino scattering [20] and
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photonuclear reactions [21]. In addition we have also included corrections from
the modification of ρ-meson cloud in the nucleus, in complete analogy with
the pionic contribution.

Altogether we find that the use of the spectral function for the nucleons
together with the mesonic effects can approximately account for the measured
EMC effect.

The calculations are done using the spectral function for nucleons in nuclear
matter, followed by the local density approximation. This was shown to be an
excellent tool to deal with photonuclear reactions in the absence of shadowing
effects [21]. Hence, a natural limit of our results is the region of shadowing, x ≤
0.15, where indeed there are discrepancies with the data, and other ingredients
should be considered that we do not want to tackle [22, 23].

2 Relativistic nucleon propagator in nuclear

matter

2.1 Nonrelativistic nucleon propagator and spectral func-

tions

Let us recall first the nonrelativistic nucleon propagator for a noninteracting
Fermi sea, which is given in momentum space by

G(p0, p) =
1− n(~p)

p0 − ε(~p) + iǫ
+

n(~p)

p0 − ε(~p)− iǫ
(1)

where n(~p) is the Fermi occupation number n(~p) = 1 for |~p| ≤ kF , n(~p) = 0 for
|~p| > kF and ε(~p) is the nonrelativistic nucleon energy. Eq. (1) can be recast
as

G(p0, p) =
1

p0 − ε(~p) + iǫ
+ 2πin(~p) δ(p0 − ε(~p)) (2)

which separates the propagator into the free propagator and the medium cor-
rection.

For an interacting Fermi sea the nucleon propagator can be written in
terms of its nonstatic selfenergy Σ(p0, p)

G(p0, p) =
1

p0 − ε(~p)− Σ(p0, p)
(3)

which can be rewritten in terms of the spectral functions for holes and particles
as [24]

G(p0, p) =
∫ µ

−∞

Sh(ω, p)

p0 − ω − iǫ
dω +

∫

∞

µ

Sp(ω, p)

p0 − ω + iǫ
dω (4)

with the following relationships
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Sh(p
0, p) = 1

π
ImΣ(p0,p)

[p0−ε(~p)−ReΣ(p0,p)]2+[ImΣ(p0,p)]2

for p0 ≤ µ

Sp(p
0, p) = − 1

π
ImΣ(p0,p)

[p0−ε(~p)−ReΣ(p0,p)]2+[ImΣ(p0,p)]2

for p0 > µ
(5)

let us also recall that the momentum distribution of the nucleon in this inter-
acting Fermi sea is given by

nI(~p) =
∫ µ

−∞

Sh(ω, p) dω

1− nI(~p) =
∫

∞

µ
Sp(ω, p) dω (6)

with the automatic sum rule
∫ µ

−∞

Sh(ω, p) dω +
∫

∞

µ
Sp(ω, p) dω = 1 (7)

In passing we also note that in physical reactions nI(~p) does not factorize
out in the physical cross sections because other factors dependent on ω and
~p appear simultaneously in the formulae, and restrictions due to energy and
momentum conservation do not allow the infinite ranges in the ω integration
required in eq. (6). Failure to realize that, and the naive substitution of n(~p)
in eq. (1) by nI(~p) of eq. (6), as sometimes done, leads to erroneous results
which can be off by three orders of magnitude in some cases [25]. This gives us
a warning that we should express all our magnitudes in terms of the spectral
functions, not the momentum distributions.

2.2 Relativistic nucleon propagator and spectral func-

tions.

The free relativistic nucleon propagator is given by

6p+M

p2 −M2 + iǫ
≡

M

E(~p)

{

∑

r ur(~p)ūr(~p)

p0 −E(~p) + iǫ
+

∑

r vr(−~p)v̄r(−~p)

p0 + E(~p)− iǫ

}

(8)

where we have separated in the second member the contribution from positive
and negative energy states [26]. M,E(~p) in eq. (8) are the nucleon mass and
the relativistic nucleon energy (~p2 +M2)1/2, and ur(~p), vr(~p) are the ordinary
spinors which we take normalized as ūr (~p) ur (~p) = 1. We recall that ur(~p)
are functions of three momentum and they will be the only spinors which will
appear in our framework.

The relativistic nucleon propagator for a noninterating Fermi sea is easily
derived and, by analogy to eq. (2), can be written as
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G(p0, p) =
6p+M

p2 −M2 + iǫ
+ 2π i n(~p)( 6p+M) θ (p0) δ (p2 −M2) (9)

which by means of the identity of eq. (8) can be recast as

G(p0, p) =
M

E(~p)

{

∑

r

ur(~p)ūr(~p)

[

1− n(~p)

p0 − E(~p) + iǫ
+

n(~p)

p0 − E(~p)− iǫ

]

+

∑

r vr(−~p)v̄r(−~p)

p0 + E(~p)− iǫ

}

(10)

Apart from the negative energy contribution, which will play no role in our
problem, the only difference between eq. (10) and the nonrelativistic prop-
agator of eq. (1) is the presence of the factor M/E(~p) and the projector
over the space of positive energies

∑

r ur(~p)ūr(~p), which are both unity in the
nonrelativistic approximation.

Now we proceed to construct the relativistic propagator in the interacting
Fermi sea. We wish to sum the Dyson series for the diagrams shown in fig. 1,
where although not shown, one would also have other sources of nucleon self-
energies. We will write them in terms of the operator Σ(p0, p). It will become
clear later on that we only need the imaginary part of the nucleon propagator
for the positive energy states, in which case we neglect from the beginning
the negative energy states (their weight becomes negligible compared to the
singular part of the positive energy propagator). Hence, for the purpose of the
present problem, the nucleon propagator needed will be

G(p0, p) =
M

E(~p)

∑

r

ur(~p)ūr(~p)
1

p0 − E(~p)
+

M

E(~p)

∑

r

ur(~p)ūr(~p)

p0 −E(~p)
Σ(p0, p)

M

E(~p)

∑

s

us(~p)ūs(~p)

p0 − E(~p)
+ ...

=
M

E(~p)

∑

r

ur(~p)ūr(~p)

p0 −E(~p)− ūr(~p)Σ(p0, p)ur(~p)
M

E(~p)

(11)

where we have used the fact that Σ should be diagonal in spin for spin saturated
matter which we only consider.

Comparison of eqs. (11) and (3) shows again the differences between the
relativistic and nonrelativistic propagators.

The structure of eq. (11) allows one to define a spectral representation of
the nucleon propagator by means of Sh(ω, p) and Sp(ω, p) as

G(p0, p) =
M

E(~p)

∑

r

ur(~p)ūr(~p)

[

∫ µ

−∞

d ω
Sh(ω, p)

p0 − ω − iη
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+
∫

∞

µ
d ω

Sp(ω, p)

p0 − ω + iη

]

(12)

with the relationships

Sh(p
0, p) =

1

π

M
E(~p)

ImΣ(p0, p)
[

p0 − E(~p)− M
E(~p)

ReΣ(p0, p)
]2

+
[

M
E(~p)

ImΣ(p0, p)
]2

for p0 ≤ µ

Sp(p
0, p) = −

1

π

M
E(~p)

ImΣ(p0, p)
[

p0 − E(~p)− M
E(~p)

ReΣ(p0, p)
]2

+
[

M
E(~p)

ImΣ(p0, p)
]2 (13)

for p0 > µ

where for simplicity Σ is now ūΣu which is independent of the spin. Eqs. (13)
are now the generalizations of eqs. (5) using relativistic kinematics. Note that
Sp and Sh defined in eq. (12) are not the nonrelativistic spectral functions
normally used. Hence one should not expect the same normalization as in
[11, 12, 14]. The normalization of Sh, which we will need, is easily obtained
by imposing baryon number conservation, as done in [11]. For this purpose we
evaluate the electromagnetic form factor at q = 0. For the case of the nucleon
(fig. 2a)) we have (assume all baryons have charge unity for normalization
purposes),

< N |Bµ|N >≡ ū(~p)γµu(~p) = B
pµ

M
;B = 1, pµ ≡ (E(~p), ~p) (14)

For the case of nucleons in the medium we must evaluate the many body
diagram of fig. 2b).

< A|Bµ|A >= (−)
∫

d4p

(2π)4
V iTr[G(p0, p)γµ]eip

0η (15)

where exp(ip0η), with η → 0+, is the convergence factor for loops appearing
at the same time [24] and V the volume of our normalization box.

By means of eq. (12) we can see that the convergence factor limits the
contribution to the hole spectral function and we get

< A|Bµ|A >= V
∫

d3p

(2π)3
M

E(~p)
Tr [

∑

r

ur(~p)ūr(~p)γ
u]

.
∫ µ

−∞

Sh(ω, p) dω
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= V
∫

d3p

(2π)3
M

E(~p)
Tr

[

( 6p+M)on shell

2M
γu

]

∫ µ

−∞

Sh(ω, p) dω

= 2V
∫

d3p

(2π)3
M

E(~p)

pµon shell

M

∫ µ

−∞

Sh(ω, p) dω ≡ B
P µ
A

MA

(16)

where in the last step we have imposed that this matrix element gives the right
current with B baryons, in analogy to eq. (14), and P µ

A is the momentum of
the nucleus. Note that pµon shell appears in eq. (16) because the operator
( 6p+M)on shell comes from ur(~p)ūr(~p) which depends only on ~p (it corresponds
to free particles with pµ ≡ (E(~p), ~p)). Obviously eq. (16) must be evaluated in
the rest frame of our Fermi sea where all magnitudes are defined. Only µ = 0
is then relevant and we obtain the desired normalization

2V
∫

d3p

(2π)3

∫ µ

−∞

Sh(ω, p) dω = B (17)

(Note that the factors M
E(~p)

,
p0
on shell

M
have cancelled in eq. (16)). The factor 2

is a spin factor. By a simple inspection of eq. (17) we can see that with the
definition of the spectral functions in eq. (12) one can use eq. (6) to determine
momentum distributions in both the nonrelativistic and relativistic cases.

In our formalism we do not have a box of constant density, but elements
of volume d3r with local density ρp(~r), ρn(~r), the nuclear proton and neutron
densities at the point ~r. Hence our spectral functions for protons and neutrons
are functions of the local Fermi momentum

kF,p(~r) = [3π2ρp(~r)]
1/3 ; kF,n(~r) = [3π2ρn(~r)]

1/3 (18)

and then the equivalent normalization to eq. (17) is

2
∫

d3p

(2π)3

∫ µ

−∞

Sh(ω, p, kFp,n(~r)) dω = ρp,n(~r) (19)

In practice we shall work with symmetric nuclear matter of density ρ(~r). Hence
we have a unique Fermi momentum defined as kF (~r) = [3π2ρ(r)/2]1/3 and then
one has

4
∫

d3p

(2π)3

∫ µ

−∞

Sh(ω, p, kF (~r)) dω = ρ(~r) (20)

or equivalently

∫

d3r 4
∫

d3p

(2π)3

∫ µ

−∞

Sh(ω, p, kF (~r)) dω = A (21)

with A the mass number of each nucleus. The density ρ(~r) of each nucleus
is taken from experiment in our case, and expressed in terms of a two Fermi
parameter distribution for medium and heavy nuclei [27] and mod harmonic
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oscillator for light nuclei [27, 28]. Eq. (21) is fulfilled at the level of 2 - 3 % in
our case, in spite of the non trivial structure of the spectral function and the
integrals involved. The small numerical deviation from the right normalization
is taken care by dividing by the integral of eq. (21) instead of by A in the eval-
uation of R(x), since a similar integration weighed by the structure functions
appears in the numerator, as we shall see. Although one could separate the
contribution of protons and neutrons in the calculation, we have only applied
the results to nuclei with N = Z, or very close, like 56Fe and hence, we work
with the symmetric nuclear matter version.

3 Deep inelastic electron scattering from nu-

clei

Let us recall the basic ideas in deep inelastic scattering. Consider the (e, e′)
process on a nucleon of fig. 3a). The invariant T matrix for the process is

− iT = ieūe(~k′)γµue(~k)
−igµν
q2

(−ie) < X|Jν |N > (22)

where < X|Jν |N > is the invariant matrix element of the hadronic current.
The cross section for the process eN → e′X is given in Mandl and Shaw
normalization [29] by

σ =
1

vrel

2m

2Ee(~k)

2M

2E(~p)

∫ d3k′

(2π)3
2m

2Ee(~k′)

ΠN
i=1

∫

d3p′i
(2π)3

Πlǫf

(

2M ′

l

2E ′

l

)

Πjǫb

(

1

2ω′

j

)

Σ̄Σ|T |2(2π)4

δ4(p+ k − k′ − ΣN
i=1p

′

i) (23)

where m is the electron mass, f stands for fermions and b for bosons in the
final state X. The factor 2M

2E(~p)
becomes 1

2ω(~p)
if we study the cross section on a

pion. The index i is split in l, j for fermions and bosons respectively.
In the nucleon rest frame one can then write the differential cross section,

with Ω′, E ′ referring to the outgoing electron, as

d2σ

dΩ′dE ′
=

α2

q4
k′

k
L′

µν W ′µν (24)

with α = e2/4π and L′

µν the leptonic tensor

L′

µν = 2kµk
′

ν + 2k′

µkν + q2gµν (25)

and W ′µν the hadronic tensor defined as

W ′µν =
1

2π
W µν (26)

8



with

W µν = Σ̄sp ΣX ΣsiΠ
N
i=1

∫ d3p′i
(2π)3

Πlǫf

(

2M ′

l

2E ′

l

)

Πjǫb

(

1

2ω′

j

)

< X|Jµ|H >∗< X|Jν|H > (2π)4δ4(p+ q − ΣN
i=1p

′

i) (27)

where q is the momentum of the virtual photon, sp the spin of the nucleon and
si the spin of the fermions in X .

Lorentz covariance and gauge invariance allow one to write W ′µν as [30]

W ′µν =

(

qµqν

q2
− gµν

)

W1 +

(

pµ −
p.q

q2
qµ
)(

pν −
p.q

q2
qν
)

W2

M2
(28)

where W1,W2 are the two structure functions of the nucleon and are functions
of q2, p.q.

Now we evaluate the cross section for (e, e′) on the nucleus. In order not
to miss flux factors and be able to write everything in terms of propagators,
we evaluate the electron selfenergy corresponding to the diagram in fig. 3 b).
We obtain

−iΣ(k) =
∫

d4q

(2π)4
ūe(~k) ieγ

µ i
6k′ +m

k′2 −m2 + iǫ
ieγνue(~k)

−igµρ
q2

(−i) Πρσ(q)
−igσν
q2

(29)

which for unpolarized electrons can be written as

Σ(k) = ie2
∫

d4q

(2π)4
1

q4
1

2m
L′

µν

1

k′2 −m2 + iǫ
Πµν(q) (30)

with Πµν(q) the photon selfenergy.
In order to evaluate the cross section we need only ImΣ(k) which can be

easily evaluated by means of Cutkosky rules [26].

Σ(k) → 2i ImΣ(k)
D(k′) → 2iθ(k′0) ImD(k′) (boson propagator)
Πµν(q) → 2iθ(q0) ImΠµν(q)
G(p) → 2iθ(p0) ImG(p) (fermion propagator)

(31)

with the result

ImΣ(k) = e2
∫

d3q

(2π)3
1

2Ee(~k − ~q)
θ(q0) ImΠµν(q)

1

q4
1

2m
L′

µν (32)

with q0 = k0 − Ee(~k − ~q).
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The cross section is readily evaluated from there. Inspection of eq. (11)
for the relativistic fermion propagator tells us that the electron width is given
by

Γ(k) = −
2m

Ee(~k)
ImΣ(k) (33)

by means of which the contribution to the cross section from an element of
volume d3r in the rest frame of the nucleus is

dσ = ΓdtdS = Γ
dt

dl
dldS =

Γ

v
d3r =

= Γ
Ee(~k)

k
d3r = −

2m

k
Im Σ d3r (34)

Hence we immediately write the (e, e′) cross section in the nucleus as

d2σ

dΩ′dE ′
= −

α

q4
k′

k

1

(2π)2
L′

µν

∫

d3r Im Πµν (q) (35)

with q0 = k0−Ee(~k−~q) = k0−k′0, which is always positive in this experiment,
so we drop the θ(q0) function. Comparison of eq. (35) with eq. (24) used for
nuclear targets tells as that

W ′µν
A (q) = −

1

e2
1

π

∫

d3r Im Πµν(q) (36)

Next we evaluate Πµν(q) corresponding to the right hand side of the dia-
gram of fig. 3b) using again the Feynman rules in terms of propagators. We
have

−iΠµν(q) = (−)
∫

d4p

(2π)4
iG(p) ΣX Σsp,siΠ

N
i=1

∫

d4p′i
(2π)4

ΠliGl(p
′

l)Πj iDj(p
′

j)(−i)2e2 < X|Jµ|H >< X|Jν |H >∗ (2π)4 δ4(q+p−ΣN
i=1p

′

i)
(37)

which by means of Cutkosky rules (31) and the use of free propagators, eq.
(8), for the final states and the medium propagator, eq. (12), for G(p), plus
eq. (36), leads immediately to

W ′µν
A = Σn,p

∫

d3r
∫

d3p

(2π)3
M

E(~p)

∫ µ

−∞

Sh(p
0, p) dp0

1

2π
ΣX Σsp Σsi Π

N
i=1

∫

d3p′i
(2π)3

Πlǫf

(

2M ′

l

2E ′

l

)

Πjǫb

(

1

2ω′

j

)

< X|Jµ|H >< X|Jν |H >∗ (2π)4δ4(q + p− ΣN
i=1p

′

i) (38)
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which by means of eq. (27) can be rewritten for an isospin symmetric nucleus
as

W ′µν
A = 4

∫

d3r
∫

d3p

(2π)3
M

E(~p)

∫ µ

−∞

dp0Sh(p
0, p)

W ′µν
N (p, q)

with

p ≡ (p0, ~p); W ′µν
N =

1

2
(W ′µν

p +W ′µν
n ) (39)

Note that W ′µν
N (p, q) appears with the off shell arguments of p, the bound

nucleon.
In the steps from eq.(37) to (38) the spinors u(~p) are included in the matrix

elements of the currents and we have considered that there is necessarily a
fermion loop (hence the first minus sign in eq. (37)) with a free particle
in the final state and the nucleon in the medium in the initial state. The
corresponding energy integration in the loop (if we had used a Wick rotation
explicitly instead of Cutkosky rules) necessarily picks up the hole part of the
propagator of eq. (12), and at the same time relaxes the condition θ(p0) of
Cutkosky rules which does not appear for the hole part.

In eq. (39) there is an apparent lack of normalization, since assuming
W ′µν constant (which actually cannot be in practice) we would expect W ′µν

A =
AW ′µν . However given the normalization of the spectral function in eq. (21),
this is not the case. In eq. (39) we get the extra factor M

E(~p)
which does not

appear in eq. (21). It is interesting to see the meaning of this factor in eq.
(39). If we look at the formula of the eN cross section in eq. (23), and by
means of eqs. (25) and (27) we find

σ =
α2M

vrelEe(~k)E(~p)

∫

d3k′

Ee(~k
′)

1

q4
L′

µνW
′µν
N (40)

where L′

µνW
′µν is a Lorentz invariant and the content of the integral in eq.

(40) also. For collinear frames of reference we also have

vrelEe(~k)E(~p) = Mk (41)

where k is the electron momentum in the frame where the nucleon is at rest
and hence

σ =
α2

k

∫

d3k′

Ee(~k
′)

1

q4
L′

µν W
′µν
N (42)

Now if we have a system of moving nucleons the cross section for scattering
of the electron with the nucleus can not be obtained as a sum of individual cross
sections, because the relative eN flux is different for each nucleon. Instead,
one has to sum the probabilities of collision per unit time for each nucleon and
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divide by a unique flux, the one relative to the CM of the nucleus. By taking
for vrel in eq. (40) the velocity of the electron with respect to the CM of the
nucleus and suming over all the nucleons in eq. (40) we will be calculating
the electron nucleus cross section. Hence we obtain in the rest frame of the
nucleus

σA =
α2

k

∫

d3k′

Ee(~k
′)

1

q4
L′

µν

∑

~p

M

E(~p)
W ′µν

N (p, q)

=
α2

k

∫ d3k′

Ee(~k
′)

1

q4
L′

µν 4
∫

d3r
∫ d3p

(2π)3
M

E(~p)

∫ µ

−∞

dp0Sh(p
0, p)W ′µν

N (p, q)

(43)
where k is the electron momentum in the nucleus rest frame. Since our nuclear
cross section is given in terms of W ′µν

A by (see eqs. (35), (36))

σA =
α2

k

∫

d3k′

Ee(~k
′)
L′

µν W
′µν
A (44)

then eq. (39) follows immediately.
The previous discussion has shown that the factor M

E(~p)
is a factor appearing

in the probability of reaction per unit time for each nucleon, and remains in
the integral when we divide by a unique flux in order to obtain the nuclear
cross section. It is thus a Lorentz contraction factor.

In the limit of small densities, when M/E(~p) = 1, eq. (39) with the
consideration of eq. (21) would give W ′µν

A = AW ′µν
N as it should be. Eq. (39)

accounts for Fermi motion and binding and includes the relativistic Lorentz
contraction factor M/E(~p) and the change of the arguments in W ′µν(p, q).

Note in passing that the relativistic factor m/Ee(~k) of eq. (33), which we
extracted from the relativistic propagator of eq. (11), has been essential to
provide the right normalization.

4 Contribution from the pion cloud

Let us first see the free pion structure function. The same formula eq. (24)
is used for pions and this defines W ′µν

π . Given the normalization of the fields
which we follow [29], the cross section of eq. (23) contains the factor 1/2ω(~p)
instead of 2M/2E(~p). Hence, this means that the definition W ′µν

π is given by
eq. (27) dividing the right hand side of the equation by 2mπ (and obviously
the average over the spin of the nucleon does not appear now for the pion
case).

In order to derive the contribution from the virtual pions in the medium
we evaluate again the electron selfenergy related to the diagram of fig. 4. We
can save all the steps given before simply by noting the differences in the two
cases:
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i) The bound nucleon propagator is substituted by a pion propagator. From
the use of Cutkosky rules we must change

−2π
M

E(~p)

∫ µ

−∞

dωSh(ω, p) δ (p
0 − ω)

by

2θ(p0) ImD(p) (45)

with D(p) the pion propagator (in the medium).
ii) One must take into account that W ′µν

π is given by eq. (27) divided by
2mπ.

iii) The sum over spins of the bound nucleon in eq. (37) does not appear
now for the case of the pion.

iv) There are three charged states of pions.
With only these four rules we can already write

W ′µν
A,π = 3

∫

d3r
∫

d4p

(2π)4
θ(p0)(−2) ImD(p) 2mπW

′µν
π (p, q) (46)

Now there are two obvious subtractions to eq. (46). First one should
subtract the contribution from a free pion, which has nothing to do with
medium effects. However, this is zero because one electron can not decay into
another electron, one pion and X. Then assuming the pion is dressed in the
medium by exciting ph and ∆h as we shall do, one is left with the contributions
shown in fig. 5.

Now there is no problem to get a contribution since ImD(p) gets strength
from ph excitation. The physical channel would correspond to e → e′+X+ph,
or equivalently eN → e′N ′X , which is now allowed. The physical channels are
easily visualized by cutting the intermediate states in the diagramas with a
horizontal line and placing on shell the particles cut by the line. This is actually
the essence of Cutkosky rules to obtain the imaginary part of the selfenergy
of a diagram.

The former discussion also tells us that part of what we are calculating is
already contained in the nucleon structure function. This is because we are
also calculating the contribution from the pions contained in a free nucleon.
This has to be subtracted. This is easily done by substituting in eq. (46)

ImD(p) → δImD(p) ≡ ImD(p)− ρ
∂ImD(p)

∂ρ
|ρ=0 (47)

since we substract A times the contribution from the pion cloud to the struc-
ture function of the free nucleon. In technical words, we can say that we are
only considering terms with at least two ph or 1ph1∆h (the most important
terms) etc. in fig. 5 (up to Pauli blocking corrections in the ph Lindhard
function, which are automatically included by the procedure of eq. (47)).

Hence the genuine pionic contribution is given by
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W ′µν
A,π = 3

∫

d3r
∫

d4p

(2π)4
θ(p0) (−2)δImD(p) 2mπ W ′µν

π (p, q) (48)

Eqn. (39) and (48) are the basic equations which provide the nucleonic and
pionic contributions.

In passing we can mention that the distribution of the excess number of
pions, per unit volume in the nucleus, δNπ(p), which contains the averages of
< a+p ap >, < a+p a

+
−p > and < apa−p >, is given by [31]

δNπ(~p)

2ω(~p)
= −3

∫

∞

0

dp0

2π
δImD(p) (49)

such that in the case of a structure function W ′µν
π (p, q) independent of p0, eq.

(48) could be considered as a weighed integral of the pion structure function
over the pion excess distribution in the nucleus. However, the strong depen-
dence of W ′µν

π (p, q) on p0 (imposed by energy and momentum conservation)
does not allow that factorization, and hence a relationship of the pion ex-
cess number with the pionic contribution to the structure function cannot be
established. The apparent extra factor 2 which we obtain in this counting
(apart from the Lorentz contraction factor, mπ/ω(~p)) is obtained because one
is automatically accounting for the imaginary part of the Compton γπ am-
plitude which is crossing symmetric and contains the two diagrams of fig. 6,
while the pion structure function for on shell pions contains only the imaginary
part of the diagram 6a). (see refs. [31] and [32] for an elaborate discussion
of these issues in the problem of the pion cloud contribution to K+ nucleus
scattering). It is worth noting that there is no overlap between the Feynman
diagrams accounted for in the pionic contribution, fig 5, and those of the nucle-
onic contribution with Fermi motion and binding, which come from selfenergy
insertions in the nucleon line of fig. 3b). Hence, these contributions to the
nuclear structure function are independent.

5 The Bjorken limit

We have evaluated the contribution of nucleons and pions to the hadron struc-
ture function of the nucleus. We now proceed to write these expressions in
terms of the Bjorken structure functions [33].

For nucleons (and similarly for pions or the nucleus) one introduces the
Bjorken variables

x =
−q2

2pq
; ν =

p.q

M
; Q2 = −q2 (50)

and for large values of q0 and Q2 simultaneously and fixed x one has the
Bjorken scaling

νW2(x,Q
2) ≡ F2(x)
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MW1(x,Q
2) ≡ F1(x) (51)

and the Callan-Gross relation

2xF1(x) = F2(x) (52)

up to some, QCD corrections in lnQ2. Since the same Q2 will be chosen for
the nucleus and the nucleon and we perfom ratios of structure functions we
shall not worry about this dependence here.

In view of the relations (51), (52) the most practical way to proceed is to
work with transverse components of W ′µν . For this purpose assume ~q along
the z direction, as usually done in the study of the e, e′ reaction, and evaluate
W ′xx. We find from eq. (28)

W ′xx = W1 +
(px)

2

M2
W2 ≡

F1(x)

M
+

(px)
2

M2

F2(x)

ν

=
F1(x)

M
in the Bjorken limit (53)

this component has the virtue that the coefficient of W1 is independent of p
and hence is the same for on shell or off shell nucleons, or pions, or the nucleus.
Hence we can write

F1A,N(xA)

MA
= 4

∫

d3r
∫

d3p

(2π)3
M

E(~p)

∫ µ

−∞

dp0Sh(p
0, p)

F1N(xN )

M

F1A,π(xA)

MA

= 3
∫

d3r
∫

d4p

(2π)4
θ(p0)(−2) δImD(p) 2mπ

F1π(xπ)

mπ

xA = −q2/2MAq
0 ≡

x

A
, with x = −q2/2Mq0

xN = −q2/2pq ; xπ = −q2/− 2pq (54)

where the extra minus sign in xπ is because of the direction of p in fig. 4.
Here F1N(x) = (F1p(x) + F1n(x))/2 as implicit in eq. (39).
We still have to exert some caution since 0 < xN < 1. On the other hand

xπ < 1 but xπ > x because in our scheme the emerging particle from the
coupling of the pion to a nucleon of the nucleus is on shell when we excite
ph,∆h with the pion and take the imaginary part of D(p) [3].

Since usually one compares ratios of the F2 structure functions, this is
easily accomplished by making use of the Callan-Gross relation (52) and we
find
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F2A,N(xA) = 4
∫

d3r
∫ d3p

(2π)3
M

E(~p)

∫ µ

−∞

dp0Sh(p
0, p)

x

xN
F2N (xN) θ(xN ) θ(1−xN )

(55)

F2A,π(xA) = −6
∫

d3r
∫ d4p

(2π)4
θ(p0) δImD(p)

x

xπ
2M F2π(xπ) θ(xπ−x) θ(1−xπ)

(56)
where we have again F2N = (F2p + F2n)/2 as implicit in eq. (39).

In the Bjorken limit the evaluation of eq. (55) does not require the knowl-
edge of the variable q since

x

xN

→
p0 − p3

M
;

x

xπ

=
−p0 + p3

M
(57)

but it is implicit in the structure functions which are taken at a certain Q2.
When reaching this point it is worth considering also the contribution of

the ρ meson cloud. Both the pion and the ρ meson couple to nucleons and
delta with derivative couplings, which give rise to relatively large meson self-
energies in the range of momenta which contributes to the structure functions.
Furthermore, as found already in ref. [31], the pion cloud contribution comes
mostly from the combined ph and ∆h excitation, with the ph on shell (in
δImD(p)), and one finds a negligible contribution of two ph excitations. Only
π and ρ can excite the ∆h components and this makes these two mesons special
when looking at the mesonic contribution to the nuclear structure function.
In addition there is an interplay between π and ρ exchange. Indeed, the ρ
meson, through nuclear correlations, contributes both to the longitudinal and
transverse parts of the spin-isospin ph and ∆h interaction and it is an impor-
tant element contributing to the Landau-Migdal g′ parameter in a microscopic
derivation of this interaction [34]. The value of this parameter governs to some
extend the pionic (and ρ-meson) contribution to the structure function [3].

The contribution of the ρ-meson cloud to the structure function is given,
by analogy to eq. (56) by

F2A,ρ(xA) = −12
∫

d3r
∫

d4p

(2π)4
θ(p0)δImDρ(p)

x

xρ

2MF2ρ(xρ)

θ(xρ − x)θ(1− xρ) (58)

where Dρ(p) is now the ρ-meson propagator and F2ρ(xρ)is the ρ-meson struc-
ture function, which we take equal to the one of the pion following refs. [35, 36].
In addition xρ is also given, in analogy to eq. (57), by

x

xρ

=
−p0 + p3

M
(59)
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Eq. (58) contains an extra factor of two compared to the pionic contri-
bution of eq. (56). This is because of the two transverse polarizations of the
ρ-meson and the fact that the coupling of the ρ to nucleons and deltas which
we consider, following ref. [34] is only of transverse nature ((~σ × ~p)~ǫ for nu-

cleons and (~S + × ~p)~ǫ for deltas, with ~ǫ the polarization vector of the ρ meson

and ~S + the spin transition operator from spin 1/2 to 3/2).
The expression of F1A,N(xA) in eq. (54) shows the same lack of normaliza-

tion discussed in connection with eq. (39), since assuming F1N(xN ) constant
(which is not the case) F1A,N is not A times F1N , due to the Lorentz contrac-
tion factor M

E(~p)
. The same can be said about eq. (55) in general. However,

eq. (55), shows a particular normalization property. Indeed, if we take an
ensemble of nucleons on shell (p0 = E(~p)) and x = 0 (and hence xN = 0, by
virtue of eq. (57)), then the Lorentz contraction factor M

E(~p))
cancells in average

the dynamical factor x
xN

and we get F2A,N(0) = AF2N (0) for on shell nucleons.
This cancellation, however, will not show up when the nucleons are off shell
since in our formalism we still obtain the factor M

E(~p)
but the dynamical factor

x
xN

will now be different.
In this discussion we are implicitly assuming that eqs. (54) and (55) stand

as they are for the case of off shell nucleons simply by taking for xN the
expression of eq. (57) using the nucleon off shell variables. This is certainly
the easiest form of the analytical continuation in the off shell regime, although
there have been other prescriptions in the Literature [37, 38, 39].

We would like to justify our assumption. Indeed, in our frawework we use
nucleon propagators which are based on the free spinors (eq. (12)). Hence in
eq. (38) the matrix elements would be defined in terms of free spinors, the
final particles are free particles and the off shell dependence appears only in
the δ( ) function. Obviously one can not look in detail at all channels implicit
in eq. (38). However, one can use the same philosophy in the parton model
which is used to find out the scaling of the structure functions. We follow
here the steps of ref. [33] and assume that partons carry a fraction xq of the
nucleon momentum p and its mass M , that the electron parton amplitude is
given by the on shell expression and that the outgoing parton is a free one,
but the δ( ) function appears with the off shell variables.

One finds then

W1 = W
′xx =

∑

i

∫

dxqfi(xq)e
2
i

1

2
(−q2)

1

xqM
δ(q2 + 2pqxq)

=
∑

i

e2i fi(xN)
1

2M
=

F1(xN )

M
; xN =

−q2

2pq
(60)

where F1 appears whith argument xN which is defined in terms of the off shell
variables. Similarly one obtains

pq

M
W2 =

∑

i

e2i fi(xN)xN = F2(xN) (61)
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whith p.q, and xN defined in terms of the off shell variables.
We would like to note here that our finding F2A(0) 6= AF2N (0), or equiv-

alently R(0) 6= 1, where R(x) = F2A(x)/AF2N(x), is not so unconventional.
Indeed, in ref. [16] the authors also find this property and they literally quote
“Note that a feature of the results is that R(0) 6= 1... It does not reflect
any violation of baryon conservation, which is ensured by the normalization
condition”, in our case eq. (21).

The issue of the normalization still stirs much controversy. We have de-
voted many thoughts to it throughout this paper looking at it from some
points of view not discussed before. We see that for an ensemble of uncorre-
lated nucleons F2A,N(0) = AF2N(0) but as soon as interactions are accounted
for this normalization is lost. A similar thing would happen should we eval-
uate the structure function F3A, which appears in neutrino scattering. This
structure function when integrated over x is normalized to 3 for the nucleon if
one assumes models with only three valence quarks, or to 3A for the nucleus.
Once again this normalization would be lost if QCD interaction corrections
are accounted for [40] and equivalently if NN interactions are included in the
nuclear case, and experimentally this is the case [40]. Also, experimentally
F2A,N(0) 6= AF2N (0). Clear as the question looks to us, we are aware that this
point of view is not universally accepted. Further thoughts and discussions
on the issue should be welcome which would help settle the question in a way
acceptable to all.

Eqs. (55, 56, 58) are the final equations which we use in the analysis.
For the nucleon and pion structure functions F2N (x), F2π(x) we take the

experimental values of refs. [41, 42].

6 The meson propagators

The pion propagator in the medium is given by

D(p) = [p02 − ~p 2 −m2
π −Ππ(p

0, p)]−1 (62)

with Ππ the pion selfenergy. We consider the contribution of the ph and
∆h excitations to the pion selfenergy in connection with the Landau-Migdal
correction in the pionic channel, as well as off shell pion nucleon form factors.

Since for δImD we need D −D0, it is practical to write

D(p)−D0(p) = D2
0(p)

f2

m
π2

F 2(p)~p 2Π∗(p)

1− f2

m2
π
V ′

L(p) Π
∗(p)

(63)

where F (p) is the πNN form factor, which we take of the monopole type

F (p) =
Λ2 −mπ2

Λ2 − p2
(64)
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with Λ = 1300MeV [43] and f 2/4π = 0.08. V ′

L(p) is the longitudinal part of
the spin-isospin interaction and Π∗(p) is the irreducible pion selfenergy, which
contains all selfenergy diagrams which are not connected by V ′

L(p).
For the ρ-meson we can write

Dρ(p)−D0ρ(p) = D2
0ρ(p)

f2

m
π2

CρF
2
ρ (p)~p

2Π∗(p)

1− f2

m2
π
V ′

T (p) Π
∗(p)

(65)

with V ′

T (p) the transverse part of the spin-isospin interaction, Cρ = 3.94 [43]
and Fρ(p) the ρNN form factor given by

Fρ(p) =
Λ2

ρ −m2
ρ

Λ2
ρ − p2

(66)

and Λρ = 1400MeV [43].
For V ′

L(p), V
′

T (p) we take the expressions which are derived from a model
with π and ρ exchange in the presence of short range nuclear correlations [44],
which are given by

V ′

L(p) = ~p 2D0(p)F
2(p)− ~p 2D̃0(p)F̃

2(p)

−
1

3
q2c D̃0(p)F̃

2(p)−
2

3
q2c D̃0ρ(p)F̃

2
ρ (p)Cρ (67)

V ′

T (p) = ~p 2D0ρ(p)F
2
ρ (p)Cρ −

1

3
q2c D̃0(p)F̃

2(p)

− (~p 2 +
2

3
q2c )D̃0ρ(p)F̃

2
ρ (p)Cρ (68)

Here qc ≃ 780MeV is the inverse of a typical correlation distance and
D̃(p), F̃ (p), D̃ρ(p), F̃ρ(p) are the corresponding propagators and form factors
substituting ~p 2 by ~p 2 + q2c . The irreducible selfenergy Π∗(p) is in our case the
sum of the Lindhard functions UN (p), U∆(p) for ph and ∆h excitation with
the normalization and analytical expressions of the appendix of ref. [45]. It
is interesting to note that for the values of p0, p which contribute most to the
structure function, both V ′

L(p) and V ′

T (p) are negative and this leads to positive
values of F2A,π and F2A,ρ.

It was also found in [31] that in order to evaluate the contribution of the
pion cloud by using the pion propagator, as done here, it is important that it
satisfies the sum rule

−
∫

∞

0

dp0

π
2p0 ImD(p0, p) = 1 (69)

which expresses the equal time commutation relation of the pion fields. Our
model satisfies this equation at the level of one per thousand.
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7 The nucleon spectral function

Section 2.2 has established the framework for the relativistic nucleon propaga-
tor which we need here. The only input needed is the nucleon selfenergy. We
take it from the work of ref. [46]. This is a semiphenomenological, quite suc-
cesful approach, which uses as input the NN cross section and the spin-isospin
effective interaction. This allows one to evaluate ImΣ, which is remarkably
close to ImΣ of the elaborate many body calculations of ref. [47, 48]. The
real part is evaluated by means of a dispersion relation, and the Fock term
from the pionic contribution is also included. Only pieces of the Hartree type,
which should be independent of the momentum, are missing for which one
needs more information. Hence, up to an unknown momentum independent
piece in the selfenergy the rest of the nucleon properties in the medium can
be calculated, like effective masses, spectral functions, etc, which are also in
good agreement with sofisticated many body calculations [49, 50]. Actually,
what might appear a drawback is now a welcome feature because since the
proper binding energy is an important ingredient in the EMC effect, we also
include phenomenologically a function C(ρ) in the nucleon selfenergy and de-
mand that the binding energy per nucleon be the experimental one for each
nucleus. Then the model is complete, realistic and technically much simpler
to handle than the sofisticated many body calculations [47, 49, 50].

With this improvement, momentum distributions and average binding en-
ergies are also in good agreement with other infinite nuclear matter [51] and
finite nuclei calculations [52].

A small inconvenience appears because the selfenergy of ref. [46] is evalu-
ated non relativistically. However we have checked that a proper calculation
including relativistic factors of the type M/E(~p) in the nucleon propagators
in the integrals over the loops which appear in the evaluation of ImΣ in [46],
would only introduce corrections in ImΣ below the level of 10%. Second, we
have changed ImΣ by 10% and found that the ratio R(x) changes only at the
level of 1%. Thus we take the values for Σ from ref. [46] and use them in
the relativistic propagators of section 2.2. For the average kinetic and total
nucleon energy we have

< T >=
4

A

∫

d3r
∫

d3p

(2π)3
(E(~p)−M)

∫ µ

−∞

Sh(p
0, p)dp0

< E >=
4

A

∫

d3r
∫

d3p

(2π)3

∫ µ

−∞

Sh(p
0, p)p0 dp0 (70)

and the binding energy per nucleon is then given by the sum rule [53]

|EA| = −
1

2

(

< E −M > +
A− 1

A− 2
< T >

)

(71)

which is also used in [54, 55] in connection with the study of the EMC effect.
We take experimental numbers for each nucleus for |EA| and adjust the func-
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tion C(ρ) to fit |EA|. We take C(ρ) linear in the density, Cρ(r). This quantity
provides around 30MeV repulsion at ρ = ρ0 in most of the nuclei. Detailed
values for < T >,< E > and EA can be seen in Table I.

As noted in refs. [13, 54, 55], the use of nucleon propagators in terms of non
static spectral functions leads to bigger values of the average kinetic energy
and | < E−M > | than the shell model of the nucleus and as a consequence to
reduced values of R(x) (for x < 0.7). We can see this here also by taking the
uncorrelated Fermi sea and adding a function Dρ(r) to the ordinary Thomas-
Fermi potential VTF (r) = −kF (r)

2/2M such as to get the same binding energy
via eq. (71). We can make use of the same formalism by simply considering
that

SUFS
h (p0, p) = n(~p) δ(p0 −E(~p)− Σ)

Σ(r) = VTF (r) +Dρ(r) (72)

Eq. (72) associates one energy to a given momentum, (the essence of the
shell model in infinite nuclear matter) while the spectral function has a peak
around the quasiparticle energy and then spreads out at larger values of ~p for
a given energy. This results in a larger value of the average kinetic energy.

In Table I we show the results for different nuclei and compare them with
those of ref. [54]. As one can see, the results that we obtain with the uncor-
related Fermi sea and the spectral functions are remarkably close respectively
to those of the Hartree Fock and spectral function used in [54].

We shall evaluate R(x) using both the spectral function approach and the
uncorrelated Fermi sea. We have integrated over the momentum up to four
times the Fermi momentum for each energy. This gives the normalization of
A at the level of 2 − 3% which is sufficient for our purposes, but can lead to
higher uncertainties in the kinetic energy, which weighs the integral with a
higher power of ~p. Even a conservative error of 20% in the kinetic energy has
repercussions in the EMC effect only at the level of 2%.

8 Results and discussion

8.1 Nucleonic contribution

In fig. 7 we show the results for R(x) from the nucleonic contribution calcu-
lated as

RN(x) =
F2A,N(xA)

AF2N (x)
(73)

We do not divide by F2D(x) as experimentally done. One reason for it is
that the techniques used here with the local density approximation cannot be
used for deuterium and hence we cannot calculate the nuclei and deuterium
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with the same model. However the price we pay is small. We rely upon the
results for F2D(x) calculated for deuterium in [13]. We can see there that for
0 < x < 0.7 F2D(x)/F2N (x) ranges between 0.98 − 1. Hence, our results
should be increased by 1−2% and we will not worry about this amount. More
serious is the region for x > 0.7, where due to Fermi motion the former ratio
increases rapidly. Hence, in that region we should expect to overcount the
experiment as it is indeed the case.

In fig. 7 we plot the results obtained for 56Fe. This nucleus has N 6= Z but
by a little amount. Furthermore, the experimental results are corrected by the
isoscalarity factor to convert them into an equivalent isoscalar nucleus [13, 56],
hence our calculations done for symmetric nuclear matter are appropriate. We
see a minimum around x = 0.6 as in the experiment and a steep rise at x > 0.75
as it correponds to Fermi motion [57, 2, 6]. The region around x = 0.6 agrees
well with experiment. However at x ≃ 0.15 − 0.2 we are below the data by
about 10−15%. This region will be filled up latter by the mesonic contribution.

In the same figure we show the results obtained with the uncorrelated Fermi
sea (local step function distribution) of eq. (72). We observe that RN(x) takes
values closer to unity than the results with the spectral function for x < 0.6
The reduction of RN (x) with the use of the spectral function with respect to a
static picture of the nucleus, like Hartree Fock or the equivalent uncorrelated
Fermi sea in our case, was already shown and explained in ref. [54]. The
results here are qualitatively similar to those in [54] and the explanation lies
in the increased binding provided by the spectral functions. Both the factor
x/xN of eq. (57), as well as the restrictions of phase space θ(xN )θ(1 − xN ),
are responsible for the decrease of RN (x) in this region.

On the other hand there is a novelty in these results with respect to those
in [54]. RN (x) does not go to 1 at x = 0 as in [54] and are systematically
lower in all the range of x. The reduction at x = 0 is easy to see from the
formulae. In eq. (55) F2N (xN = 0) will take a constant value, and with respect
to the normalization integral of eq. (21) the novelties in eq. (55) are the extra
factors M/E(~p) and x/xN which both go into reducing the contribution of the
integrand for off shell nucleons.

The overshooting of the results in the region of x ≃ 0.8 was already an-
nounced as a result of dividing F2A by F2N and not F2D/2. But the qualitative
features due to Fermi motion are reproduced. A very detailed discussion of
these effects is given in ref. [6], but qualitatively we can see that

xN →
xN

x
=

M

p0 − p3

(x → 1) (74)

and one can pick up values of p3 in the integrations such that xN < 1. Hence
F2A,N will be different from zero while F2N(x = 1) = 0, and RN (x) from eq.
(73) necessarily goes to ∞.
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It is interesting to call on the attention to the crossing of the two lines in
fig. 7. The binding effects reduce RN(x). On the other hand Fermi motion
increases RN(x) close to 1, as we noted. Fermi motion is more important in
the interacting Fermi sea because now one has larger momentum components.
On the other hand the interacting Fermi sea has also more binding. As a
consequence we see that at x < 0.6, where the binding effects dominate over
the Fermi motion, RN(x) for the interacting Fermi sea is smaller than with the
non interacting Fermi sea, while for x > 0.7, where the Fermi motion effect
dominates, the situation is just opposite.

8.2 Mesonic contributions

In figs. 8, 9, 10, 11 we show the mesonic contribution to R(x), together with
the nucleonic one discussed above, for different nuclei, 6Li, 12C, 40Ca and
56Fe. The general features are the same in all nuclei, but, of course, the
mesonic contribution is smaller in lighter nuclei. The mesonic contribution is
calculated with the structure function of ref. [42]. We have also calculated it
with the older structure functions of ref. [58, 59]. We find that around x = 0.2,
the results forR(x) decrease in about 3% if one uses the pion structure function
of ref. [58] and increase in about 5% if one uses the one of ref. [59]. This should
give us an idea of the uncertainties of this contribution. In fig. 11, for 56Fe,
we split the mesonic contribution into the pion and ρ-meson ones. We observe,
that although the pionic contribution is bigger, the one from the ρ-meson cloud
is also important, and both of them are positive in all the range of x. Similarly,
as obtained in other calculations [2, 3, 7] the mesonic contribution vanishes
around x = 0.6 and increases as x decreases. We can see that thanks to the
mesonic contribution the agreement with the data becomes much better. The
slope of R(x) from x = 0.15 to x = 0.6 is not reproduced by the contribution
of the nucleons alone, a feature which is shared by the results of ref. [54]. The
mesonic contribution comes to produce the right slope.

As we said, the qualitative features of the pionic contribution are similar
to those in [2, 3, 7]. There are also some differences. In ref. [2] the pionic
contribution is evaluated assuming different amounts of pion excess in the
nucleus, but no evaluation of this excess is made. Furthermore one should
recall our warnings in section 4 not to use the excess number in the evaluation.
In ref. [3] an actual evaluation is done of the pionic contribution. Even if
the formalisms here and there might look quite different, they are actually
quite similar and one can see that ImD(q) ≡ |D(q)2| ImΠπ of eq. (48)
appears in ref. [3] as ImΠπ|D0(q)|

2, with |D(q)|2 changed to |D0(q)|
2, which

is not very problematic when the pions are off shell. Furthermore, the ∆h
contribution is obtained from an extrapolation of the pionic atom data, which
is more problematic when one goes to the off shell situations which one finds
here. Furthermore, this ∆h is taken real in [3], while here the ∆h Lindhard
function is explicitly evaluated as a function of q0, q by keeping the ∆ width.
An accurate evaluation of the imaginary parts of the diagrams is necessary
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in order to fulfill the sum rule of eq. (69). On the other hand what one
evaluates in ref. [3] is the fractional increase of R(x) with respect to the one
in the Sullivan process (deep inelastic scattering with the pion cloud of a free
nucleon) [60, 61] and not the absolute value of the contribution of the pionic
cloud.

In ref. [7] the absolute contribution of the pion cloud is obtained by sub-
tracting the “ free ” parts contained in the response function of a free nucleon,
as done here. The formalism is similar to ours but some approximations are
done which are improved here. For instance the ∆h contribution is again taken
real and other approximations are done to relate some magnitudes to the pion
excess number (recall our warnings about this).

The input which we have used for the meson nucleus interaction, VL(p), VT (p),
etc, is the one of section 6. It has the virtue of having been tested in a large
variety of reactions and we have not changed it here. This gives us much
confidence about the strength of the mesonic contribution obtained here. The
fact that it fills up the part of R(x) missed by the nucleonic contribution is
certainly a welcome feature which reinforces our confidence on this mesonic
model.

The agreement of the results that we obtain with the experimental data
can be considered rather good by comparison with results obtained with other
theoretical approaches. The trend of the data is well reproduced and the
remaining discrepancies are not incompatible with the intrinsic theoretical
uncertainties of our model, particularly of the mesonic contribution and more
specially of the ρ-meson cloud which is somewhat tied to the form factors and
the nuclear correlation function, the fact that we divide by F2N(x) instead of
F2D(x)/2 ,etc.

Our results for R(x) in 40Ca and 56Fe look already very similar and we
have checked that R(x) does not change much for heavier nuclei. Obviously
one should take into account that for heavier nuclei N 6= Z and our approach
with symmetric nuclear matter should be less accurate. Actual calculations
keeping different neutron and proton densities lead to a slight decrease of the
minimum of R(x) as Z increases [55].

9 Conclusions

We have evaluated the nucleonic and mesonic contributions to the ratio R(x)
of the EMC effect, with particular emphasis on an accurate treatment of
effects shown in the past to be relevant, like binding effects, Fermi motion
and a dynamical (non static) treatment of the nucleons and the mesons in the
medium.

In order to avoid having to take some prescription on how to include rela-
tivistic effects in the approach, which has led to many discussions in the past,
we started with a relativistic approach from the beginning and have made a co-
variant treatment which allows us to write all magnitudes in terms of nucleon
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and meson propagators in the medium. The approach was made practical by
evaluating the relevant magnitudes in an infinite medium and calculating the
structure functions in finite nuclei by means of the local density approxima-
tion. This procedure is fine for x > 0.1 but certainly breaks down for x < 0.1
where there is nuclear shadowing.

We could see that the use of the spectral functions to construct the nucleon
selfenergy was relevant in reducing somewhat the ratio R(x) with respect to a
static picture of the nucleus, like a shell model, or in our case an uncorrelated
Fermi sea. This reconfirmed qualitatively earlier findings in the same direction.

Although our results for the nucleonic contribution differ somewhat from
other results in the literature, we share their conclusions that the nucleonic
contribution alone does not explain the data, particularly the slope from x = 0
to x = 0.6.

On the other hand, we evaluated the contribution from the pion and ρ-
meson clouds rather accurately. Recent work done before on the contribution
of the pion cloud to the K+ nucleus selfenergy had taught us some important
lessons, particularly the importance of using an input which satisfies a sum
rule, not trivial to satisfy unless the analytical properties of the pion selfenergy
are strictly fulfilled, and the need to avoid any relationship to the “pion excess
number”. In addition, experience gained in dealing with reactions which in-
volve real and virtual pions allowed us to use information on the pion nucleus
selfenergy which is realistic enough and has been tested in many such reac-
tions. Hence, we consider the present calculation of the pionic effects as an
improvement over work done in the past and we think these results are rather
reliable. However, there are still small uncertainties in the pionic contribution
stemming from different results for the pion structure function obtained in
different analyses of the Drell-Yan process.

The strength of the pionic effects is moderate. So is the one from the
ρ-meson cloud, but, when they are added to the nucleonic contribution one
obtains a good description of the data in the region of 0.1 < x < 0.7.

In summary we could conclude that the main features of the EMC effect
can be described in terms of conventional degrees of freedom, nucleons and
mesons. It does not exclude explanations in terms of more elementary degrees
of freedom like quarks and gluons. It is simply a question of which degrees
of freedom are more economical and transparent, as stressed by Jaffe in ref.
[15]. The fact that we could deal with these degrees of freedom with a certain
accuracy, and establish the relationship of the effects found to familiar con-
cepts in conventional nuclear physics, makes these degrees of freedom rather
appropriate to look at the EMC and related effects.
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[25] P. Fernández de Córdoba and E. Oset, Nucl. Phys. A 528 (1991) 736

[26] C. Itzykson and J. B. Zuber, Quantum Field Theory (McGraw Hill, NY,
1980)

[27] H. de Vries, C. W. de Jager and C. de Vries, At. Dat. Nucl. Dat. Tables
36 (1987) 495

[28] G. C. Li, I. Sick, R. R. Whitney and M. R. Yearian, Nucl. Phys. A 162
(1971) 583

[29] F. Mandl and G. Shaw, Quantum Field Theory, John Wiley, 1984

[30] E. Amaldi, S. Fubini and G. Furlan, Pion Electroproduction, Springer
tracts in modern physics, Vol 83 (Springer, Berlin, 1979)

[31] C. Garcia-Recio, J. Nieves and E. Oset, Phys. Rev. C 51 (1995) 237

[32] M. F. Jiang and D. S. Koltun, Phys. Rev. C 46 (1992) 2462

[33] I. J. R. Aitchison and A. J. G. Hey, Gauge theories in particle physics,
Edit Adam Hilger

[34] G. Baym and G. E. Brown, Nucl. Phys. A 247 (1975) 395

[35] W. Y. P. Hwang, J. Speth and G. E. Brown, Z. Phys. A 339 (1991) 383

[36] A. Szczurek and J. Speth, Nucl. Phys. A 555 (1993) 249

[37] L. Heller and A. W. Thomas, Phys. Rev. C 41 (1990) 2756

[38] U. Oelfke, P. U. Sauer and F. Coester, Nucl. Phys A 518 (1990) 593

27



[39] W. Melnitchouk, A. W. Schreiber and A. W. Thomas, Phys. Rev. D 49
(1994) 1183

[40] P. Berge et al. Z. Phys. C49 (1991) 187

[41] EMC, J. J. Aubert et al., Phys. Lett B 114 (1982) 291

[42] M. Glück, E. Reya and A. Vogt, Z. Phys. C 53 (1992) 651

[43] R. Machleidt, K. Holinde and Ch. Elster, Phys. Reports 149 (1987) 1

[44] E. Oset and W. Weise, Nucl. Phys. A 319 (1979) 477
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Figures captions.

• Figure 1: Selfenergy diagrams of the nucleon.

• Figure 2: Electromagnetic form factors for the cases
a) free nucleon, b) Fermi sea with B baryons.

• Figure 3: (a) Feynman diagram for deep inelastic electron-nucleon scat-
tering and (b), electron selfenergy diagram associated.

• Figure 4: Electron selfenergy diagram accounting for electron-pion deep
inelastic scattering.

• Figure 5: Diagrams of the electron selfenergy including 1ph, 1∆h, 1ph1∆h,
etc..

• Figure 6: Two diagrams (a) direct and (b) crossed, which contribute to
Compton γπ scattering.

• Figure 7: Results of RN(x) for
56Fe. Solid line: using the spectral func-

tion; dashed line: using the uncorrelated Fermi sea. Experimental points from
ref. [62] (solids dots), ref. [63] (open squares).

• Figure 8: Results of R(x) for 6Li. Solid lines: whole calculation includ-
ing the nucleons and the mesons; dashed line: contribution of the nucleons.
Experimental points from ref. [64] (solid dots). Density for 6Li from ref. [28].

• Figure 9: Same as fig. 8 for 12C. Experimental points from ref. [64]
(solid dots), ref. [62] (open squares).

• Figure 10: Same as fig. 8 for 40Ca. Experimental points from ref. [65]
(solid dots), ref. [62] (open squares).

• Figure 11: Results for R(x) for 56Fe. Solid line: whole calculation includ-
ing the nucleons and the mesons; dashed line: contribution of the nucleons;
dot-dashed line: contribution of nucleons plus pions. Experimental points
from ref. [62] (solid dots), ref. [63] (open squares).
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Table I

<T> [MeV] < |E - M| > [MeV] |εA| [MeV]

6Li UFS 9.3 22.1 5.2
SF 18.8 33.8 5.2

12C UFS 13.7 (17.0) 31.0 (23.0) 8.0
SF 31.7 (37.0) 50.4 (49.0) 7.8

40Ca UFS 16.0 (16.5) 33.5 (26.6) 8.5
SF 40.4 (36.0) 58.6 (52.1) 8.6

56Fe UFS 16.1 (17.0) 34.1 (25.0) 8.9
SF 40.4 (33.0) 58.6 (49.8) 8.7

UFS: uncorrelated Fermi sea. SF: spectral function. The numbers in brack-
ets correspond to those obtained in ref. [54] respectively for the Hartree-Fock
and spectral functions (the latter called there SRC, from short range correla-
tions).
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Abstract:
A review is presentedof the problemof £ andA decayin nuclei. By meansof handy, yet reliableapproximations,an approachto .~ decayis

developedwhich allowsa clearinsight into thedifferentaspectsof theproblem.The role of nuclearpolarization,dueto thespin—isospin~N—~AN
interaction,in thereductionof the.Z widthsis discussed.Many experimentallyobservable~ hypernucleiarepredictedby showingthat theirwidths
arenarrowerthan theseparationenergiesbetweenlevels. The mesonicand non-mesonicdecaysof A hypernucleiareanalyzed.The non-mesonic
width is fairly well reproducedby simplified models for theAN—~NN weaktransition, but quantitieslike theratioof protonto neutroninducedA
decayarehighly sensitive to the modelsused.On theotherhand,themesonicwidth is very sensitiveto thepion—nucleusopticalpotentialandcan
be usedto discriminatebetweendifferent potentialswhich areequallysuitedto describelow energypion—nucleonscattering.

In memoriam

With greatsorrowwe learnedaboutthe.suddendeathof a respectedcolleague,ProfessorHiroharu
BandO.His contributionto the hypernuclearfield is outstandingandhis passingawaya greatlossfor all
of us who hadthe pleasureto appreciateboth the quality of his work andhis personalcharm.May his
example stimulate us to continuehis work with the same devotion and enthusiasmthat he always
showed.

1. .X hypernuclei: introduction

The techniqueused to produceA hypernucleiin the (K, i~) reaction [Br 75, 76] was used at
CERN to produce~ hypernuclei for the first time [Be 801. The (K, IT) reaction on 9Be at
PK 720 MeVIcwith 0~= 0~wasused,andtwo distinctpeaksof width smallerthan8 MeV were found.
The finding was unexpectedbecause,unlike A particlesthat canonly decayweakly inside the nucleus,
the .~ particlescan decayvia strong interactions,throughthe channel~ AN, and the width was
expectedto be aroundF 25 MeV [Ba78].

Subsequently,(K, irk) spectraweretakenat BNL on 6Li andt6

0 with a kaonbeamof 713MeVIc
momentum[Pi82] andseveralforwardpion angles.The pionspectrumon

6Li at 0 = 3.7°revealedtwo
clearpeaks, althoughthreeGaussianpeakswere assumedin the analysis, two of them with widths
around4.5 MeV. The structuresarenot evidentat largerangles.On the otherhand,the experimenton
160 showedonly abroad bump from which no narrow structurecan be clearlyextracted.

The CERN group developeda new kaonbeamline in order to produce~ particles in the nucleus
with momentumcloseto zero (recoilesscondition),for which a kaonmomentumPK 450 MeV/c was
chosen.Both the (K, ir) andthe (K, 1T~)reactionson ‘2C and 160 were studied[Be84, 85]. The
resultsof the (K, 7r*) spectrumcan be seenin fig. 1.1. In the (K, ‘~r~)‘2C spectruma single peakin
the continuum,with binding energyB~ —3 MeV, was identified as a I - hypernuclearstate,while in

— + 16

the (K , iT ) spectrumon 0 two peaks,both m the continuum,were suggestedaround280 MeV of
excitationenergy(MHY — MA) as correspondingto I - hypernuclearstateswith widths around5 MeV.

At KEK an experimentwith stoppedkaonswas donewith the (K, ‘rr~)reactionon t2C [Ya 85, 86].
Simultaneouslya methodto tagI - hypernucleiwas developed.The ideaconsistsin detecting,together
with the ir~,the ir° or ir from theA decayafterthe .IN—~ANconversion.In this way, thecontinuum
due to quasifreeI - production, wherethe I is not trappedbut escapes,can be suppressed.Some
peaks were detectedand tentatively assignedto I - hypernuclearstates. However, the untagged
experiment(inclusivepion spectrum)with morestatistics[Ha 88a]did not show anyclearnarrowpeak.
Also, no significant enhancementof the cross section was observedaround 279MeV of excitation
energy,wherethe peakin the kaonin-flight experimentwas found [Be 84]. The experimentalsituation
is hencea bit confusingdue mostly to the lack of good statisticsin the experiments.
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32 ‘2C(K,’r)45OMeV/c -

~
8 - Hi

4w— 0
0

‘6O(K~r~’)450MeV/c

~30-

0 4N~4+~I*4~ I

240 260 280 300 320 340

MHY -MA

Fig. 1.1. (K, ir~)data at 0* on ‘2C and 160 from lBe84,85). Massesarein MeV.

Before we proceedto study in detail the decaymechanismof a I in the nucleusand the different
theoreticalapproaches,it is worthwhile to mentionheresomecalculationswhichaim at reproducingthe
spectrumof the (K, iT) reactionitself. Severalof thesecalculationsareavailable[MY 86,88, Ha 87,
Ko 87a, Ha 88c, a]. The first and thelast usea Greenfunction method,while themiddle referencesuse
a DWIA with IN, AN as coupledchannels.The resultsare similar in bothapproachesandpeaksfor
boundstatesaswell as resonancesin the continuumcan be founddependingon thedepthof the real I
potential and the strengthof the IN—~AN conversion potential.We plot in fig. 1.2 the results of
[Ko 87a] andcomparethem with the experimentalresultsof [Be 84] and[Ha 88a] for the ‘2C(K, ir)
reaction. As can be seen, the experimentalresults can be best fitted with a shallow potential
(jVj < 10 MeV) and a IN—~AN conversionpotentialof a similar strength.Other authorsfind deeper
potentials,like Vt 20 MeV in [Bo 82, Be 851, or VI 30 MeV from the analysisof I - atomsin [Ba
78].

A very shallow potentialwould not produceboundstates(ignoringthe Coulombforce which would
automaticallybind the wholeset of I atoms).On the otherhand,as onecan seein fig. 1.2d, the same
shallow potential does not lead to any sharp resonancefor kaons in flight at PK 450MeV/c, in
contradictionwith the narrowresonanceclaimedin [Be 84]. We can alsosee that evenwith the setof
parametersof fig. 1.2a leading to sharpstructuresin the kaon at rest experiment,the sharppeak
claimedin [Be 84] is not reproducedandthe theoreticalresultsgive rise to a smoothcurvewhich passes
throughthe experimentalpointsin the I continuum.The sharpstructureis not supportedeither by the
kaonsat restexperimentnor the theoreticalresults.

The situationis thus puzzling,with one of the few evident conclusionsbeing the fact that more
statisticsand moreexperimentsareneededto clarify the situation.

One should notethat onecan equallyreproducethe experimentalresultsof [Ha88a] with othersets
of parameterswhere narrow statesappear,both for boundstatesor l’s in the continuum,however,
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Fig. 1.2. In-flight (Pk= 450 MeV/c) andstoppedpion spectrafrom [Be84] and [Ha88a]comparedto thetheoreticalcalculationsof [Ko87al for the12C(K,s’~)reaction.

with little strengthin theexcitationfunction [Ha88a,MY 88]. As notedin [Ha 88a1and[Ta88] the data
only allow one to determinecombinationsof the strengthof the I and the conversionpotentials,but
not anyof them separately.On the otherhandthe questionof whetherthereareI boundstatesat all
hasa simple answerin one of the cases,the one of I - states.Indeed,the Coulombpotentialalone,
irrespectiveof the strengthof the short-rangenuclearpotential, is enough to bind I - atomic states.
Someof thesestates(the mostbound)aresuchthat the I wavefunctionis essentiallyinsidethe nucleus,
hencethe namehypernucleiis more suited to them,althoughthereis a gradualtransitionfrom these
hypernuclearstatesto thosemoreproperlycalledI - atoms[Ba 78], wherethe orbits arefar away from
the nucleus.Theseideashavebeenrecentlyexposedin [Ya88] and [Ba88a] and the statesarecalled
“Coulomb-assistedhybrid boundI - states”.However, while in [Ya88] the suggestionis madeto look
for such statesin kaon experimentsat rest, in [Ba 88a] the (iT, K~)reactionis proposedas an ideal
processto produceI hypernuclearstates.

The questionof the observabilityof suchstatesdependsupon their width and the energyseparation
betweenthe levels. If the width is largerthanthe level separationno sharpstructureswill be seen. On
the otherhandonehasto takeinto accountthe strengthby which eachof thesestatesis populatedin a
given reaction,since somestatesare moreeasily populatedthanothersin certainreactions.

Although manyI - atomicstatesare known[Ba78] thereis a limitation to the observabilityof such
statesgiven by the detectionmethod.The I - (as in the caseof iT - atoms)cascadesdown through
atomic orbits and approachesthe nucleus.The absorptivewidth increasesin this processand whenit
exceedsthe radiativewidth the I particlegetsabsorbedby the nucleusandno further level of smaller
energycan be reached.However, suchstatesexist and their observationwould be most interestingto
get a properunderstandingof the dynamicsof the I—nucleusinteraction.No such stateshavebeen
observedyet.

On the otherhand, thereis the possibility that thereareboundstatesof 10 or I ± hypernuclei(all
observedstructuresquotedabovecorrespondto I energiesin the continuum). An importantboostto
the problemfrom the experimentalsidehasbeengiven by the recentdiscoveryat KEK of aboundstate
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Fig. 1.3.

4He (stoppedK, ~r) data (left) and4He (stoppedK, irk) data(right) from [Ha88bj.

of the IHe hypernucleus[HA 88b], suggestedby the calculationsof [Ak 86]. The (K, ir) reactionon
4He with stoppedkaonsgives rise to a significant bump in the pion spectrum,which is identified as a
bound10±statewith B

5 = 3.2MeV energyanda width of 4.6MeV (seefig. 1.3). Howeverno similar
peakwas found in the (K, ir) reactionalthoughthe statisticsis poorer.

In spite of the limited experimentalinformation available,the discoveryof the sharp resonances
stimulatedmuchtheoreticalwork, which is discussedin the following sections,aiming at understanding
the origin of such narrowwidths, sincesimple estimatesprovidewidths between20—30MeV for the I
hypernuclearstates. An approachto the many-body problem based on the use of the induced
interaction,which providessmallwidths for the boundhypernuclearstates,is discussedin detail. The
1 atomic information is re-analyzedfrom this point of view and its information is usedto obtain
energiesandwidthsof morebound1 statesof the hypernucleartype.Oneobtainsmanyboundstates
in light and medium nuclei, wherethe widths are narrowerthan the separationbetweenthe levels.
Theseresults shouldstimulatefurther experimentalwork in the searchfor 1 hypernuclei.

2. Formalderivation of the I width

2.1. The1N—~AN cross sectionand the 1 width

We are going to derive the I width in infinite nuclear matter from the IN—+ AN transition
amplitude.We will seethat the resultsarequite model independentandonecan treatquite accurately
the effect of the Pauli blocking. Let T be the transitionamplitudein the 1N—* ANprocessdepictedin
fig. 2.1. We follow Bjorken—Drell conventions[BD 65] and thusthe S matrix is given by

(f IS — hi) = —iT (2~)6 ~ ~ \/‘~ (2iT)
4~(p

5+p~—p~—ps). (2.1)
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Fig. 2.1. Feynmandiagram for the .~N—*AN transition. Fig. 2.2. Many-body Feynmandiagram for the .1 self-energyincor-
porating the .~N—~ANtransition. The dotted line indicatesthecut

leadingto Im ~ * whentheparticlescut by this line areplacedon-shell
in the integrationsover the internalvariables.

We can constructthe I self-energypiece containingthe IN—s~AN transition.This is depictedin fig. 2.2
as a standardmany-body diagram. We shall call I * the I self-energy, equivalentto the optical
potential,and the width is thengiven by

1= —2Iml~. (2.2)

This holds strictly if ReI * does not dependon the energy as an independentvariable of the
momentum,or equivalently, the residualinteraction is small. We shall assumethis here.

By following thestandardFeynmanrules [FW71, Ma76] wecan readilyevaluateI * for the diagram
of fig. 2.2. We obtain

_.1* k — —\ ~ d4p f d~q in(p) i[1—n(q+p)]
1 ( )( ‘J (2~J (2iT)4 p°—E~(p)—ir q°+p°—E~(q+p)+ie

x . ~ (-iT)(-iT), (2.3)
k —q

where non-relativistic baryon propagatorsare used although relativistic energiesare kept for con-
veniencesincewe aredealingwith particleswith differentmasses.Thus,k°= E

5(k)for aI on-shelland
E1(p) = (M~+ p

2)”2. The first minus sign on the right-handside of eq. (2.3) comesbecauseof the
nucleonloop, ands, t standfor the spin and isospin of the internalvariables.We shall assumeT real
andindependentofp°for the momentin eq. (2.3).The self-energywill be independentof the spin and
isospin of the I in spin saturatedsymmetric nuclearmatter. Hence let us concentrateon the I -

self-energy,in which casewe only havethe I p—~ An reaction. We can then substitutethe sumover
spinsand isospinsof T2 by 2 ~ ~ T2, wherenow we sumover spinsof A, n (final state),and average
over spinsof I, p (initial state).Thus

I*(k)= J d4pJ d4q 0 n(p) 0 [1—n(q+p)]
(2iT) (2iT) p —EN(p)—ie q +p —E~(q+p)+iE

X 0 1 2~T2. (2.4)
k°—q—E~(k—q)+ie
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The p°integrationcan be performedreadily andwe have

1* k —. ~ d3p f d~q n(p)[1—n(q+p)]( )~j (2iT)3 J (2iT)4 q°+E~(p)—E~(q+p)+ie

x 1 2~T2. (2.5)
k°— q°— EA(k — q) + ir

The T matrix itself hasa givenanalyticalstructure.If we think in the languageof bosonexchangesfor
the T matrix, it will contain termslike (q°2— q2 — m~+ ie)’, hencethe polesof The in the secondand
fourth quadrantof the complexq°plane,as shownin fig. 2.3. The remaininganalyticalstructurein the
complexq°variable~canbe seenin fig. 2.3. This particularstructuresuggeststhatwe performa Wick
rotation in order to do the q°integration. We have

Jdq°+ JdqO+ J dq°= 2iT1R(k°— EA)6(k°— EA(k — q)), (2.6)

whereC standsfor the circlesin the infinite in fig. 2.3 andR() is the residueof the integrand.Note
thatthe poleof the particle—holepropagatoris alwaysin the fourthquadrant.Sincethe integraloverC
vanisheswe have

1*(k)=i ~ d3p 1-~~--i--Idq° n(p)[1—n(q+p)] 1 2~T2
J (2ir)~J (2ir)3~ q°+E~(p)—E~(q+p)k°—q°—E~(k—q)

f d3p ~ d3q n(p)[h—n(q+p)]~J (2~J (2iT)3 k°+E~(p)—Efl(k—q)—E~(q+p)+ie

0(k°— EA(k—q))2E~T2lqO=kO_E~(k_q). (2.7)

The first term in eq. (2.7) is a real backgroundsincethe imaginaryparts cancelwhen integratingover
the positive andnegativepartsof the imaginaryaxis (notethat T2 is a real function which dependson

q°) ‘N

\

xxxxxx 0

\ polesofT
\

‘N

Fig. 2.3. Analyticalstructureof theintegrandof eq. (2.5) in thecomplexvariableq°.Shownin thefigure is thepathfollowed by theWick rotation.
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q°2).Thus only the secondterm contributesto the imaginarypart and we obtain

Iml*(k)=_f dp
3f ~ n(p)[1—n(q+p)]0(k°—E~(k—q))

(2iT) (2iT)

XiT6(k°+ EN(p) — EA(k— q) — E~(q+p))2~T
2IqokoE(kq). (2.8)

Note that the 0 function is redundantbecauseof the argumentof the 3 function. We can derive the
sameresult for the imaginarypartalonein a fasterway by usingCutkowski’s rules [IZ 80]. Indeed,the
imaginarypart of the diagramin fig. 2.2comeswhentheparticlescut by a horizontalline (dottedline in
the figure) are placedon-shell in the four-dimensionalintegrationsof eq. (2.4). Let us summarize
Cutkowski’s rules for the problem that we have: substitute in eq. (2.4) 1*(k)~~+2iTm I*(k),
G

0(p)— 0(p°)2i Tm G0 and substituteT by T* abovethe dottedline (we refer to it as the analytical
cut). We thenobtain the sameeq. (2.8). Howeverwe obtain I T~

2insteadof T2, which is the general
solutionto accountfor the IN—5AN decaymode of the 1 when T is complexandp°dependent.

Equation(2.8) allows now to relate Im 1* to the .IN—~AN crosssection.We have

1 1 d3k’ ( dsp’ M
5 M4 M M

~(IN~ AN) = u~J (2iT)
3 J (2iT)3 E

5(k) E~(k’)EN(p) EN(p’)

xE~ITI
2(2iT)46(p+k—p’—k’), (2.9)

whereVrei is the relative velocity of the IN systemandMthe nucleonmass.
Let us now make the usual non-relativistic approximations, M

1 1E1 1, changethe variable k’ —~ k —

q and perform the p’ integration.We obtain

u(IN—*AN)=_~--J d~~1~12
Vrel (

21T)

X 2ir6(E
5(k) + EN(p) — EN(p + q) — EA(k — q)), (2.10)

and henceeq. (2.8) can be rewritten as

Im I*(k) = —(ovrei)avpp/2, (2.11)

wherep1,~,is the protondensityand (O~Vrei) av indicatesthe averageof this quantity over the Fermi sea,
including the Pauli blocking,

3 31 fdp Idq
(O•Vrei)au= j_, j ~n(p) J ~ [1 — n(p + q)]

pp/z. (
21T) (21T)

x~IT(k,p;q)I22iT6(E
5(k)+E~(p)_E~(p+q)_Efl(k_q)). (2.12)

Equation(2.11) is well known[GD 80, DR81]. We haverederivedit in a differentway, usingit as an
excuse to introduce some techniques which will be used later on. The factor M5/E5(k), for the
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momentainvolved in our problem, is of the order of 1%. For the AN final statethe corresponding
factorsare moreimportant. We keepthesefactorsin the evaluationof u in eq. (2.10).

Througheq. (2.2) we havethen

F= (ffUrei)avPp. (2.13)

Let us now makea connectionwith the experimentalresultsfor o(IN—* AN) in order to evaluate
1/2 2 2 . . 2

(2.13). By using 2VreIEZ(k)EN(P)= A (s, M5, M ), with s the Mandelstamvariable, s = (p5 + PN)’

and A(x, y, z) = + + z
2 — 2xy — 2yz— 2zx, we have

1 1 A’~2(sM~M2) I —

o(IN—~AN)~j--~~MSMAM2 A112(s,M~,M2)J dflY~ITI2. (2.14)

The low energydatafor thisreactionare foundin [En 66] andrangefrom p~= 110—160MeV/c in the
laboratorysystem.

We can investigatethe energydependenceof the T matrix. For such purposeswe divide the
experimentalcrosssectionby the phasespace(factor before the integralover dQ in eq. (2.14)). The
result of it is a remarkableconstantvaluefor fd[1 ~ ~ T~for which a bestx2 fit gives

MSMA ~_JdQ~tTI2~**500mb. (2.15)

In table2.1 we showthe resultsfor u and O~Vrelobtainedby usingeqs. (2.14), (2.15) togetherwith the
experimentalvaluesfor u. Theagreementwith the experimentalnumbersis quite good as can be seen.
On the otherhand, becauseA’ /2(~ M~,M2) Is is ratherconstantin the region of interestto us, the
valueof uvrel is also remarkablyconstantas can be seenin the table.

The values that we obtain for UVrel agreealso remarkablywell with the empirical value that one
obtainsfor this quantity from a best fit to the 1 - atom data. Fromthereone gets [Ba78]

V
0~1(r)= — U(r) — iW(r)

U(r) = (28 ±3)p(r) 1p0 [MeV], W(r) = (15 ±2)p(r)
1p

0 [MeV]. (2.16)

The resultsof the fit dependupon the valueof the I magneticmoment.A reanalysisof the datain the

Table 2.1
Experimentaldata for the I —*An reaction[En66) togetherwith

theresultswith the assumptionof eq. (2.15) for the T matrix.

p~(MeVIc) ~ (mb) u~,(mb) ~ (mb)

110 174±47 186 17.1
120 178±39 171 17.2
130 140±28 158 17.2
140 164±25 147 17.2
150 147±19 138 17.3
160 124±14 130 17.4
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light of the morerecentvaluefor this quantity [He 83] only changesthe resultsof the fit at the level of
3%, well within the experimentaluncertainties[Ba85]. Now, by equatingW(r) of eq. (2.16) to
—Im I*(k) with = p!2 in eq. (2.11), we find (p0 = 0.17fm

3):

(~Urei)av= (17.9 ±2.4) mb, (2.17)

the samevalue as quotedin [GD 80, Ga81].
We shouldnotethat taking 01trel constant,as seenin table2.1, is amuchbetterapproximationto the

experimentaldata than the formula quotedin [GD 80], 0-v = (crv)
01(1+ av) with (ov)0 65 mb and

a = 20, coming from a fit to the theoreticalvaluesof [Na73] for this reaction,which overshootsthe
experimentat low energies.

2.2. TheAp —* I°p reaction

We can write the crosssectionfor this reactionanalogouslyto eq. (2.14). We have

0 1 1 2 A
112(s M2 M2) ‘ — 2

u(Ap—*.E i) = ~j-~~ MZMAM A112(s,M.~,,M2) ,J dO ~ ~IT’I (2.18)
where now T’ is the T matrix for the new reaction. Assuming isospin symmetry,a trivial isospin
analysisof the I p—~ An andAp —* l°p reactionsallows us to write

~T’~2(Ap—*I°p)=~ITI2(Ip—*An), (2.19)

andhencewe can evaluatea-(Ap--+I°p)by meansof (2.15). In this way we are relatingthe two cross
sectionsthroughthe principle of detailedbalanceandSU(2) symmetry.We showthe resultsin fig. 2.4
and comparethem to the availableexperimentalpoints in the low energyregion [Ka 71, Ha77]. The
agreementwith the datais quite good,althoughthe experimentalerrorsare ratherlarge.

This is anew testof consistencyof the fairnessof the approximationof eq. (2.15).The resultsof fig.
2.4 indicatethat the approximationof eq. (2.15) is fair for a rangeof energiesbeyondthose of the
experimentaldata for the IN—*AN reactionof table2.1.

2.3. Pauli blockingeffectsin the I self-energy

Equation(2.13) providesthe I width with (0~Urej)aygiven by eq. (2.12). With respectto eq. (2.10),
which providesthe valueof 0~vreifor fixed initial statekinematics,eq. (2.12) involvesan averageover
the initial nucleonmomentumin the Fermi seaandcontainsthe Pauli blocking factor 1 — n(p + q). Let
us evaluatethe effect of this factor.

First, since we haveto evaluateangularintegrationsin eq. (2.12) we must havesomeknowledge
abouttheangulardependenceof T(k,p; q). Onceagainwerely uponthe experimentaldata. In [En 66]
one seesthat the angulardistributionaveragedoverthe rangeof I momentum100 sp

5 � 170MeV/c is
isotropic. If one selectsthe I momentalarger than 150MeV/c one can alreadysee someforward
peakingin the crosssectionindicating that thep-wavestartsto contribute.This angulardependenceis
also consistentwith the angulardistributions in the Ap—+I°preaction [Ka71, Ha 77]. Since we are
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Fig. 2.4. Crosssectionof theAp—s1
0p reaction.Crossesfrom [Ka711;crosseswith circle from [Ha77]; solidcurve: resultsusingdetailedbalance,

SU(2) isospin symmetry and the assumptionof eq. (2.15) for theI p—sAnamplitude.

interested in low relative IN momentum it is a sufficiently good approximation to take ITI2
independentof the anglefor the purposeof illustrating the effect of the Pauli principle. In addition we
shall usenon-relativisticenergiesandtakean angleaveragein the argumentof the3-functionin (2.12).
This allows one to carry out the p integrationwith the Pauli blocking factor. One gets

4J dp n(p)[1—n(p+q)]pP~(q), (2.20)
(2 iT)

wherePF(q) is given by

P~(q)=1—0(2—~)(1—~7+~~3), (2.21)

with c~= I qI IkF. We further approximateE
5(k) — EA(k) = M5 + k

212M
5 — MA — k

212MA -= M
5 — MA

and get the final result

(~vrej)av~M~J ~ITI
2PF(~), (2.22)

wherec~is given by

~=V2M(MS-MA), (2.23)
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with A~the reducednucleonandlambdamass.Equation(2.22) allows for a factorizationof the Pauli
blocking effect and one gets for p = p0 [kF = (3iT

2p/2)”3 = 268 MeV/c]

(2.24)

This factoragreeswith the value of 0.76obtainedin thenuclearmattercalculationsof [RD 79, DR81].
It is also in agreementwith the resultsof the exact treatmentof Fermi motion andPauli blockingthat
will be shown in section5 when one makesuse of the Lindhard function, which incorporatesthese
featuresautomatically.

It is also instructiveto seethat eq. (2.22), in the absenceof the Pauliblocking factor,andusingeq.
(2.15)gives (O~VreI ) av = 17.4mb, in quite goodagreementwith the resultsof table2.1, which showsthe
fairnessof the approximationsused to arrive at (2.22).

We can now make useof the local densityapproximationto evaluatethe 1 width in the finite
nucleus.We have

F JF(p(r))I~s(r)I2d3r, (2.25)

where p
5(r) is the I - wave function. Equation(2.25) would serveboth in the caseof I - atomsor

hypernuclei.In the first casethe effect of the Pauliblocking wouldbe negligible while in thelatter case
it would be noticeable.

As anexercisewe evaluatethe width of a I - in a is anda ip statein 160 for which we assumethe
samewave function as for nucleons(we useharmonicoscillatorwave functionswith exp(—a

2r212) for
the radial part and a2=0.316fm2).

By taking eq. (2.13)for F(p) andomitting the Pauli blockingfactor in eq. (2.22)we obtainby means
of (2.25)

= 19.4MeV, F,,, = 13.6MeV. (2.26)

If we includethe effect of the Pauli blocking in eq. (2.22) we obtain the following results:

= 15.1 MeV, F
1,, 11.1 MeV. (2.27)

As we can see,the averageover the nucleardistributionreducesthe resultsof F to aboutonehalf of
the nuclearmatterestimate(F 29 MeV, from (2.13)).Further inclusion of the Pauli blocking effect
reducesthe ip width by about 18% and the is width by about22%.

The valuesobtainedhereare similar to thosefound in [Ga 81] by usingthe opticalpotentialof eq.
(2.16) and solving directly the Schrödingerequation.

We can seethat, evenincludingthe Pauli blockingeffect, the widths for the boundstatesarelarger
than 10MeV. The existenceof experimentalnarrow structureshas stimulatedmuch theoreticalwork
aimedat obtainingI hypernuclearstateswith F 5 MeV.

The next sectionlooks in somedetail to the differentapproachesfound in the literatureattempting
to explain the “abnormally small” I widths in the measuredspectra.
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3. Approaches proposed for narrow I states

In this sectionwe give a critical review of the different approachesproposedto solve the puzzle of
the I narrowwidths.

3.1. The unstableboundstates

Gal, Toker and Alexander[Ga 81] proposedthe associationof the narrowI statesto the unstable
boundstates(UBS) of a complexpotential.To understandthe idealet us recall someof the analytical
propertiesof the S matrix in a real potential.For an attractivepotentialV= —U(r) the S matrix can
develop in the complex k plane (k212m= E) the poles depictedin fig. 3.ia. Poleson the positive
imaginary axis correspondto boundstates(E <0). The pole in the fourth quadrantcorrespondsto a
resonance(2mE= k~,,— k~— 2iIkRIIk,l at the pole k= IkRI — i!k,I). The empty circle on the negative
imaginary axis correspondsto a virtual state,while the crossin the third quadrantcorrespondsto the
“twin” pole of the resonant pole, which appears because of the reflectionpropertyS(k) = (S(_k*))*.

Whenonegraduallyintroducesan imaginarypart in theopticalpotential6V — iW(r), with W(r)>0
(absorptivepotential)the polesmovein the direction of the arrowsin thefigure. Polescannow movein
the secondquadrantcoming from boundstates,virtual statepolesor twin resonantpoles asdepictedin
fig. 3.ib. The wave function for a pole in the secondquadrantwill be (k = —IkRI + ilk,I)

e1E~e’~~1 c1 —k~)tI2m ek,~~m e’~~ekjk. (3.1)

As can be seen all these states are bound, normalizable states(becauseof the exp(—tk,Ir) factor) and

Imk “. Imk

.‘

~
__________ Rek o Rek

(a) (b)

Fig. 3.1. Analytical structureof theS-matrix in the complex k plane. (a) Analytical structurefor a real potential. The full dot correspondsto a
boundstate,theempty circlecorrespondsto avirtual stateandthecrossescorrespondto a resonantstateand its “twin” state.The arrowsshowthe
shift in the k plane of thesestatesasa small absorptivepart is added.(b) Analytical structureof S(k)for an absorptivecomplexpotential. The
bisectorwhich separatesUBS embeddedin the continuum (below) from ordinary (unstable)boundstates(above) is shown.
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unstable(becauseof the exp(—IkJIIkRItIm)factor). The first factor in the right-handside of eq. (3.1)
determineswhetherthe energyof the stateis positiveor negative.We can seethat below the bisectorof
the secondquadrant(IkRI > Ik1I) the energyis positivewhile abovethe bisectorthe energyis negative.
The polesbelow the bisectorarecalledin [Ga8i] unstableboundstatesembeddedin thecontinuum(or
UBS). Since F = 2tk1IIk,,tIm, some stateswith k1I sufficiently small can have a small width. The
appearanceof such poles in the I hypernuclearproblemis not unlikely since a small value of 1k,!
indicatesa loosely boundI statewith little overlapwith the nucleusandconsequentlya small width.
The appearanceof thesepoles was thoroughly investigatedin [Ga 8i] by solving numerically the
Schrödingerequationwith a complexpotential. In [Ba 83] it was also shown that if the rangeof the
interactionis folded into the opticalpotentialoneobtainsUBS stateswith sufficiently narrowwidthsfor
reasonableassumptionsof the rangeof the interaction (— 1 fm). While the p-states develop widths
F <7MeV for ~ C or ~6O hypernuclei,the s-states,however, still havea large width, F � 16MeV.

The interpretationof the narrowI statesas UBS, however,facesa seriousproblem.Oneknowsthat
in elasticscatteringexperimentsthe UBS arenot observed.The questionis whethertheycanshowup
in formationprocesses,like the reactionKA—* irIA’ usedto producethe I hypernuclei.The question
was studiedby Morimatsu andYazaki [MY 85] by analyzingthe repercussionof the UBS polesin the
reactioncrosssection.It was found therethat while ordinaryboundstatepolesor resonancesshowup
clearly in the differential cross section d

2~/dEdQ, with peaks in the cross section at the energy
correspondingto the polepositionandwith the right width, the UBS haveno repercussionin the cross
section and no peaksnor enhancementof the crosssectionarefound in the vicinity of the pole.

A moreformal approachto the problemwas madeby Feshbach[Fe85, 86]. He notesthat becauseof
the property of the S matrix, S(k)S(—k) 1, a UBS pole of S(k) at ka implies that S(~ka)has a zero.
However,S(~ka)is the observable quantity since —k

0 has a positive real part and correspondsto
outgoing waves for an energyEa = k~I2m.Therefore, the probability of observinga peak at a
neighboringreal energywould be extremelysmall. The conclusionof all theseauthorsis the same:“It
is unlikely that the UBS correspondto the sharpI hypernuclearstates”.

A critical discussionof thesepapersis given in [Ga 86] with the suggestionthata coupledchannels
calculation,includingexplicitly the A channels, shouldbemadein order to furtherclarify the situation.

3.2. Pauli blocking

The study donein section2 hasillustratedthe role of the Pauli blocking in the IN—* AN decayin
nuclearmatterand the nucleus.The effectof the Pauli blockingreducingthe I width in nuclearmatter
andnuclei was recognizedearly [RD 79, DR 81, SW81]. The calculationsperformedin thesepapersfor
nuclearmatterleadto aquenchingof Ffor p -~ p0 of the orderof 25%, in agreementwith the estimate
madein section2. It looksthusclear that Pauliblocking by itself cannotproduceasizeabledecreasein
the I widths. However, D~browskiand Ro~ynek[DR 83] exploited the fact that the nucleon and
hyperonself-energydependon the momentumin order to further stressthe quenchingeffect of the
Pauli blocking.

The essenceof the ideaof theseauthorsis the following: Becauseof the momentumdependenceof
the nucleonandhyperon self-energies,1~(k), the effectivemassis decreasedwith respectto the free
mass.As a consequencethe momentumwill be smaller for a given kinetic energyp~/2M~and the
values of the nucleon momentum allowed by the phase space coming from energy—momentum
conservationwill now be smaller,making the Pauliblockingmoreeffective. The authorsshowthat with
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valuesof M~1M1 = 0.7 for I, A andN, the quenchingeffect is rathersizeableandonecanfind widthsof
the order of 7—8 MeV for the is or ip statesof heavy hypernuclei.

Onemust, however,be cautiouswhenusingsucharguments.Indeed,the effectivemassis givenby

— 1— 9I(k°,k)Iok°
m — 1+ 2m oI(k°,k)I~k

2k°E(k)’ (3.2)

where I(k°,k) is the particle self-energy as a function of the energy, k°,and the momentum, k,
consideredas independentvariables [Je76, Ma 85].

Static theoreticalapproaches,like Hartree—Fock,give rise to effectivemassessmallerthanone (in
freemassunits) becausetheydo not provideanyexplicit k°dependence.Dynamical pictureslike those
in [Je76, Ma 85, OP81] give rise to anexplicit k°dependencefor the nucleons,by meansof which one
obtainsa ratio of the effectivenucleonmass to the free massof the order of unity aroundthe Fermi
surface, in agreementwith empirical determinations[Br 63] from the spacingof the nuclear energy
levels.

Also, the assumptionof equaleffectivemassesfor nucleonsandthe I andA hyperonsrequiressome
justification. Indeed,the G matrixcalculationsof [BN 82, YB 85, Bu86, Mi 88] give A effective masses
close to the free A mass.

Another reasonfor the extraquenchingin [DR 83] at large densitiescomesfrom the dependenceof
~(IN—* NN)on the 1 momentum,which theytakefrom the fit to thetheoreticalvaluesof [Na73]. As
wediscussedin section2 this givesa fasterfall with increasingI momentumthanwhatis extractedfrom
the experimentalvalues.Hence,when taking into accountthe Pauli blocking, one would be stressing
the large momentum componentsfrom the Fermi sea and this would reduce the value of 0-V,

0-1) = (uv)~I(1+ cr1)), andaccordinglythe I width.
The argumentsexposedhereindicatethat a reanalysisof the problemalongthe lines of [DR 83], but

taking into account the considerations exposed here, would be most advisable.

3.3. Other approaches

The ideasof the two former points were exploitedby Johnstoneand Thomas[JT 83]. They start
from a separableYN—* Y’N interaction(Y= I, A) and solve coupled channel equationswith some
approximations,fitting someparametersin order to reproducethe experimentaldata. Pauliandbinding
effects areconsideredby assumingthe Fermi momentumandthe binding energy,B, constantfor each
nucleus. For is-statesthe combinedeffect of Pauli blocking and nuclear binding producesnarrow
widths rangingfrom 1.75MeV in ~oHeto 12.5 MeV in ~oO. On the otherhand,in the lp-statesof light
hypernuclei,wherethe Pauliblocking is lesseffective, the strongabsorptivepotential is responsiblefor
the appearanceof UBS with widths rangingfrom 0.54MeV in ~oBeto 4.04MeV in ~O.

The consistencyof the derived1—nucleusopticalpotentialwith the I - atomicdatais establishedin
an approximateway by showing that for kF = 260MeVI c and B = 10 MeV results are obtained which
arecompatiblewith the effectivescatteringlengthof Battyet a!. [Ba78]. However, theeffectivedensity
felt by the I in the measuredatomsis approximatelyp 0. lp

0 or equivalentlykF = 125MeVI c. A look
at fig. 5 of [JT83] showsthatwith valuesof kF 125MeV/ c the agreementof Im ~B with the empirical
value of [Ba78] would not be good. However, a calculation of I - atom shifts andwidths in the
Johnstone—Thomasapproachbut with the Pauli blockingcorrespondingto the densitiesfelt by the I -

shouldgive us a morepreciseanswerto this questionthan the simple extrapolationfrom the resultsof
fig. 5 of [JT 83] which we havemade.
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Yamamoto and Bandö [YB 83] carry out similar calculations to those discussed in section 3.2. Their
results for the I width dependupon assumptionsmadefor the effective massesand nucleonand A
potentials,but the featuresfor the reductionof the width dueto the Pauli blockingaresimilar to those
discussedbefore.

BogdanovaandMarkushin [BM 80, Bo 84a] also discussthe problemand show that undercertain
assumptions,amongstwhich havinga constantIN—~AN transition potentialin coordinatespaceis the
mostrelevant,they can reducethe I width. This choiceof the potentialreducesthe width becauseof
the approximateorthogonalityof the I and A functions.A similar thing would thenhappento the
atomic widths, which would be sizeably decreased.By meansof this approximationone would be
transferringthe problemof I hypernucleito I - atoms.

There is also a calculation by Kisslinger [Ki 80] wherethe I width is calculatedstarting from a
1N—~AN transitionpotentialwhich containsonly onepion exchange.A simplified IN wavefunction
of the Hulthén type is used which is ratherdifferent from the one calculatedin [DR 81, D~81]. As
mentionedin [Ki 80] the resultsshouldbe consideredonly as crudeestimates,but theyhavethe virtue
of showing that considering short-rangecorrelations in the evaluation of the I width is rather
important.

A different ideabasedon SU(3)symmetryhasbeeninvoked to producenarrowwidthsin somelight
hypernuclearclustersinvolving a coherentadmixtureof A and I hyperons[DF87].

Finally, we shouldnot forget that on top of the conversionwidth, which we havediscussedso far,
thereare the typical widths which we find in normalstatesof nuclei. On the onehand, the stateswith
1 � 0 of positiveenergycan havean escapewidth Ft. This is usuallyattributedto the fact thatcertain
statespassthrough the centrifugalbarrier. This hasbeennoted in [MY 85, Au 87]. Note also that
boundstates,E<0, andthe UBS, which arealsoboundas seenin eq. (3.1),do not haveescapewidth.
On the otherhand, thereis a spreadingwidth, F ~, which representsthe spreadof a single I nuclear
stateinto the spectrumof surroundingnuclearexcitations.Furthermore,we shouldalsonotethatin the
caseof substitutionalstates(of the type I—nucleonhole) one would haveto accountfor the width of
the holestate in the nucleus(in A substitutionalstatesthe width of the nucleonholeaccountsfor most
of the observedwidths [Au 87]). On the other hand F and F for I hypernuclei have been
investigatedin [Au 87] andfound to be of the orderof severalhundredkeV, which would be aboutan
order of magnitudesmaller than the widths from the IN—~AN conversionprocesswhich we have
discussedin thesesections.

3.4. Summary

The overviewgivenin this sectionhasillustratedthe diversityof ideaspeoplehavetried in order to
understandthe problem of the 1 small widths. We have also discussedthe problemsmet by the
differentapproachesaswell as the limitationsdueto the variousapproximationsmade.Oneof the few
ideaswhich appearto be aconstantin most approachesis the role of the Pauli exclusionprinciple,but
therearedifferent resultsabout its relevance.Another ideawhich shouldhavebecomeclear is that we
cannotseparatethe problemof the I hypernucleifrom the oneof the1 atomsandthat onemust try to
find a commonsolutionto both.

The next sectionis devotedto a different approachwhere,apartfrom takinginto accountthe Pauli
blockingin an exactway, oneexploitsthe propertiesof the inducedinteraction,by meansof which one
obtainsa strong densitydependencein the I self-energywhich is consistentwith the1 atom dataand
also providesnarrowwidths for I hypemuclei.
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4. The induced interaction approach

4.1. The nucleon self-energy in nuclear matter

Beforewe proceedto introducethe inducedinteraction it is worth making a little digression on some
known featuresof the imaginary partof the nucleonopticalpotentialandits densitydependence.For
that purposewe will rely upon the results of [Fa83] obtainedby meansof the hypernettedchain
approach,one of the mostsuccessfulmany-bodyschemes.We seethe resultsin fig. 4.1 for p = p0 and
p0I2 as a function of E — EF, with E the nucleon energy and EF the Fermi energy.

We can appreciatein the figure that for small energiesW0(p012)(W0= —Tm 1*) is bigger than
W0(p0).At E — EF —85 MeV the two quantitieshavethe samevalueandfor higher energiesW0(p0)is
alreadybigger thanW0(p0I2).

Let us try to understandthisfeature.We takeagainthe secondorderdiagram,equivalentto fig. 2.2,
but with nucleonlines insteadof I and A. This is depictedin fig. 4.2. We will now havethe NN
interaction,insteadof the IN—~AN interaction,for whichwe will takeanamplitudeT’. An equivalent
procedureto the one that led us to eq. (2.8) will give us now for a particle state (k°>EF)

Tm 1~(k)= — f d

3p d3q n(p)[1 — n(p + q)][1 — n(k — q)]

(2ir) (2iT)

X ir6(k°+ EN(p)— EN(k— q) — E~(q +p))4~~IT’!2, (4.1)

wherethe novelties,apartfrom the changeof I andA to nucleons,arethe factor4 in front of thesum
and average of I T’I2, because we wish to average over p and n, and the extra factor [1 — n(k — q)],
which takes care of the Pauli blocking of the second particle line (we should note that the hole part of
this latter particle, proportional to n(k — q), also contributes to Tm 1~(k) but only for externallines
below the Fermi surface,which is not the casehere).Now assumingagainan averageI T’I2 and taking
an averageover the angle of p in the argument of the 6 function (reasonableif IkI ~‘ I~Ias is
approximately the case for E — EF = 85 MeV) and using non-relativistic energies,we obtain the
simplified result for an on-shellnucleon(k°= M + k2I2M)

I0

\~LY

E—E~(MeV) N k
Fig. 4.1. The imaginary part of theoptical potential for nucleonsin Fig. 4.2. Feynmandiagram for the nucleon self-energyin nuclear
nuclearmatter at densities p

0 and p0!
2 from the hypernettedchain matter.

calculation of [Fa831, as afunction of the nucleonenergyminusthe
Fermi energy.
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—

ImI~(k)~-p ~~4T’~ f dq qP~(q), (4.2)

with P~(q)given by (2.21).
In the absenceof the Pauli blocking factor for the two particlelineswe would obtain

~ (4.3)

When (k2 — k~)”2 <2kF, as it is the case for k°— EF = 85MeV and p = p
0, p012, eq. (4.2) can be

written in analyticalform as

I~I~,(k)= ~ ~IT’I
2k~~ ‘~ax(1— ~~ax) (4.4)

with

~imax \/(kIkF)2 — 1. (4.5)

By taking EF = M + k~I2Mwe obtain the following results:

ImI~,(k) J0.46, ~ k° E —85MV 46

ImI~”(k) j0.60 pp/2 — F e

We can observethat the Pauli blocking is moreeffectiveherethanin the caseof theI self-energy(note
that the availableenergyfor excitationM

5 — MA 82 MeV is about the sameas we havehere).This
reflects the fact that we havePauli blockingin two nucleonsratherthanin oneas we hadbefore. On
the otherhand we can get the ratio of Im I~calculatedat p0 and p0

12. We obtain

= 1.6, k°— EF = 85MeV. (4.7)

This result is bigger than the factor 1 from the calculationof [Fa83] in fig. 4.1.
The results of fig. 4.1 can only be understoodif there is a more effective, density dependent,

quenchingmechanismthanthe Pauli blocking alone. This mechanismshould reduceIm ~ p
0) more

effectively than Im I,~,(p0/
2)and then the ratio of eq. (4.7) could be 1, as the results of the figure.

(E ~I T’J2 would beslightly largerin the caseof p
0/2 becausethisinvolvessmallermomentaandthe NN

crosssectionis decreasingwith energyin thisrangeof energies.This increaseis howeverof the orderof
10%.)

Let uscontinuewith the analogieswith the I width. We can calculateabsolutevaluesof Im I~(k)by
relating ~~I T’~

2to the experimental cross section. With the normalization that we use we have

~~IT’I2= 0~, (4.8)



98 E. Osetet a!., Decay modesof I and A hypernuclei

with 0-NN 25 mb, 28mb for k°— EF = 85 MeV and p = p
0, p0

12 respectively.In the caseof identical
particlesin the final statetherewould be a symmetry factor in (4.1) and (4.8) but the relationshipof
Im I * to 0- doesnot change.

Then eq. (4.4) gives us

~ \*~/,\_J 10. MeV, p=p
0, ,0_j;. —Q~!~~I~J~m — 1 — 7 2 MeV = “ 12 iv

1-IF — ivi~v
, 1-’ ~•‘0 ‘

Theseresultsshould becomparedwith the value —6.5MeV from the calculationof [Fa83]. We can see
againthat an extraquenchingis neededandthat it is more effective in the caseof p = p

0 thanin the
caseof p0I2.

At this point it is worth recallingthe translationof the hypernettedchainapproachto the Feynman
diagrammaticmany-body approach. The essenceof the hypernettedchain approachconsists in
summingsimultaneouslythe ladderandbubblediagramsdepictedin fig. 4.3. That is, on oneside the
potentialis iterated,aswould be donewith the Lippmann—Schwingerequation,but in nuclearmatterin
order to generatethe G matrix. This gives rise to the effectiveinteractionin the medium.Second,this
effective interactionpolarizesthe mediumby excitingph excitationsin an RPA series.The combination
of both is the inducedinteraction[FW71, Br 72]. It has the virtue of combiningthe dynamicsat short
distance,accountedfor by the effective interaction,and at long distances(polarizationphenomenon),
which are taken care of by means of the iteration of the ph excitationsinduced by the effective
interaction. In the schemeof [Fa83] one can also include ~~1hexcitationsby meansof the three-body
forces.

Let us go back to the problemof the 1 width and start constructinga theoreticalmodel for the
IN—~AN transition.We will follow [Na77, 79] to constructa modelbasedupon mesonexchangeto
describethe amplitudefor this transition.

= H::H + + +

(a)

H + ÷ +...

Fig. 4.3. Set of graphsincludedin thehypernettedchainapproachto theNN interaction.(a) Firsttheladderseriesfor theelementaryinteraction V
is summedto give the G matrix or effectiveinteraction. (b) Laterthe RPA seriesis summedto obtain the inducedinteraction.
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4.2. Modelfor the IN—* AN transition

Let usconsiderthe IN—* AN transition from the point of view of mesonexchangeas shownin fig.
4.4. Since1 is a particle of isospin T= 1 andA has isospin T = 0 the exchangedmesonhasto have
T = 1. This leavesus with iT and p exchangein the conventionalmesonexchangemodel. Thereis a
possibilityof havingIN—~NA mediatedby kaonexchangebut this contributionis rathersmall [BO 82]
and we shall disregardit. We take a pseudoscalarcoupling for the IAiT Hamiltonian,

= + h.c., (4.10)

where the scalarproduct ~ti~. 4~is over the isospin variables. For the lAp couplingwe take the
conventionalvectormesoncoupling,

(4.11)

The valuesfor the couplingconstantsare [Na77]

g5~’V
4~_2.27, gL~=o, fzAP/V4~=3.70. (4.12)

The vertices correspondingto these Hamiltonians to be used in the Feynmanrules are, in the
non-relativisticreduction,

~ 6H
5~,,(uxq).E~5.~~, (4.13)

where ~ and ~ are the I and meson isospin unit vectorsand ~a is the pion mass.We can add the
standardYukawaNNir couplingandthe NNpcoupling,

- .f A - .f~ A
3H~~,,—i—oXqr, (4.14)

and for laterpurposestheN~iTand N4p couplings,

Fig. 4.4. Mesonexchangemechanismfor the .SN—~AN T matrix. ir and p mesonsare included.
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= i !~S.qTA, 6HN~P i X qT~, (4.15)

where~ is the pion mass,T” the ordinaryPauli matricesfor the nucleonsand S, T arethe transition
spin, isospin operatorsfrom S, T= 1/2 to 3/2. Theyare definedby the easyrelation (Wigner—Eckart
theorem)

(3/2 M5!S~I1/2m5) = ~(1/2, 1,3/2;m~,i’, M5) , (4.16)

with i.’ the sphericalcomponent,which implies that the reducedmatrix element(3/2II St111/2) is 1. The
equivalentexpressionholds for the T operator. One has also the usual closure property (and an
equivalentone for T)

~S~!3/2M,)(3/2M0!S~611 ~o.jo. (4.17)

The couplingconstantsarenow given by

f
2/4ir = 0.08, f*2/4iT = 0.36, f~/4iT= 9.56, f2/f~=f*2/f2

f~A~/4iT= 0.019, f~API4iT= 2.30. (4.18)

The valuefor f~is takenfrom [Ma87] and it hasto be accompaniedby the invariant form factor

F~(q) (A~— m~)I(A~— q2), (4.19)

with A~= 1.4 GeV. Equally, we take a form factor for the ITNN vertex

F~(q)= (A2 — ~2)/(A2— q2), (4.20)

with A = 1.3GeV [Ma 87]. The valueoff~in (4.18) is slightly increasedwith respectto [Ma 87] to match
the data of [HP75] at zero momentumtransfer. The IAiT and lAp couplingsof [Na77] haveto be
accompaniedby a hardcoreatr~ 0.4 fm althoughthis cut-off is somewhatdependenton the channel
[Na77, DG 83]. The 1p—* An transitionpotential is then given in momentumspaceby

(4.21)

with

V~(q) I ~ q2F~(q)2 ~~(1)(2)

~ q q~ (4.22)

~ ~ ~ (8~~- ~
wherethe hardcore in coordinatespacehas still to be implemented.In (4.22), ~ is q

1/Iq~.
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We can observethat V7~(q)is of a longitudinal type, ~ while l’(q) is of a transversetype
(8~~— ~ Thesetwo operatorsare mutually orthogonal.The normalization of the potential is such
that V(q)—* T, definedin eq. (2.1) in the limit of the Born approximation.

With all theseingredients,we are nowin a position to evaluatethe G matrix. We could think that
the hard core is producedby a strong repulsivespin—isospinindependentforce in the IN and AN
channelsandwe can usethe resultsof [BJ79] to constructG. Therewe find that if the potentialis split
into a strong, V~,and a weakpart, V~,

v=v~+v~, (4.23)

thenthe G matrix is given by

~ (4.24)

whereG5 is the G matrix constructedwith V5 aloneandQ~,u2~arewaveoperatorswhich in thecaseof
a short-rangerepulsive V~potential can be very well approximatedby meansof a local correlation
function. We can apply theseresultsto our caseassumingV~to be the IN—* AN transitionpotential
while V~accountsfor the interaction in the IN—* IN or AN—~AN channelswhich containrepulsive
short rangeforces. Then, the secondterm of the r.h.s. of eq. (4.24) gives the effective IN—* AN
interactionwhich we shall use in the evaluationof the I width. The IN—* AN effective interactionin
our caseis thusgiven by

GSN..AN(r)= g(r)V5~..fl~(r), (4.25)

with g(r) a typical correlationfunction whichvanishesas r—* 0 andgoesto 1 as r—* ~. This procedureis
quite appropriateto the presentcasebecauseit allows us to includethe effect of the hard coreusedin
the IN—~AN transition potential in the analysis of [Na73]. We shall use a practical correlation
function

g(r) = 1 —j0(q~r), (4.26)

by meansof which one could get a fair reproductionof a realistic correlation function in the NN
interactionwith values i~ 780MeV/c [OW 79]. The value of q~should not necessarilybe the same
heregiven the differentnatureof the repulsiveforces.In ourcaseq~shouldbe indicative of the inverse
of the hardcoreradiusr~of the analysisof [Na73], q~ 500 MeV/c, but should dependon the density.
On the otherhand, in the limit of small densitieswe want the G matrix to be equalto the T matrix
definedin eq. (2.1).Throughthe procedureexposedbelowwe shall seethat the Tmatrix is reproduced
with q~= 475MeV/c, i.e. with a hole in the correlation function slightly larger than the hard core
radius.G5N.~ANin momentumspacecan be easily calculatedanalyticallyby meansof the correlation
function (4.26) andsomeangularaverages,as was done in [OW 79]. Onesimply hasto implement in
the potentialof (4.22) the change

q1q1D(q)F(q)—*q~q1D(q)F(q) — q1q1D(q)F(q)[1 + ~q~D(q)] — ~q~D(q)F(q)811, (4.27)

whereD(q) is the mesonpropagatorD(q) substitutingq
2 by q2 + q~,andthe sameprescriptionfor the

function F( q). F( q) is supposedto be a smoothfunction of q2, as is the casefor the nucleon—meson
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form factors.Onthe otherhand, I qI /q~is supposedto be smallwith respectto unity. Evenin a caselike
ours where I qI /q~— 1/2 the approximationof (4.27) holds at the level of 5%.

With this prescriptionwe now obtain

G5~...fl~(q)= {G1(q)t~~~1+ G~(q)(611— 4~)}(1)(2) , (4.28)

where

G1(q)V~2
1~ ~

—~q~D~(q)F,~(q)—~

G
0(q) = ~ ~ {q

2D~(q)F~(q)C- q2J5 (q)fr(q)[1 +

— ~q~D

5.(q)F,~(q) — ~ (4.29)

with

C, = (~~_)/(~i~~ 1) = ~ (4.30)
~ m~m~ p. p.

As wesaid,at smalldensitiesthis shouldcoincidewith the Tmatrix andhencewe would have,using
eq. (2.15),

+ G1(3~1— ~ G~+ 2G~ ~ITI
2= 500mb!MSMA . (4.31)

By using eqs. (4.29) we see that this is accomplishedby choosingq~= 475 MeV/c, equivalentto a
correlationhole slightly largerthanthe hardcoreradius.An averagevalue of Iql, given by eq. (2.23),
togetherwith q°= q2/2M, is used in the evaluationof eq. (4.29).

There are some featuresto observein eqs. (4.29) and (4.31). The first one is that G,~+ 2G~is
smoothly dependenton IqI. For values of I~I‘—300MeV/c changesof 10% in ~Iproducesimilar
changesin G~+ 2G~. For small valuesof I qI this sum is aboutconstant.This is thusconsistentwith our
assumptionof constant~ I TI2 in the regime of momentaof our problem, also supportedby the
experimentas shownin section2.1. The other featureworth noting is thatG,~+ 2G~is also smoothly
dependenton q~.Aroundq~= 475 MeV/c changesof 10% in q~bring aboutchangesof 12% in thesame
direction in thatsum.This is worth keepingin mind,becauseaswe go to higher densitieswe expectthe
correlationhole to increaseslightly, which would meana correspondingdecreasein q~anda similar
decreasein G~+ 2G~. As we go from p = 0 to p = p

0 we could expectan increaseof the correlation
hole of the orderof 20—30% with respectto the large one alreadycreatedby the hardcore potential
evenat zero density.This would producea similar decreasein G~+ 2 G~which we shall keepin mind
for laterpurposes.

We shouldalso mentionherethatchangesin q~barelyaffect the proportionof thetransversepart of
the interactionwith respectto the total: an increaseof q~in 10% increasesthe ratio of 2G~versus
G~+2G~by 4%.
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Note also that becauseof the p-wavenature of the iT andp couplings,the hard core hashadthe
effect of introducinga largecorrectionin G1 and G,, nearlyconstant,given by the last two termsin the
bracketsof eqs. (4.29). Thiswould play the role of a Landau—Migdalg’ parameterfor this interaction.
A similar derivationfor the NNcasewasdonein [OW79]. The presenceof thesetermsis what makes
the G matrix soconstantas a functionof q. The otherpoint worth mentioningis thatin eq. (4.31) the
transversepart 2G~contributesabout92% of the total G,

2 + 2G~.

4.3. TheIN—~AN inducedinteraction

We havecarriedout the first part of the programin constructingthe inducedinteraction.So far we
haveconstructedthe transitionG matrix or effectiveinteraction.The nextstepis to takeinto account
the ph and Llh excitationsto all orders in the RPA senseproducedby the spin—isospinIN—* AN
interaction.This is depicteddiagramaticallyin fig. 4.5 for the particularcasethat wehavehere.Note
that the first ph or i.lh excitation is producedby G5N...~flN,but after that, all the new excitationsare
producedby the NN or Nil effective interactions.Sincethe interactionresponsiblefor the IN—~AN
transitioncarriesT = 1 in the spin channel,as can be seenin eq. (4.22), this will automaticallyselect
the spin—isospinchannelof the NN or Nil effective interactionsbetweentheph or ilh excitations,for
which we shall takethe well-known form [Os82]

G~(q)= { V
1t~’1c~1+ V(3.. — ~4)}0-(l)0-c

2)

7(l) ~(2) , (4.32)

and equivalentexpressionsfor the NN—~Nil transitionor Nil —* Nil interactionby changingo —~5,

i-—÷T andf by f* for eachzl involved. 1’~andV~are given by

V,=~ [q
2D~(q)F~(q)+g’], V=~ [q2D~(q)F~(q)C~+g’], (4.33)

for the NN effective interaction,with g’ 0.6 andC~= (f~!m~)I(f2/p.2)= 3.94 with the form factor
and couplingconstantsof eqs. (4.18) and (4.19).

The other ingredientneededto constructthe inducedinteraction is the polarizationcontribution
providedby theph or ilh excitationdepictedin fig. 4.6. This is donereadily by meansof the Lindhard
function definedfor the particle—holeexcitation [FW 71]

~.!Y~H÷~

Fig. 4.5. RPA seriesfor the inducedIN—sAN interactionof eq. (4.35).Bothph and~ihexcitationsareincluded[U~,(q)], aswell astheph and
~lheffective interaction (V

1,(q) in GNN) betweenthem. GIN..AN is the .SN—* ANeffectiveinteraction.
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Fig. 4.6. Feynmangraphsincludedin UN( q) (left) and U~(q) (right).

~ ( )=4 ~ d3k ~ n(k)[1—n(k+q)] + n(k)[1—n(k—q)] ~ (434)N q ~ (2 iT)3 q° + e(k) — e(k+ q) + i~ — q°+ r(k) — e(k— q) + iij J~

wheree(k) standsnow for the nucleonkinetic energy.
A similarexpressionis obtainedfor the Lindhardfunction U

4 ( q) of the ilh excitationby substituting
theph propagatorsby the ilh ones.Analytical expressionsfor U~(q)and U4(q), alsovalid for complex
values of q°,which will be neededlater on, can be found in [OP 81]. More compactformulaefor UN
and U4 can be found in the appendix.For simplicity in the formulaethe ratio (f* /f)

2 is incorporated
also in U

4(q).
With the splitting of the interactioninto longitudinalandtransversepartsthe sum implicit in fig. 4.5

can be done readily and it amountsto summingtwo independentgeometricalseries,one for the
longitudinalpart andanotherone for the transversepart, given the orthogonalityof thesetwo parts.
We obtain

md f G,(q) ~. G,(q) .. .‘ 1 (1) (2)G (q) = ~ — U(q)V1(q) q~q1+ 1— U(q)V,(q) (6~~— q~q1)ju~ ~, , (4.35)

wherenow

U(q)=U~(q)+U4(q). (4.36)

4.4. Approximateevaluationof the I width with the inducedinteraction

We shall now evaluateF by meansof eq. (2.13) and the approximationof eq. (2.22) which was

found to be quite good. We had

F= (0-Vrei)avPp, (UVrei)av_~ ~ ~~ITI
2P~(~), (4.37)

but now ~ EI TI2 will be changedto

~ITI2~ G~ 2 + 2G~2’ (4.38)
!1-UV

1! 1-UV,I
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by meansof which we can write F as a functionof the densityas

1 f G1(fl
2 2G,(j)2 1 - ii

F(p) = ~— Mqp
0~Ii - U(q)V~)I

2+ 1- U(~)V~)I2IJP~(q)—, (4.39)

wherep~,= p12 hasbeenusedagain, with M the reducednucleonand lambdamassand ~ given by
(2.23). The value of q°,neglectingthe Fermi motion, is ~2/2M andwe use that value in (4.39).
However thereis practically no dependenceon q°in (4.39) for the small valuesof q°involved.

The essentialassumptionin eq. (4.39) is that onecan also take an averageof the renormalization
effectsproducedby the inducedinteractionby evaluatingthemat the averagevalue of q found in eq.
(2.23). A more accurateevaluationwill be donein the next section,but making this approximationis
very usefulfor the purposeof illustration. The first advantageis that UN and U

4 havevery easyforms.
For q° q

2/2M and I~I> kF as is the caseherefor p < p
0, we have

~ _M~FJ_1_J_1— _21 q ~ Mk~

N~21 2~ q]n ~iJ

~(~)~~{:~+ — q

2/M— (4.40)

with WR = M
4 — M, ~= qI/k~.For ~I= 290MeV/c, q°= 44.5 MeV, g’ = 0.6, andby meansof an easy

approximationto the real part of UN in termsof p, we find

~=—~--~0.135, V~=~—~0.380,
p. p.

2/3

UN—~—0.790-~-(i + 0.26O-~-)— i1.92(—~-) [p.
2], (4.41)

U
4~——0.813-~-[p.

2].

p
0

Hence the renormalizationfactorsare

1 — 1
Ii — VIUI

2 — [1— O.218p/p

0 — 0.028(p/p0)
2]2+ 0.067(p/p

0)

413

1 — 1 (4.42)

1 — V,UJ2 — [1+ O.6l2p/p

0 + O.078(pIp0)

2]2 + 0.533(p/p

0)

413

Inspectionof theseformulaetells us that the inducedinteraction introducesa largequenchingin the
transversepart and a more moderateenhancementin the longitudinal part. The net effect on the
quantityG~+ 2G~dependson the weightof the longitudinalandtransversepartsin thisexpression.As
we mentionedbefore,thelongitudinalpart G~gives only 8% of the total G~+ 2G~, while 92% of the
contributionin that sum comesfrom the transversepart 2G~.

It is clear after this expositionthat the net effect of the inducedinteractionwill be to producea
quenchingin F as a functionof p.
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We plot the numericalresultsof (4.39) in fig. 4.7. We can see that with respectto the straight line
F(p) = 29.4p/p0[MeV] that weget in the absenceof Pauliblocking andwithout the inducedinteraction
(dashedstraight line in the figure), the resultsfor F( p) including both effectsshow a dramaticdensity
dependentquenchingthat reducesF(p) by more thana factor 3 at p = p0.

With the densitydependenceof this figure andby usingeq. (2.25) we can now evaluatewidthsfor I
nuclearstates.With the sameassumptionsas madetherefor the I wavefunctionswewould find for the
is and ip I hypernuclearstatesthe following widths:

[0=7.OMeV, F1~=5.9MeV. (4.43)

Onecan seethat the widths areappreciablychanged(reducedby aboutafactor 2) with respectto the
respectivevalues with the Pauli blocking aloneof eqs. (2.27), F,~,= 15.1 MeV, F~= 11.1MeV.

The approximationsmadeherehavethe virtue of showingusclearly the origin of the quenchingin
F( p) as a function of the density.

We should also notethat the quenchingthat we find is dueto the NN or Nil interaction,not to the
IN—* AN transition amplitude.

30
No Paulj I

No induced interaction /
1(p) //

25-

/
/

/
/

20- /
/

/
/

/
5. /

/
/

/
/

/
10 / Pauli÷

/ Induced interaction

~ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 4.7. Numericalresultsfor theI width in nuclearmatterasa functionof p. Dashedline: resultswithout Pauliblocking or inducedinteraction.
Full line: resultsfrom eq. (4.39) with both Pauli blocking andinducedinteractionincluded.
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We can look at the quenchingof the lN—~AN transitionin a differentway. We cansay that the I
decaysinto a A plus a ph excitation of the Gamow—Teller type (driven by the 07 operator). The
quenchingobservedherebearsclose resemblanceto the quenchingof the beta decayGamow—Teller
transitionsin nuclei, which is very well established[Wi 73,74, Br 78, AH 79, Os82]. Evenmorerelated
is the quenchingobservedin muon capturein nuclei [Ch89], wherethe kinematicsis more similar to
the IN—~AN transition. Indeed, the experimentalvaluefor the muon captureratesin medium and
heavynuclei areabouta factortwo smallerthanthetheoreticalresultsin the impulseapproximation.In
this caseabout 85% of the capture rate comes from the Gamow—Teller term, (g.~07)2, and this
observation again is telling us that thereis a substantialquenchingof the Gamow—Telleroperator.A
studyof the nuclearrenormalizationof the weak hadroniccurrentin the muon captureproblem,along
the same lines as discussedin this section for the IN—~AN transition, producesthe necessary
quenching,bringing the resultsin close agreementwith experiment[Ch89].

5. Expression of the I self-energyin termsof the Lindhard function

In this sectionwe shall rewrite the I self-energyin termsof the Lindhardfunctionwithout making
the approximationsof section2 to derive the width. In addition,this allows one to calculatethe real
parts, too. —

We start from eq. (2.5) andmake useof the fact that ~ ~ T2 dependsonly on the momentum
transferin the model usedin section4. This allows us to carry out the integraloverp sinceonly the
particle—holepropagatordependson it. By recallingeq. (4.34) for the Lindhard functionwe identify
this integralwith the first termof (4.34) (we shallusenon-relativistickinematicsfor the nucleonkinetic
energies).However,the Lindhardfunctioncontainsan additionalterm [secondterm in eq. (4.34)].By
includingthis term we areaddingthe diagramof fig. 5.lb to the one of fig. 5.laalreadyconsideredfor
the I self-energy.This additional diagramis avalid one,which only contributesto the real part of I *

and hencedoes not modify what we have said in the former sections about the I width. As a
consequencewe can now write eq. (2.5) as

~U~(q) k°—q°—E~(k—q)+i~2~ T2. (5.1)

(a) (b)Fig. 5.1. .5 self-energydiagramsincludedin eq. (5.1). (a) Direct graphcontributingto both Re 5* andIm 5*, alreadyconsideredin fig. 2.2. (b)New crossedgraphcontributing to Re.5 * only. The dotted lines standfor the effectiveIN—sAN interaction.
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The q°integralcan nowbe performedin the sameway as it was performedin section2, by meansof a
Wick rotation. The analytical structureof the integrandis analogousto the one shown in fig. 2.3.
Indeedthe cuts of UN(q) appearin the samequadrantsas thoseshownin the figure for T. Hencewe
can follow the samepathas in fig. 2.3 to perform theq°integrationand, analogouslyto eq. (2.7),we
find

l*(k)=if d3q J dq°~UN(q) 0 0 2~ T2

(2ir) k — q — EA(k— q)

+ J (~)3 ~U~(q)9(q°)2~ ~ (5.2)

wherethefirst term providesonly a realbackground,while thesecondtermgives riseto both a realand
an imaginarypart.

The width accountingfor the Pauli blocking, which is now incorporatedin U~(q),is given by

Foowest)(k)= _2f (2)~ Im U~(q)O(q°)2E~ITI2~qO~kOE(kq)~ (5.3)

wherethe superscript“lowest” indicatesthatwe usethe effective1N—+ AN interaction,insteadof the
inducedinteraction.

Equation(5.2) is evaluatednumerically in [BO 82] without further approximations,by using the
modelof section4 for the IN—*. AN transition. We can get back eqs. (2.13) togetherwith (2.22) by
making the approximation(assumingsymmetricnuclearmatter)

0 0 2O(q )ImU~(q)_——iTp6(q—q/2M)P~(q). (5.4)

This approximationis obtainedignoringthe Fermi motion.However,the resultswith this approxima-
tion are very similar to thosewith the exact evaluationof eq. (5.3). The integralin eq. (5.3) hasa
limited rangein the q integrationaroundthe averagevalue used in eq. (2.23), both becauseof the B
function and becauseIm UN(q) is zero beyonda certainvalue of I qI for a given value of q°.

Inclusion of the inducedinteraction leadsfrom fig. 5.1 to fig. 5.2. One can automatically include
theseeffectsby following similar stepsto thosein section4.3. The resultis thesubstitutionin eq. (5.2)

of

UN~ ~ ~ + ~ (5.5)

with G
1, G, given by (4.29), V1, V~by (4.33) and U(q) by (4.36). In particular,by taking into account

that

G~1(q)U(q) — G~,(q)Im(U(q)[i — U*(q)V10(q)]) — G~,(q)Im U(q) ~ 6
Tm ~- U(q)V~5(q)- 1- U(q)V~(q)j

2 - I’ - U(q)V
10(q)I

2 (.)

because1~H and G
11 are real, we obtain for the width
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Q+ +~A ~ +

Fig. 5.2. Sameas fig. 5.1 oncethefull induced interaction is included(eq. 5.7).

— f d3q k° E k— ~ G~(q)ImU(q)+ 2G~(q)ImU(q)~ (57)
F(k) - -J (2iT)~°~- ~( q)) L 1- U(q)~(q)~2 1- U(q)~(q)~2J q0=k0~E~(k~q)’

whereIm U(q) can be substitutedby Im U~(q)since Im U
4 = 0 in this rangeof energy—momentum.

Once again, by meansof the approximationof eq. (5.4) we reproducethe approximateformulaeeqs.
(4.37), (4.38) which we used in the formersection.

We showin figs. 5.3, 5.4the resultsof [BO 82]. The modelusedthereis essentiallythe sameas the
one describedin section4 with minor differences:A form factor identicalto the NNiT,NNpis usedfor
the lAir, lAp vertexandq~= 780 MeV/c. The combinationof a weakercorrelationfunction with the
extraform factorhassimilareffects to thelonger rangecorrelationfunction usedin section4. In fig. 5.3
we showthe resultsfor Re1* in lowestorder andwith the inducedinteraction(“full” in the figure).
We can observethat the real part is nearly linear in the nucleardensity,andthat the introductionof the
inducedinteractiondoesnot affect the resultsmuch.

In fig. 5.4 we showthe resultsfor F as a function of the densityin lowestorderandwith the induced
interaction.We can seethat evenin lowestorder,F(p) differs appreciablyfrom a linearfunction in the
nuclear density at densities p � O.5p0, illustrating the effect of the Pauli blocking. This different
behaviorof the real and imaginarypartsreflects the fact that Re UN, unlike Im UN, is not affectedby
Pauli blocking [FW 71]. On the otherhandthe useof the inducedinteractionhasas a consequencea
drastic reduction of F(p) at large densities.While at low densities,p -~ O.ip0, F(p) is approximately
linear in p, it deviatessoonfrom a linear function and shows saturationpropertiesat p — O.6p0 as a
function of the density.Theseresultsarevery similar to thosewhich we obtainedin the previoussection
andwhich areshownin fig. 4.7. The reasonsfor the quenchingwere discussedin detail in the previous
section.Onemaywonderwhyonedoesnot find the samequenchingin the real part.The reasonis that
in ReI * the rangeof q in the integrationis not limited as in Im I ~ Larger valuesof I qI contribute
nowto the integralandwith U( q) — I q I -2 at large I q I the effectsof the renormalizationof eq. (5.5) are
smaller. Onthe otherhand,one alsohasto considerthat, while in Re I * the renormalizationfactor is
(1 — uvy’, in Im I * it is 1 — UVI -2 which makesthe quenchingmore pronounced.
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Fig. 5.3. Realpart of the .5 self-energyin nuclearmatterasafunction Fig. 5.4. Sameas fig. 5.3 but for the .5 width.
of the density from [BO821. Straightline: linear extrapolationfrom
p = 0. Line labeledas “lowest”: lowestorderresultfrom themechan-
ism of fig. 5.1. Line labeled as “full”: full inducedinteractionresult
from the mechanismof fig. 5.2.

We should note that a potentiallike the one in fig. 5.4 leadsimmediately to narrowhypernuclear
states[BO 82]. In that referencethe following widths were found for the ‘

2C and 160 hypernuclei:

160 s state, F=4.95MeV; p state, F=4.65MeV;

(5.8)
s state, F=4.9OMeV; p state, F=4.48MeV.

At the sametime we can see that for low densities,a linear extrapolationof F( p) from fig. 5.4 gives
F~t(p)—- 24p/p

0 [MeV], which shouldbe comparedwith 2W(r) of eq. (2.16) from a best fit to I -

atoms. The theoreticalresults are about 15% below those quotedthere.This tells us that with that
potential,one can now get narrowwidths for hypernuclearstatesand still be consistentwith the I -

atomicdata. This hasbeenmademorequantitativein [BO 84,86], wherea Schrödingerequationwas
solvednumericallywith the imaginarypart of the opticalpotentialgiven by the resultsof [BO 82] anda
free real part.

In the next sectionwe comeback to this problemandusethe data of 1 - atomsto deduceRe I ~.

With this function andthe theoreticalresultsfor Im 1*, which arecompatiblewith the experimental
I - atomic data,we makea thoroughstudyof widths and energiesof hypernuclearstatesin different
nuclei. We should notethat,while the imaginarypart is well givenby the modelexposedabove,Re1 *

could still get contributionsfrom Hartreeterms,whichwe havenot calculated.However,the resultsof
[BO 82] havethevirtue of showingthatRe I * is in any caseapproximatelylinear in the densityandso
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would be the Hartreepieces. Due to this, a parametrizationof ReI * proportionalto p seemsmost
indicated.

6. Study of bound statesof I hypernuclei

The resultsfrom sections4 and5 led us to the conclusionthat the I opticalpotentialhasa realpart
approximately proportional to the nuclear density while the imaginary part has some saturation
propertiesas a functionof the density.

However, while we could evaluatethe imaginary part of the I self-energyratherreliably, the real
part,whichwas evaluatedin [BO 82], is only a pieceof the total realpart of 1*, which would alsocome
from other sources,mostly from Hartreepieces. The importantfinding of section5 is that all these
piecesare essentiallylinear in the nucleardensity. In order to perform a Systematicstudy of bound
stateswith the I nuclearpotentialone needsthe strengthof the real part. Theanalysisof I - atomsof
[Ba78] providesthereal part U(r) = 28 p/p0 [MeV], as quoted in eq. (2.16), twice asbig as the realpart
associatedwith the diagramof fig. 2.2.

The low density limit of the optical potential in nuclear matter [Do 71, Hü 75] simply statesthat

(6.1)

where ~ is the IN—* IN T matrix in the forward direction, averaged over spin and isospin of the

nucleons. With the normalization of eq. (2.1)

1= ~ (s~s~,tstNI T~N~NIs~sN,t~tN)Io=O. (6.2)
SN,

5N

The forward direction in I comesimposed becauseof the translationalinvarianceof the infinite
system,which forcesmomentumconservation.In a finite nucleusone has insteadin momentumspace
[Ga89]

~*(k k’) = I(k, k’),~(k— k’), (6.3)

where

— k’) = f d3r e1~’~T p(r). (6.4)

If the dependence of t on (k, k’) is throughthe momentumtransferk — k’, then onecan performthe
inverse Fourier transform in eq. (6.3) and one gets a convolution integral

I *(r) = J d3r’ p(r’)t(r — r’), (6.5)

with

t(r) = I ~e~ ~q). (6.6)
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Hence,in the casewhenI dependsonly on the momentumtransferonegetsa local opticalpotential
constructedby convoluting the nuclear densitywith the rangeof the interaction t(r). If the typical
lengthsin the systemarelargecomparedwith the rangeof the interaction,thenthe interactioncan be
treatedas local and one obtainsthe local densityprescription

l*(r) = I(k, k)p(r). (6.7)

That is, in order to obtain the self-energy,or optical potential, in a finite nucleus,simply replace
p —~ p(r) in the expressionof the self-energyin the infinite system.Alternatively, if the interaction is
purely s-wave, its range is zero up to possible off-shell effects [Ga 89] andagainthe local density
prescriptionof eq. (6.7) is appropriate.

Theresultsof the analysisof [Na73, 77, 79] indicatethat at the energiesinvolvedin I atomsandI
hypernucleithe processesIN —* IN andIN—* AN are largely dominatedby thes-wavecontribution.
Hencethe assumptionof a zerorangefor the amplitudeis avery goodapproximation,whichallows one
to extractthe I opticalpotentialin the low density limit from eq. (6.7).

In order to find t, a bestfit to the I atom datais madein [Fe89] by usingthe experimentalcharge
distributionfor eachnucleus,correctedfor the proton finite size. In order to do so, a two-parameter
Fermi density is used for both, the chargedistribution

pe(T)
1(r°ffR)/a (6.8)

and the distributionof the centers

p(r) = ~ + (r-R)/a (6.9)

By imposingthe conditionsthat must be fulfilled by the convolution [Sa88a],

PO~PO.e’ (r
2) + r~ (T2)e, 1d3rpT = fd~rpe(r), (6.10)

with r~the meansquaredradiusof the proton, andusing the approximateformulae

(r2) — + ~ir2a2, f d3rp(r) — ~irp

0(R

3 + ir2a2R), (6.11)

one obtainswith a good approximation*)

5r2R R ~+ rr2a2R — R3 1/2
R~Re+ 2 22’ 2 ) (6.12)

l5Re+7iTae ‘TTR

The valuer~= 0.69fm2 is usedin the calculations.The bestfit of [Fe89] usesa high precisionmethod
to solve the Schrödingerequationwith complexpotentials[Lo 86] basedon the methodusedfor real

~ Thereis a misprint in the formulafor a in eq. (6.13) of [Sa88a].The denominatorthereshouldread ~2R as in eq. (6.12) above,insteadof
i~R2.
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potentialsin [OS85b] andahybrid of the gradientand quadraticinterpolationmethods[Be 69] for the
x2 fit. The usual nucleusfinite size and vacuum polarizationcorrectionsto the Coulombpotential
[Ba70] are implemented.

By using the samenotation as in eq. (2.16), the resultsof the bestfit are (with p
0 = 0.17fm)

V~~~(r)= — U(r) — iW(r) (6.13)

U(r) = (31 ±4)p(r) /p0 [MeV], W(r) = (15±2)p(r) 1p0 [MeV].

Theseresultsarein agreementwith thoseof the bestfit of [Ba78]. The imaginarypart is the sameand
the real part is 10% bigger herethan in [Ba 78].

We should note that the strengthof the potential dependsstrongly on the radii assumedfor the
nuclei. In [Ha 88a], the radiusR = i.27A”

3 [fm] anddiffusenessa = 0.67fm in a two parameterFermi
distribution, as eq. (6.8), are used.By meansof eqs. (6.10) and (6.11) this leadsto a chargemean
squaredradius (r2 ) e = 0.97A213+ 13.82a2+ 0.69 [fm2], which gives rootmeansquareradii about1 fm
largerthanthe experimentalresults [Ja74] for the nuclei of the I - atomicstatesanalyzedin [Ba78].
With thisdensitydistributionthe strengthof the opticalpotentialobtainedprovidingthebestfit for the
I statesis U = lOp/p

0 [MeV] and W= 9p/p0 [MeV].
Although with this potential,andthe assumeddensitydistribution,onecan describetheI - dataand

other processeswherethe I might feel nucleareffectivedensitiessimilar to thoseof the atoms,like the
peripheralreaction(K, ir) studiedin [Ha 88a], it is clearthat the potential of (6.13) andthe onein
[Ha88a] would leadto very differentvaluesfor the binding andwidths of strongly boundI states,of
the hypernucleartype.This illustratesthe importanceof taking the propernucleardistributionsin this
problem.

Equation(6.13) with the value of 15 MeV for W agrees remarkably well with the low density limit
prediction from the experimental results of the IN—s’ AN reactionof eq. (2.13)andtable2.1. Together
with the local densityprescription,one had there

W— ~ (ovrei)avpo/2 = 14.6MeV, (6.14)

versus15 ±2 from the fit, which providesa checkof consistencyfor thelocal densityprescriptionused
here. The resultsof the real part, U, of eq. (6.13) are also consistent[Fe89] with the analysis of
[Na73, 77, 79] for the 1 N—~I N reaction.

In tables6.1 and6.2 we write down the theoreticalvaluesobtainedfor someselectedI - states.In
table 6.1 the “atomic” statesare computed,while table 6.2 contains the statesof “hypernuclear”
character,althoughobviously thereis a gradualtransition from one to the other. The resultsshown
thereare for the potentialof eq. (6.13) and for the potential

U(r) = 31p(r)/p0 [MeV], W(r) = ~ arctg(5.2p(r)/p0) [MeV], (6.15)

wherethe form of W(r) is chosento reproducetheresultsof fig. 4.7with an analyticalformula. In table
6.1 onecanobservea fair reproductionof the experimentaldata[Ba78] of aboutthe samequality with
both the linear potential of eq. (6.13) or the saturatingpotentialof eq. (6.15). However, for more
strongly boundI — statesthe differencein the shiftsandspeciallyin the widths becomemoreapparent,
particularlyin the hypernuclearstatesas shown in tables6.2, 6.3, and 6.4. In table 6.2 we showthe
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Table 6.1
Binding energiesand widths for I - atomsin different nuclei. In parentheses,below thebinding energy,is the shift (Coulombenergyminustotal
energy).The resultsareshownwith the linear potentialof eq. (6.13) and with the saturatingpotentialof eq. (6.15). The experimentalpointsare

from [Ba781. All numbersarein keV.

5g 4f 3d

B F B F B F

(shift) (shift) (shift)

‘
2C linear 115.726 0.043

(0,025)
saturating 115.731 0.032

(0.030)

boO linear 118.468 4.1 X 10~ 211.224 0.853

(0.001) (0.306)

saturating 118.468 3.4x iO~ 211.377 0.724
(0.001) (0.459)

experiment (10~~)x 10~ (0.32 ± 0.23)

24Mg linear 174.885 4.96 X 10~ 273.596 0.049
(0.029)

saturating 174.885 4.4 X 10~ 273.601 0.038
(0.034)

experiment (11 ± 9) X 10~ (0.025 ± 0.040) <0.07

27A linear 206.446 1.4 X i0~ 323.004 0.119
(0.061)

saturating 206.446 1.2x i0~ 323.021 0.090
(0.078)

experiment (2.4 ± 0.6) x 10~ (0.068± 0.028) 0.043 ± 0.075

28Si linear 239.859 3.3 X i0” 375.335 0.274
(0.150)

saturating 239.859 2.8 x i0’~ 375.383 0.222
(0.167)

experiment (4.1 ± 1.0) x (0.159± 0.036) (0.22± 0.111)

32S linear 315.110 1.99x103 493.311 1.244
(0.002) (0.373)

saturating 315.110 1.66x103 493.630 1.199

(0.002) (0.692)
experiment (1.5 ± 0.8) x 10~ (0.36 ± 0.22) 0.87 ± 0.70

energiesand widths of the I - hypernuclearstatesfor several nuclei with both potentials. With the
linear potentialone finds is and2p states(in the atomicnomenclature)with bindingenergiesranging
from 14 MeV in ‘2C to 28 MeV in 325 for the is stateand4MeV in 160 to 16 MeV in 32~for the2p state.
The interestingthingto observethereis that the widthsrangefrom 21 MeV in 12C to 27 MeV in 32~for
the is stateandfrom 14 MeV in 160 to 23 MeV in 32S for the 2p state.Sincethe widths arelargerthan
the separationenergiesthis would rule out the observationof thesestates.In order to facilitate the
comparisonbetweenthe tables,we follow the atomicnomenclature.Thus 160 in thetable indicatesthat
we havea I - orbiting an t6~ nucleus,irrespectiveof the atomicor hypernuclearcharacterof the state.
In tables6.3 and 6.4 we also meanthat we havea 10 or a I~ orbiting a certainnucleus.

The results with the saturatingpotentialare ratherdifferent. The widths are reducedby about a
factor 3 for light nuclei andabout3.5 for the most stronglyboundstatesin mediumnuclei. The widths
rangenow from 4 MeV to 8 MeV for the 2p and is statesof all the nuclei in table 6.2. The binding
energiesincreasea bit with respectto the linear potentialbecausethe absorptivepart of the potential
(Im 1*) acts as a repulsive force and the saturation makes this repulsion less effective. As a
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Table 6.2
Bindingenergiesandwidths of different .5 - hypernuclearstatesin different nucleicalculatedwith the linear

and the saturatingpotentials.All numbersare in keV.

2s 2p is

B F B F B F
12C linear 14213 20655

saturating 1670 4100 14861 6873
160 linear 3900 14000 16572 20724

saturating 5010 5400 17049 7043

24Mg linear 10030 18250 21717 23120
saturating 2102 2012 10850 6530 22079 7360

27Al linear 1148 10700 13800 23310 27208 28895
saturating 3674 3580 14700 7060 27636 7683

28Si linear 1380 9810 13300 20700 24716 24920
saturating 3596 3470 14000 6890 25039 7504

32S linear 3622 13100 16040 22700 27581 26857
saturating 5551 4560 16740 7140 27896 7628

consequenceonecan seenowthat the widths aresmallerby a fair amountthantheseparationenergies,
which should makethesestatesobservable.To this structureof levels one would haveto add the
normal oneof nuclearexcitations,which could adddifficulties to the interpretationof somestates.In
table6.2we havealsoshowna few 2s levelswith similarcharacteristicsas discussedabove.As we go to
heaviernuclei the widths of the most strongly boundstatesreacha saturationlimit of about7.5 MeV
and a binding energyof around28 MeV. Whenwe go to evenheaviernucleimore boundstatesof the
hypernucleartypewill appearandnecessarilythe separationenergybecomessmaller. This simplytells
us that for these nuclei the observabilityof the hypernuclearstateswould becomegraduallymore
difficult. On the otherhand, by following the trendof the table, the is stateof nuclei lighter than 12C
should also be clearly differentiable. The 2p state of lighter nuclei should be more difficult to
distinguish. Indeed,in ‘2C we can see that the half width is largerthanthe binding energyand hence
the statewould overlapwith all the other “atomic” I - statesand the continuum.

In table 6.3 we showthe results for a 10 obtainedusingthe samestrong potentialsbut killing the
Coulombinteraction.The featuresare similar to thosefor I - states.However, the “atomic” states
disappearandthereare only a few boundstates.We showin the tableonly the is and 2p states.For
‘2C the 2p statedisappears.The conclusionsare similar: the binding energiesaresmallerthanfor the
I - statesand the widths are of the sameorder of magnitude.With bigger separationenergiesthan
widths (with the saturatingpotential) the statesshould be observable.

Finally in table6.4 weshowthe resultsfor the I + statesobtainedby addingthe repulsiveCoulomb
potentialto the strongone. The widths obtainedaresimilar but the bindingsarereducedappreciably
with respectto the I — states.The 2p stateof 24Mg alreadydisappears.The separationof the statesis
still larger thanthe widths and the statesshouldbe observable.

As we mentionedat the end of section4.2, we should expect slightly smaller widths than those
calculatedherebecausethe G matrix would be somewhatreducedas we go to higher densitieswith
respectto the oneusedhere.

Now we turn to the light systems,particularlythe ~He stateof [Ha 88b]. As we mentionedin the
Introduction,the width of the statewas about4.6MeV andthe binding 3.2MeV if it correspondsto a

or 6.2MeV if it correspondsto a 1°.
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Table 6.3
Sameas table 6.2 for .5°states.

is

B F B F

‘
2C linear 10466 20282

saturating 11170 6781
160 linear 11972 20365

saturating 1161 4988 12518 6958

24Mg linear 4264 17492 15418 22755
saturating 5270 6296 15848 7294

27A1 linear 7256 22562 20152 28517
saturating 8372 6894 20649 7638

285i linear 6617 19939 17527 24555
saturating 7515 6708 17916 7447

°2S linear 8549 21985 19514 26476
saturating 9410 6982 19897 7579

Table 6.4

Sameas table 6.2 for I states.

is

B F B F

12C linear 6695 19864
saturating 7512 6666

160 linear 7395 19958

saturating 8029 6850

24Mg linear 9155 22331
saturating 9672 7208

27Al linear 795 21697 13128 28087
saturating 2149 6655 13715 7581

28Si linear 20 19088 10379 24126

saturating 1146 6431 10857 7372

°2S linear 1113 21133 11493 26028
saturating 2196 6754 11969 7513

For very light nuclei one would haveto consider,amongstother elements,that the number of
neutronsand protonscould be quite different and both the real and imaginaryparts of the potential
would be changed.Indeed,in the (K, ir) reactionon 4He we either form a I°nppor a I ~pnn
system.In the 10 casethe 10 can be combinedwith either of the nucleonsto produceAN. In the I ~
nn systemthe transitionI ~ —* Ap can takeplace.Becauseof isospinfactors,the annihilationstrength
will be proportionalto 2 x ~in the I ~ systemversus3 X ~in the I °npp.On the otherhand,in the
(K, ir ~) reactionwe will form the I nnp system. Here the I can only be annihilatedwith the
proton andits strengthwill be proportionalto 1 x ~. This counting, togetherwith the value for W(r),
leadsto the following valuesfor W(r) in the presentcase:
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W(r) = 20p/p0[MeV] for I ~ (6.16a)

W(r) = iSp/p0[MeV] for I°npp, (6.16b)

W(r) = lOp/p0 [MeV] for I pnn, (6.i6c)

although only the first one, eq. (6.i6a), hasa firm basis since the two neutronson which the I~
annihilatessaturatea spin shell. The real parts are difficult to assessfrom existingIN—* IN models,
given the difference in spin dependencebetween them (see, for instance,the T = 3/2, S = 0, 1
scatteringlengthsin the modelsof [Na73,77, 79]). In [Fe89] a fit to the binding energyof the I ~ and
10 statesis conductedwith W(r) given by eqs. (6.16) and U(r) free in order to get the properbinding.
The Coloumbpotentialis addedin all casesas in the former analysis.The fits aredonewith W(r) from
eqs. (6.16) and their saturatingversions,as in eq. (6.15). The resultscan be summarizedas follows:

(i) The is stateof the I ~ systemcan be boundby about 3 MeV with the saturatingpotential
and U(r) —

4Sp/p
0 [MeV], with a width F 5.6 MeV. Trying to fit the binding energywith the linear

potentialrequiresU(r) to be bigger than aboveandleadsto widths of F 16 MeV, whichwould be too
big comparedwith experiment.

(ii) The is stateof the 10 npp systemcan be boundby about6 MeV with the saturatingpotential
and U(r) —~S

3p/p
0[MeV], with a width F~5MeV. Once again the linear potentialwould require a

largerU(r) andwould give widthsF~15MeV, too large comparedwith the experiment.
(iii) The I nnp system would be bound by 3.2MeV with U(r) = 43p/p0[MeV], with a width

F 2.6MeV. The non-existenceof a hypernuclearstate (other than the I atomic states with
B < 100keV, for instance)would require U(r) <24p/p01MeV]. The I nnp potentialfound in [Ha 89b]
hasindeeda very weak attractioncomparedto the I + or 10 cases.

The interestingthing of this analysisis that, providedthat enoughattractionexists to bind aI + (or
with more difficulty a 10) with the binding observedin the experimentof [Ha88b], the width has
indeedthe right magnitudeprovidedthat the saturatingpotential for W(r) is used,but it would be too
largeif the linear potential is used.In the analysisof [Ak 86, Ha89a,89b], the authorsfind a bound
stateof B =2.3MeV and F=4,6MeV for the T= 1/2 combinationof the I~,1°state,but none for
the T= 3/2 statebecauseof the verydifferentI nuclearpotentialsin the two cases.Hence thereis no
boundstatefor the I nnp system(excludingthe tritium I - atomicstates,one must assume).On the
other hand, the mechanismto reducethe width with respectto the resultsof an ordinarypotential is
basedon the choiceof the IN elementarypotential.Therea repulsivecoreof 5000 MeV is taken,but
the authorsalsonoticea weakdependenceof x

2 on the strengthof the repulsivecorein their bestfit to
the IN data. With this repulsiveforce,a correspondingrepulsionat centraldensitiesis found for the
I(3N) system.This pushesthe I wave function to the exteriorof the nucleus,reducesthe overlapwith
the nucleonsand consequentlyreducesthe I width. An analysiswithout the short range repulsion,
leadingto the samebinding, providesF 8 MeV.

It is clear that with the limited amountof dataon theIN systemit is difficult to assessthe amountof
repulsionat shortdistances(it is evendifficult in theNNsystemwith largeamountsof information)but
the analysisof [Ha 89a,89b] showsthat the presenceof a repulsivecore leadsto smallerwidths than
with ordinarypotentialsfor the I statesof light nuclei.We haveseenthat the saturationin Tm I * leads’
to the sameresults.Whatwould thenhappenif in addition onehadan appreciablehardcorein theIN
interaction?For very light nuclei this createsa centraldepletionin the I wave function and the I is
pushedmore to the surfaceof the nucleus.However,this is not the casein infinite nuclearmatter and
in mediumandheavynuclei, wherethe sizesarelargerthanthe rangeof the elementaryIN potential.
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Indeed,the ingredientneededthereto constructthe I—nucleusopticalpotentialis the IN Imatrix, not
the elementarypotential[seeeq. (6.1)] andin the t matrix theeffects of the repulsivecorehavealready
beenincorporated.Sincethe t matrix informationis availablefrom experiment,onecan do an accurate
analysisof hypernuclearstatesin medium andheavy nuclei by usingthe experimentalinformation, as
we havedonehere,without the needof an extraanalysisto deducethe IN elementarypotential.

In light nuclei thingsaredifferent as shownin [Ha 89a] andthereis someresidueof the short range
IN repulsionin the pushingof the I towardsthe surfaceof the nucleus. If in addition one hasthe
saturating effects in the imaginary part of the optical potential, theseeffects would be drastically
reducedif theI is appreciablypushedoutsidethe nucleus,sincethe saturationis densitydependent.If
the repulsionis smaller, the overlapof the I with the nucleusis larger andthe saturationreducesthe
width. We can see that bothmechanismsarecompensatoryandit is difficult to asseswhich can bethe
main reasonfor the narrow widths in light hypernuclei.

For medium and heavy nuclei, as we have discussed,the strong IN repulsionwould haveno
repercussionin reducingthe I width, but the saturationin the imaginarypart of the opticalpotential
does indeedreducethe widths, as we haveseenthroughout.

The approachof [Ha89b] has been extendedto heavy nuclei, where we can comparewith our
analysis. As mentioned before, in heavy nuclei the repulsive short range force should have no
repercussionin the opticalpotentialsincethe t matrix containsthe informationneeded.With the same
model of [Ha 89b] the I—nucleusoptical potentialfor 208Pbhasbeenconstructedin [Kh 89]. Since no
quenchingmechanismis introduced,exceptfor the Pauli blocking, one shouldexpecta potentiallike
the one in eq. (6.13) with W~iSp/p

0MeV reducedby about 25% at p p0 (W=~11 MeV at p = p0).
Instead,W= 6MeV is obtainedat centraldensitiesin [Kh 89]. In view of thesediscrepancieswethink
that it would be advisableto carry out furtherchecksof consistencyin the approachof [Ha89b,Kh 89]
to seewhat crosssectionthe modelprovidesfor theIN—* AN reactionandhow it explainsthe dataof
I - atoms,the checksof consistencythat we haveemphasizedthroughoutthis paper.

In finishing this sectionwe would like to establisha connectionwith the situationin pionic atoms.It
haslong beenknownthat somestatesin mediumandheavynucleihaveshifts,andespeciallywidths, in
clear disagreementwith standardoptical potentials [Ko 79, 87b, 0185, Se88]. One may wonder
whethersomemechanismsimilar to the oneproducingsaturationin the opticalpotentialcould explain
theseanomalies.Actually, as noted in [Ta 84], such saturationpropertiesshould also appearin the
p-wavepart of the pion nucleusopticalpotential,becauseof the correspondingsaturationpropertiesin
the imaginary part of the il self-energy[Ta84, OS87]. (Note that the ilN—+ NN interaction also
requiresthe exchangeof a T = 1 object.)The effectsof this saturationin pionic atomswerecheckedin
[Ta84], with the observationthat, while the bulk of stateswere unaffected, oneobtaineda small
reduction of the 3d widths and a smaller increasein the 4f widths. The persistenceof the pionic
anomaliesand the measurementof more anomalousstatesstimulateda reanalysisof the problem
[Ni 89] alongthe lines of [Ta84], but including isospineffects,a properresonantstructurein thep-wave
part of the potential, different proton and neutrondensities,etc. The resultof it is a new fit to the
pionic atoms,with muchof the input theoretical,andstill providinga muchbetterfit thanthe standard
Ericson—Ericsonpotential [EE 661 with all the parametersfree. The most striking thing is the
disappearanceof the anomalies.At the sametime it gives predictionsfor strongly boundstatesin heavy
nuclei with widths about one half of those predictedwith the standardpotential [TY 88]. The
measurementsof such statesin the (n,p) reactions,now running at TRIUMF [TY 88], or with other
possiblereactionssuch as (y, ir~ir), (ir, ir~ir) or (e, e’ir) with the final ir bound,will be very
useful to understandboth the problemof the pionic anomalousatomsas well as the problemof the
narrow I widths.
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7. A decayin nuclei: introduction

Chrien in [Ch 87] distinguishesthreeperiods in the history of A hypemuclei. The “early period”
openedwith the discoveryof the first hypernucleusin a nuclearemulsionin 1952 [DP53], andincludes
the studiesof A hypernucleicarriedout in emulsionsin the decadefollowing this discovery.A reviewof
that work can be found in [Te62]. The “middle ages” period containsthe work donein the 60’s and
70’s andearly 80’s with the (K, ir) reaction.With a momentumof the kaonsaround550MeV/c one
transferslittle momentumto the nucleusin the

K+AZ~Z+ir (7.1)

reaction.In thisway, onegives morechanceto theA to betrappedby the nucleus,thereforeincreasing
theproductioncrosssection.The reactionis mosteffectivepopulatingsubstitutionalstates,wheretheA
replacesa neutronin the sameorbit. However, since both K - and ir - are strongly absorbedin the
nucleus,this reactionpopulatesspeciallythe lessstrongly boundlevels. Most of the work was carried
out by collaborationsat CERN andBrookhaven.Reviewsof this work can be found in [Po 76, Ch 86,
Sp 88]. The “modernera” would be signaledby the introductionof the associateproductionreaction
(irk, K~)to produceA hypernuclei[Mi 85],

(7.2)

This reactionhasthe advantagethat theK~is not muchdistortedin the nucleusandthusthe reaction
offers morepossibilitiesto populatedeeply boundstatesof the nucleus.The reactionhasprovedvery
successfulto produceA boundstatesoverthewholeperiodictable[Ch 88]. A typicalspectrumis shown
in fig. 7.1. The crosssectionfor theelementaryreactionir~+ n—* A + K~peaksnear1050MeV/c. The
correspondingmomentumtransferfor nuclearconversionof 1050MeV/ c pionsis about350MeV/c at
forwardanglesandis suited to populatestatesof high spin. Since the spin-flip amplitudeis small, one
populatesthe naturalparity stateswherei,~+ ‘A + j even.A theoreticalstudyof thesereactionshas
beencarriedout in [Do 80, BM 86].

~30

-BA (MeV)

Fig. 7.1. ~/Cproductionspectrumfrom the reaction‘
2C(s~~,K~)~°C.Data from [Ch88].



120 E. Osetet a!., Decay modesof .5 and A hypernuc!ei

With respectto the decayof A hypernuclei,unlike the caseof I hypernucleiwherethe IN—* AN
channelallows the I to decaystrongly in the nucleus, in the caseof the A thereis no otherstrange
baryonwith smaller mass than the A. Consequently,thereis no strong reactionthrough which a A
bound in the nucleuscould decay.Energeticallythe AN—* NN reactionis possiblebut it proceedsvia
weak interaction sinceLIS = 1. The weak channelof the I in the nucleusbecomesnegligible in the
presenceof the strongIN—* AN decaymode.However,for thecaseof the A boththe A—* Nir andthe
AN—* NN decaymodes involve weak interactionsand might be of comparablestrength. We refer to
thesechannelsas the mesonicand non-mesonicA decaychannels,respectively.

Early calculationsof the mesonicwidth for light hypernuclei were done by [Da58, DL 59]. A
peculiarthing aboutthe mesonicdecayis that, sincethereis little energyleft in the A—s.Nil- decay,the
nucleoncarries little energyand there is a large overlap betweenthis nucleonwave function and
occupiedstatesof the nucleus.As a consequence,the Pauli blockingis very effectivein reducingthe A
mesonicwidth, which is considerablyreducedin heavy nuclei with respectto the free A width.

The possibility of the non-mesonicdecay was also realized early [CP 53] and received further
attentionin [RK 56, BD 63, Ad 67]. A series of emulsionand bubble chamberexperiments[Mo 74]
showedearly that the non-mesonicchanneldominatedthe A decay in the nuclei (see a selectionof
resultsin fig. 7.2). Similar measurementsshowedthat the total A width in nucleioscillatesbetweenone
andthreetimesthe A free width [Ni76, Ke73, Bo70, PS69, Ke7O, PS64] as can be seenin fig. 7.3,
which alreadycontainsthe result of the more recentexperimentof [Gr 85].

Direct measurementsof decayrateshaveprovendifficult and had to awaitbetter kaon beamsand
improved experimentaltechniques as described in [Gr 85, Ba 86, Sa88b]. The measurementof
hypernucleilifetimesin j~inducedreactionshasalsoprovedfeasible,althoughcurrentlyit is lessprecise
than for other reactions[Po88].

In coming chapterswe discussthe theoreticalframework to dealwith the mesonicandnon-mesonic
A decay in nuclei and the different approachesused in the literature. As we shall see,the mesonic
decayis quite sensitiveto detailsof nuclearstructureand to the pion propertiesinside nuclei. The
non-mesonicdecayseemsmore insensitiveto the different ingredientsin the AN—s.NN transition,but
selectedquantitieslike the ratio of protonto neutroninducedA decayprove rathersensitiveto these
detailsandpromisesto be, in conjunctionwith other quantities,an importanttool to investigateweak
forcesin nuclei.

2 - ‘° A I 10 15

Fig. 7.2. Selectedexperimentaldatafor 1,,,/1T,-as a function of the Fig. 7.3. Experimentaldata for ‘~o1.’~rc. from [Gr85, Ni 76, Ke 73,
massnumber from [Mo 74]. Bo 70, PS69, Ke 70, PS64].
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8. Formal derivation of the A width in nuclei

8.1. The A free decay

We startfrom aneffective interactionLagrangianwhich accountsfor the A —~ uN weakdecaygiven
by

~nN = G~2~/N(A— By,)r ~ + h.c., (8.1)

with G the weak coupling constant,

(G~2)2/8u= 1.945x i0’5, (8.2)

and

A=1.06, B=7.10. (8.3)

In this equationwe are artificially assumingthe A to behaveas the state11/2 — i /2) of an isospin
doublet with T= 1/2. This, together with the inclusion of the ‘r operator, is a practical way to
implementthe ~iT = 1 /2 rule in this decay[MG 84], which tells us that the channelA—s.u_p is twice
moreprobablethanthe A—s.u°n.Equation(8.1) containsans-wave,parityviolating part (A term)and
a p-wave parity conservingpart (B term).

We will first evaluatethe free A width in a way that makesstraightforwardthe evaluationof the A
width in the nuclearmedium. Once againwe use the formula

F=_21m1* (8.4)

and look at the A self-energyfrom the diagramsof fig. 8.1.
We shallwork with the non-relativisticreductionof eq. (8.1),which providesa vertex for A—s.Nur

with ir momentumq,

= — G~2[S— (P/~)u.q]TA, (8.5)

A ~l6k, m~

I •‘

k-q,m~,m’ { Aq,X

Af1~,ms

Fig. 8.1. Feynmangraph for the freeA self-energyof eq. (8.7). The fl—s irN “cut” is shown(dottedline).
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with

S=A=1.06, P~B~a/2M=0.527. (8.6)

The A self-energycorrespondingto the diagram of fig. 8.1 is given by

_iI*(k) = I d4q (—i)2(G~2)2(mIS— (P/~)~.q~m~)(m~~S— (P/~)~q~m
5)

(2u)

x ~m~=~ —~)

k°—q°—E(k—q)+ieq°
2—q2—~2+iE (8.7)

with (k°,k) the four momentumof the A and E(k — q) the relativistic nucleonenergy.
The q°integrationin (8.7) is performedeasilyby closingthe contourover the lower half of the q°

complexplaneandwe obtain

I*(k) = 3(G~2)2f ~ {[S~+ (P2/~2)q2]~~rn — 2S(P/~)(m~Iu.qIm~)}

X

2w(q) k°—w(q)—E(k—q)+ie’ (8.8)

with w( q) the pion energy.
We will not considerthe term linear in 0~,which vanishesboth for a A at rest and for a A in its

groundstatein the nucleus,which we shall studylateron. A full relativistic treatmentwould showthat
this interferenceterm betweens- and p-wavesvanishesidentically in the integral of the free A
self-energy.

By evaluatingthe imaginarypart of eq. (8.8) andusing(8.4) we obtainthe freewidth for aA atrest,

‘~ree= 6(G~
2)2~ Mq~~[S2+ (P2/~2)q~~],qcm = A”2(M~,M2, 2) (8.9)

where the relativistic factor M/E has beenimplementedin eq. (8.8) for simplicity. This expression
reproducesthe A meanlife of 2.63x 10_b s.

8.2. Pauli blocking effects

Before a more elaboratederivationis given in acoming sectionwe showherean easyderivationof
the Pauli effect.

In nuclearmatter,providedthatk°is biggerthan/h + E(kF), wherekF is the Fermi momentum,the
A can alsodecayinto a pionand anucleon.Onehasto takethe particlepart of the nucleonpropagator
in eq. (8.7), forcingthenucleonsto be abovethe Fermisurface.Hencetheformula for the A decayinto
urN is givenby eq. (8.8) includingamultiplicativefactor 1 — n(k — q) in the integrand.If we assumethe
A to be at restand enforcek°= w( q) + E( q), which makes zero the argumentof the ~ function in
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ImI* from eq. (8.8), one obtains ~I= 100MeV/c. In normalnuclearmatterthe Fermi momentumis
kF = 268MeV/c and hencethe factor 1 — n(q) would be zero. Thus therewould be no pionic decayof
the A in normal nuclearmatter.

In finite nuclei the situationis differentand the mesonicdecayis observed[Mo 74, DW 82, Gr85].
Two reasonsshould be mentioned:In the first place the A in its ground statedoes not havezero
momentumbut it hasa certainmomentumdistribution.This alreadyfavors the mesonicdecaybecause
it gives more chancesto the nucleonto havelarger momenta.The secondreasonis that the nucleus
doesnot havea constantdensity, andas we approachthe nuclearsurfacethe local Fermi momentum
becomessmaller, giving the A more chancesto decaythrough the mesonicchannel.

It is interestingto calculatethe A mesonicwidth (Fm) as afunction of the nucleardensitywith the
procedureoutlined before. We showthe resultsin fig. 8.2 for two values of the pion mass,ji = p. and

= O.9p.. The reasonto showthe calculationswith two differentpion massesis to showthe sensitivity
to this quantity.Since we know that the pion propertiesare strongly renormalizedin nuclearmatter,
the resultsof fig. 8.2 tell us that this should be takeninto accountin order to have an accurate
evaluationof the A mesonicwidth.

In fig. 8.2 we observeagreatsensitivityof ‘,,“ree to the chosenvalueof the pion mass.At p — O.4p
0

a decreaseof 10% in the pionmassincreasesthemesonicwidth by afactortwo andthisfactor increases
up to infinity as the densityapproachesa certainvalue (p — O.48p0) wherethereis no more mesonic
decay if ~ is equalto the free pion mass.One can also observein the figure that for ~i= 0.9, Fm is
different from zero up to largervalues of p than in the case/1 = p. (p -~ O.

6lp
0in this case).

8.3. Non-mesonicA decay

In electromagneticinteractionsin nucleiwe areusedto dealingwith exchangecurrents,the origin of
whichis showndiagramaticallyin fig. 8.3. We startfrom the yN—s.urN interaction,diagram8.3a.Inside
the nuclei,however,the pion can beproducedin avirtual stateandabsorbedby a secondnucleon.This
is the essenceof the electromagneticexchangecurrents,the effectsof which arewell knownin nuclear
form factorsand other reactions[Ar 85].

I I I I
.0 - K~150 MeV/c

0.1 - “~ - - - -. N

0.01 0.1 0.2 0.3 0.4 0.5 0.6 N N IN

p/p0 (a) (b)
Fig. 8.2. FmIFfr~in nuclearmatteras afunction of thenucleardensity Fig. 8.3. (a) Pion photoproductionmechanism.(b) As (a) but the
calculatedfor k°~= M5, 1k4 = 150 MeV/c. The resultsare shownfor virtual pion is absorbedby one nucleon (mesonexchangecurrent).
two different valuesof the pion mass,4 = O.9~aand 4 = jz.
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This mechanismcan immediatelybe extendedto the weak A decay into urN. The pion can be
producedin a virtual state and thenbe absorbedby a secondnucleon. This is depictedin fig. 8.4.
Diagram 8.4a gives rise to the A mesonic decay A—s.Nur, while diagram 8.4b gives rise to the
non-mesonicdecay,AN—s.NN. The fact that the mesonicdecayis somuch reducedin a nucleusgives
chancesto the non-mesonicdecayto be the dominantprocess,as is indeedthe case.

In order to proceedto the evaluationof the non-mesonicwidth coming from diagram8.4b we
proceedas in the caseof the I decayand evaluatethe A self-energycorrespondingto the diagramof
fig. 8.5. By following the standardstepsof the Feynmanrulesas in eq. (8.7),we obtainin termsof the
Lindhardfunction of eq. (4.34) the following result:

I~(k)= 3i(Gp.2)2J d~q[S2+ (P/p.)2q2]G
0(k — q)D~(q)F

4(q) ~ q2U~(q), (8.10)
(2ur) p.

with G
0(k) the nucleonpropagator,

G k — 1 — n(k) + n(k) D — 1 8 ii
°~) k°—E(k)+ie k°—E(k)—ie’ 0(q) q°

2—q2—p.2+is’ (

wherewe haveassumedthe sameform factor,F(q), for the NNurandNAurvertices.The q°integration
can be performednow by meansof a Wick rotationas we did to arriveat eq. (5.2) andhencewe can
write

= —6(Gp.2)2J d~q~~
2+ (P/p.)

2q2][1 — n(k — q)1
(2u)

x O(q°)D~(q)F4(q) ~q2 Im U~(q)~ , (8.12)p. q k —E(k—q)

which by meansof the approximationof eq. (5.4) for Tm U~(q)can be easilycalculatedandcast in the
form of eq. (2.13),

F~’~°t1(k)= (UV

1e5)avp . (8.13)

A

}~?~ k~~~NQ

(a) (b) A

Fig. 8.4. (a) Mesonicdecayof theA. (b) Non-mesonicdecaymechan- Fig. 8.5. Lowest order A self.energygraph. Dotted horizontalline:
ism mediatedby pion exchange. cut contributingto theA non-mesonicwidth. Curveddotted line: cut

contributingto theA mesonicwidth.
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Similar approximationsto thoseleadingto eq. (2.22) would allow us to write

(UVrei)av = ~M~~jTj2PF(~), (8.14)

with t~ given by

(8.15)

and

~(Tl2 =3(G~t2)2c~2[S2+ (P2/p.2)~2](f2/p.2)F4(q)D~(q), (8.16)

where T is the AN—s.NN amplitude, ~ indicates the averageover initial spin and isospin, and
q°= q2/2M. Note that we haveneglectedthe factor 1 — n(k — q) since t~is about 400MeVIc, hence
bigger thanthe Fermimomentum,andthe factor is inoperativefor smallvaluesof k. In the absenceof
any form factors,eq. (8.13) togetherwith eqs. (8.14)—(8.16)provide at p = p

0, with and without the
Pauli blocking, respectively[factor ~F of eq. (8.14)]

F(IO\V~~1) F(b0~6t)

F = 4.04, F = 4.41. (8.17)tree free

The first numbercomparesvery favorablywith the value4.1 of [MG 84], the value4.3 of [OS85a] and
the value3.89 of [Du 86a], all of themobtainedwith more elaboratecalculations.The Pauli blocking
factorhereis ~F( 7) = 0.92, only 8% away from unity. The Pauli blockingeffect is smallerherethanin
the caseof IN—s.AN [~F = 0.73 in eq. (2.24)]. The reasonis that the momentumt~ is larger here,
407MeV/c versus288MeV/c in the IN—s.AN case.If the form factor is consideredin (8.16), with
A = 1250MeV we obtainfor the ratio Fnm/ ‘ree = 2.62. In a coming sectionthe effect of correlationsis
introduced reducingthis numberfurther.

8.4. Proton and neutron inducednon-mesonicA decay

In the former analysiswe havenot distinguishedbetweenthe Ap —~ np andAn—s.nn reactionsbut
havemadean averageover proton and neutroninducedA decay,which was adequatefor symmetric
nuclearmatter.However, for the modelof ur exchangeA non-mesonicdecay,a simplecounting in the
isospinfactorsprovidesthis ratio. We can seein fig. 8.6 the different isospincombinationsandwe have
addedthe exchangediagramsof the diagramin fig. 8.5. The different isospinfactorsareshownherein
the order of upperA vertex, lower A vertex, upperN vertex, lower N vertex. In diagrams(a), (b) and
(e) an extraminus signappearsbecauseof the fermion loop. In addition, the spin sum in the exchange
terms (c), (d) and(f) is a factortwo smallerthan in the direct terms.If in addition onesticks to the low
density limit and a A at rest, which makesthe set of propagatorsequalfor the direct and exchange
terms,we obtain

F —1—4—~~2—~~2

= 1 =14. (8.18)
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(e) (f)
Fig. 8.6. Directandcrossedgraphscontributingto theA non-mesonicwidth at lowestorder.Antisymmetry and isospinfactors areshownbelowthe
diagramsin order to comparethe contributionsfrom thedifferent mechanisms.

In addition, in a nucleuswith N ~ Z one would haveto multiply this ratio by Z/N. Shouldwe have
ignoredthe exchangetermswe would havegot a factor 5 for this ratio. However, the absolutewidth
1, + I~is 6.0, versus7.5 whenoneincludesthe exchangeterms. Hence,while for the absoluterateone
introducesan error of 20% by ignoring the exchangeterms, in the ratio of I/I~ the error is a factor
three. Considerationof exchangeterms is thenabsolutelynecessaryfor the evaluationof this ratio.

In the processof derivationwe havealso learnedthat given the discrepancyof the resultsobtained
with the experimentalnumbersrangingfrom two to one[Mo 74, Gr 85], otheringredientsapartfrom ir

exchangemust be responsiblefor the A non-mesonicdecay, in spite of the approximatelycorrect
non-mesonicwidth providedby this model. We shall comebackto this point in a coming section.

8.5. Unified treatmentof the mesonicand non-mesonicA decay

When deriving eq. (8.12) we have made a jump since in Im 1* we would have obtained
Tm (D0

2(q)U~(q))in the integrandinsteadof D
0

2(q)Im U~(q)as we wrote there. This last step is
incorrectbecausenowwe can alsoplacethe pionon-shellin the integrationandhencewe would obtain
a contributionfrom Im D

0( q). Whatwe havedonethereis gettingonly the contributionfrom the cut
shown by the dotted upper line in the diagramof fig. 8.5. Indeed,singling out Im U~placesthe ph
excitationon-shellin the intermediatestateintegrationsand this correspondsto the channelA—s.Nph
or equivalentlyAN—s.NN, the non-mesonicA decaychannel.The new contributionto Im I * is related
to the cut representedin fig. 8.5 by the lower dotted line (and a similar one for the upper pion). The
physicalinterpretationof this cut is thatit representsa correctionto the mesonicdecayof the A, where
the pion interacts with the nucleus through the creation of a virtual ph excitation. Hence, this
contributionshouldbe addedto thatof fig. 8.1, in which the pion is free,i.e., it doesnot interactwith
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the nucleus.In this way the mesoniccut in fig. 8.5 takesinto accountthat the pion is renormalizedin
the nuclearmedium,but only at lowest ordersinceonly a singleph excitationis included.As we have
seen,the many body formalism tells us that the existenceof a non-mesonicA decaychannel has
immediaterepercussionon the mesonicA width.

However,whenrenormalizinga pion onemustgo beyondthe lowestorderandincludethe full RPA
series.Equivalently one can say that one must consider the ph excitation as a piece of the pion
self-energy that renormalizesthe pion propagator. In addition, one should then include the zih
excitations,as well as an s-wavepion self-energyand secondordercorrectionsto the pion self-energy
[Os82].

The problemis similar to the onefound in theevaluationof the 4 self-energyaroundresonance[OS
87], whereone alsofinds a nuclearcorrectionto the mesonicwidth andanon-mesonicdecaychannel
correspondingto 4N—s.NN (seefig. 8 .7a). When this information is used in the relatedpion—nucleus
scatteringproblem,proceedingthrough 4h excitation, thesetwo cuts give rise to correctionsto the
quasielasticscattering(lower cut in fig. 8.7b)andpion absorption(uppercut in fig. 8.7b),respectively.

A properevaluationof theA width also requiresa considerationof thedifferentbindingof nucleons
and A. The A binding is incorporatedin theA energyk°. The nucleonbinding,for calculationsdonein
infinite matter and implementedinto finite nuclei through the local densityapproximation,is better
taken into account by meansof a local potential VN(r). The Thomas—Fermiapproachis usedin
[OS85a],

VN(r) = —(2M)1[~u2p(r)]213, (8.19)

wherep(r) is takenas the empiricaldensityfor eachnucleus.The nucleonpropagatorwill now be

G(p) = 1— n(p) + n(p)
p°—E(p)—VN+ie p°—E(p)—VN—ie

= 0 1 +2umn(p)ô(p°—E(p)—VN). (8.20)
p —E(p)—VN+Ls

As mentionedbefore,in order to incorporatehigher ordertermsof the pion renormalizationwemust
considertheseriesof diagramsshownin fig. 8.8. Thewhole seriescanbe summedby dressingthepion

,

:::~:fJ :::i~:::::.~ij

(a) ,/ (b)
Fig. 8.7. (a) 4 self-energygraph showing the mesonic(curved dotted line) andnon-mesonic(horizontal dotted line) decaymodes.(b) Pion—nucleus
scatteringmechanismshowing the absorptioncut (horizontal dotted line) anda correction to the quasielasticscattering(curved dotted line).
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Fig. 8.8. Aself-energydiagramsincludedin eq. (8.21). (a) Freeself-energygraph. (b), (c) Insertion of p-wave pion self-energy at lowest order. (d)
GenericRPA graph. (e) s-wavepion self-energyat lowest order.

with its self-energyin the pion propagator,where,in addition to the p-wave pion self-energy,the
s-wavepion self-energydepictedin fig. 8.8eis also included. Hencewe have

= 3i(Gp.2)2I d4q [S2+ (P2/p.2)q2]G(k — q)D(q)F2(q), (8.21)
(2ur)

with D(q) the renormalizedpion propagator,

02 2 0 (8.22)q —q —p. —H(q,q)

and 1I(q°,q) the pion self-energy.In order to illustratethe physical contentof eq. (8.21) we take the
particlepart of the nucleonpropagatorof (8.20) in eq. (8.21)andperformtheq°integrationby closing
the contourin the lower half of the complexq°planeas shownin fig. 8.9. We get acontributionfrom
the pole of the renormalizedpion propagatorq°= ~(q) such that

.~-

0

q)

—~(~)
• I/I//I//I •I i//I/Il/I • I

~(4) I
• t I
• /
• I

~ 1~

Fig. 8.9. Analytical structureof the integrandof eq. (8.21)in thecomplexq°plane.Therenormalizedpion propagatorpole~(q) is shown,aswell
asthetwo integrationpathsconsideredin thetext. Thedashedlinescloseto therealaxis indicatetheanalytical cutfrom Im H( q°,q) relatedto the
non-mesonicA decaychannel.
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— q2 — p.2 — H(c~(q),q) = 0, (8.23)

plus the contributionfrom the continuousset of poles implicit in H( q°, q) (analyticalcut depictedby
dashesin thefigure) whichgive riseto Im H( q°, q). After theq°integrationis performed,theimaginary
part of I * will appearby taking Tm G(k — q) in the integrandand henceplacing the intermediate
nucleonon-shell. When this is done, the contributioncoming from the pole&( q) in theq°integration
accountsfor the mesonicdecaywidth, while the contributionfrom thecut accountsfor the non-mesonic
decaywidth.

However, technically this is implementedmore efficiently in a differentway, which allows simulta-
neouslyfor the considerationof the effect of nuclearcorrelations.

The seriesimplicit in fig. 8.8 can be summedas

I*(k) = 3i(Gp.2)2I d4q G(k — q)[S2 + (P2Ip.2)q
1q~]F

2(q)
(2ir)
f2 44 (~.—~ )

x {Do(q) + -~F2(q)D~(q)qjq~U(q)[
1‘~, + ‘~ ~7 ]}, (8.24)

whereV~,V~aretheph and4h effective longitudinalandtransverseinteractionsgiven by (4.33). Such
as it stands,in (8.24)only thelongitudinalpart in the squarebracketcontributesbut thisis not the case
whencorrelationsare introduced.The s-wavepion self-energyis addedto thepion squaredmassin the
free pion propagator.

One can accountfor the effect of nuclearshort-rangecorrelationsin the sameway as in section4.2.
Then

(fIp.)SF
2(q)D

0(q)q1—s.V~41, (825)

(f!p.)(P/p.)F
2(q)D

0(q)q,q1—s.V4141+ V~j 4fl
which in the approximationof [OS 85a] read

V~ (f/p.)S{F
2(q)D

0(q) — fi2(q)J
5

0(q)}Jq~

V~(f/p.)(PIp.){F
2(q)D

0(q)q
2+g,~}, (8.26)

V (fIp.)(PIp.)g~,

with g~a quantity playing the samerole as g’ in theph or 4h interaction for the p-wave AN—* NN
interaction.The sametransformationmust bedonefor the q,,, and theqiqm combinationsin (8.24)and
as a consequencewe find

I*(k) = 3i(Gp.2)2J d4q G(k — q)W(q), (8.27)(2u)

W(q) = [S2+ (P21p.2)q2]F2(q)D
0(q)

V~
2(q)U(q)+ V2(q)U(q) + 2V2(q)U(q) ~828

+ 1- U(q)V
1(q) 1- U(q)V1(q) 1- U(q)~(q)
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Given theanalyticalstructureof the integrandof (8.27),we canperformtheWick rotationdepicted
in fig. 8.9 by a dottedline. Once morethe integralalongthe imaginaryaxis doesnotcontributeto Tm
I * andthen we obtain

F(k, p)= — 6(Gp.2)2I (2)~[O(k°— E(k — q) — VN) — n(k — q)]Im W(q)IqokoE(kq)v.

(8.29)

Now one mustpay attentionto theseparationof the mesonicandnon-mesonicchannels.We have

v’2u VI2U(1_U*v*)

Tm l_UVIm ~l1_Uv 2 (8.30)

wherethe indicesn, m standfor s, 1, t of eq. (8.28). The non-mesonicchannel,asdepictedin fig. 8.8 by
thedottedline will comewhen theph excitationis placedon-shell,or equivalentlyfrom Im UN in the
numeratorof eq. (8.30).Sincethepion cannotbe on-shellwhenTm UN ~ 0 (a realpion cannotexcitea
ph excitation,or equivalentlycannotbe absorbedby one nucleonin nuclearmatter),V~,l7~~which
eventually contain the free pion propagator,have no singularitieswhen Im UN ~ 0 and henceno
imaginarypart. Thus, the non-mesoniccontributioncomesfrom substituting

____ _ V’2ImU~
Tm 1 ~UVm 1~UV~l2• (8.31)

We havedeliberatelyneglectedIm (14 in thenumeratorsinceTm (14 comesfrom the 4 width into the
urN channel.This would contributeto theA mesonicdecaychannel.Theseparationofthenon-mesonic
width from (8.29)is hencestraightforwardwith theprescriptionof (8.31).On theotherhand,onecan
evaluatethe full width from eq. (8.29) andsubtractfrom it thenon-mesonicwidth in orderto obtain
themesonicwidth. Although theexpression(8.28) containsdoublepoles from the D

0(q
2) terms,one

caneasilyseethat thesetermscanceland one is left with theevaluationof termscontainingonly single
poles,the poles of the renormalizedpion propagatorof eq. (8.22).

Theintroductionof correlationsin the AN—s.NN interactionintroducesnewelementsin eq. (8.21),
which containsonly one pion exchange.This hassomerepercussionin thenon-mesonicchanneland in
principleaffects themesonicchannelalso sincepieceslike theone in fig. 8.10 cannowcontributeto the

Fig. 8.10. One of the new A mesonicdecaymechanismsintroducedby theAN—sNN short-rangecorrelations.
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mesonicA decay.Pieceslike that are suggestedalso in [Mc86]. Note that, in any case,the mesonic
contributioncomesfrom the polesof the renormalizedpion propagator.This pole is not far awayfrom
the free pion pole and this meansthat D0( q) would be large at the renormalizedpion pole and
consequentlythe secondtermsof V, V~in eq. (8.26) would only be small corrections.On the other
hand, the term with V~doesnot contributeto the mesonicdecay.This meansthat correlationsin the
AN—s.NN transition potential have a very small repercussionin the mesonicchannel,a feature
establishednumerically in [OS85a].

In figs. 8.11 and8.12 we showthe resultsof [OS85a] correspondingrespectivelyto the lowestorder
(diagrams8.8a,b)andthefull inducedinteraction(all diagramsof fig. 8.8 exceptthosewith s-wavepion
self-energy),both with correlationsincluded. The results are shownfor finite nuclei, wherethe local
densityapproximation

F= fl ~A(r)I
2F(k,p(r)) d3r (8.32)

hasbeen used with an averageA momentum.The A wave function, its energyand the average
momentumcorrespondto the is

112 stateof realistic A potentials[Bo 77,79].
Oneobservesthat theeffectof the full inducedinteractionon thenon-mesonicwidth is a decreaseof

around25% with respectto the lowestorderresults.The dependenceof theresultson g,~is very weak
oncethe inducedinteraction is used.The most outstandingfeatureof theseresultsis, however, the
dramatic increaseof the mesonicwidth whenthe inducedinteractionis used,or equivalentlywhenthe
pion propagatoris properly renormalized.This should come as no surprise after the discussionin
section 8.2. We saw therethat the mesonicdecay is very much reduceddue to the Pauli exclusion
principle. However,we alsoobservedthe sensitivity of the resultto the valueof the pion mass(fig. 8.2)
andsaw that the mesonicwidth increasedremarkablyasthe pion massdecreased.The net effect of the
pion self-energyis an attraction, at the energiesinvolved in the A—s.Nur decay,and hencewe should
expect a drasticincreasein the mesonicwidth as is the case.

5 12 IS 40 00 208
A

8~,e 1ç’59~e 40ça °°Ru208~b A F~e 9 9~e ça F~u ~b

LOWEST FULL
3 g~O.52 - g~O.52

xNM xNM

• TOTAL ~...—. • TOTAL
~ 2 ~.ir 2 - ~

I - I -

Fig. 8.11. Mesonic,non-mesonicandtotal A widthsfor severalnuclei Fig. 8.12. Sameas fig. 8.11 but with induced interactionincluded.
from [OS 85a1. The calculationdoesnot includethe inducedinterac-
tion. The value ofg~= 0.52 in eq. (8.26) is used.



132 E. Osetet a!., Decaymodesof .5 and A hypernuc!ei

We can envisagethis effect in a differentway. For a given pion momentumthe pion energyis now
smaller than the correspondingone from a free pion [&(q) < w(q) = (q

2 + p.2)1’ 21. Thus, energy
conservationwill give more energyto the nucleon,which will havemore chancesto overcomethe
Fermi energy.Also, the rangeof allowedvaluesof q will belarger,henceincreasingthe phasespacefor
the mesonicdecay.The pionsfrom the A decaywill leavethenucleusunlesstheyare absorbedbecause
their dispersionrelationis suchthat ~(q)> p., and the pion energyis conservedthroughthe nucleus.
Similarly the nucleons,which are forced to havean energyover the local Fermi energy,will escape
from the nucleussince

~‘N—VN(r)+ k2(r)/2M>VN(r)+ k~(r)I2M0, (8.33)

with ~N the nonrelativistic total energy of the nucleon. The last equation in eq. (8.33) is the
Thomas—Fermicondition.

Figure 8.13 showsthe resultsof [OS85a] when an averageover the A momentumis takenfor each
nucleus,recoil correctionsin the urNN, irAN vertex areconsidered(o ~cm insteadof o• q), andthe
lowestorders-wavepion self-energyis takeninto account.The valuesfor 1~im”reerangefrom around1
for light nuclei to valuesaround2 for heavy nuclei. The valuesof FmIIree rangefrom 0.41 for 12C to
about0.016for A ~=2O0.

Experimentally,we have

F16°Ilfree= 3±1 (2.0) [Ni 761,

= 1.14±0.2 (1.5) [Gr85],

Fl2C/I~ree= 1.25±0.18 (1.9) [Gr851,

which would haveto be comparedwith the numbersprovidedby thetheory written in parentheses.The
theoreticalresultsfor the non-mesonicchannel,which accountsfor mostof the A decaywidth in 160,

agreewell with experiment.However,as we havementionedbefore,the fact that the ratio of the p to n

~ 3 . g’~O.I3

xNM
o TOTAL

2 - — ~

o____o ~

I~~I

A He CONe Ca Ru Pb

Fig. 8.13. Sameas fig. 8.12 but with recoil corrections,averagedover momentaof theA in thenucleus ands-wavepion self-energy,included.
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Table 8.1
Left: Theoretical results for FmII~r~from [OS 85a, Os 86]. First row:
unrenormalizedpions. Secondrow: renormalizedpion. Third row: as second
row but with final stateinteraction. Right: Experimentalresultsfor ‘

2
4C with

different assumptionsfor I,-.IF,,~(seetext).

160
20Ne

w = w(q) 0.075 0.033 0.01 [Mo74] 110.24—0.381
[Ju72] 1 (0.34—0.53)

w = &(q) 0.41 0.37 0.30 [Gr85] [0.03—0.25]
= ~(q) + fsi 0.29 0.26 0.21 [Sa88aJ f [0.40—0.85]

~ (0.27—0.57)

inducedA decaylargely disagreeswith the predictionsof the ur exchangemodelclearly indicatesthat
theremust be other importantingredientsin the non-mesonicA decay.

With respectto the mesonicdecaywe write in table8.1 the experimentalresultstogetherwith the
theoreticalvaluesin different approximations.The first row containsthe numbersobtainedfor FmlFfree
for free pions. The secondrow containsthose obtainedusing renormalizedpions. The third row
containsthe resultswith renormalizedpions, reducedby 30% in order to accountfor pion absorption
and chargeexchangein the final stateinteractionof the pions [OS861.

The experimentalresults for 11C were obtainedas follows. Thoseof [Gr 851 are from a direct
experiment. Those of [Mo 74, Ju72] are from an average of FnmIF~~around A = 12, F~~IF~-=
5.5 ±1.2, by assumingI~-—~2F~oand ~ = 1.14~ree from [Gr 85]. Finally, those of [Sa 88b] were
obtained from a direct measureof the branchingratio F~

0IFmultiplying the ratio by the value
F = 1.25

1~reefrom [Gr 85]. The numbersin parenthesescorrespondto the samedata assumingthat
F,~o— F~-, as follows from [Mo 881 due to shell model effects. We can observethat thereare large
discrepanciesbetweendifferentexperiments,but (exceptfor the one of [Gr 85]) they seemto support
valuesof F~!1’tree muchlargerthanthe oneobtainedwithout the pion renormalization,0.075,andmore
in agreementwith the value obtainedwith a properpion renormalization.The theoreticalresultsalso
haveintrinsic errorsbecauseof the approximationsmadein the pion self-energywhere the second
order pieceshavebeen neglected.

The importantmessage,however,is the large sensitivity of the mesonicwidth to the renormalized
propertiesof the pion in the nuclearmedium.Hence,whenpreciseexperimentalmeasurementsof the
mesonicwidth are available they can be used to extract information about the pion—nucleusoptical
potentialat low energies,for whichtherearelargeuncertainties,sincepionic atomsandpion scattering
at low energiesdo not determinethe optical potentialunequivocally.

9. Shell model treatmentof the mesonicA decay

A detailedstudy of the mesonicA decayusing explicit shell modelwave functionsfor the nucleus
wasundertakenby BandOandcollaborators[BT 84]. The nucleonfrom theA—s.Nur decayis allowedto
go to anynuclearstateexceptfor the single particleoccupiedorbits of the nucleus.The expressionfor
the A width whena closuresum is takenover the nucleonstateis then givenby eq. (8.9) multiplied by
the suppressionfactor
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S(~)=1 — ~
n1

1EF (9.1)

=

with Nnjj the numberof occupiedparticlesin the (nlj) shell. The valueof ~ is trivially modified from the
onein eq. (8.9) to accountfor the A andthe averagenucleonbindings.A moreelaboratetreatment,by
summingexplicitly over final nucleonstatesin a nuclearshell, is donein [It 88, Mo 88]. The resultswith
the closureapproximationand the explicit sumagreeroughly in light and medium nuclei.

The calculationof the former section,basedupon nuclearmattercalculationsandthe local density
approximation,incorporates,however,the binding of the nucleonsandthe A and shouldbe compared
to the explicit sum in the shellmodel.The resultsof the formersectionincorporatingbinding andPauli
blocking effects were [OS85a] FmlFfree = 0.26, 0.075, 0.033 for ~He, ~C, ‘jO, respectively,which
comparevery well with thoseof [It 88], 0.264, 0.093, 0.035, respectively.

The effectsof the pion renormalizationare studiedin detail in [It 88, Ma 88, Mo 88]. However, the
technical implementation is different to the one exposed in the former section. There the pion
dispersionrelation, ~(q), was changedat the local level andthis modifiedthe phasespacelocally. This
had repercussionsin the total mesonicdecaywidth obtainedby integratingover the nuclearvolume.
Herethe phasespaceis calculatedasymptotically,whenthepion is far away from the nucleus,andthus
a free pion dispersion relation is used in the evaluation. On the other hand, the effects of the
renormalizationare consideredby meansof thepion wave inside thenucleus,whichis renormalizedby
the effect of the pion—nucleusoptical potential. The transition matrix element from the A to the
nucleonstatesis evaluatednow by using the nuclearpion wave,with an asymptoticmomentumk and
energy(k

2 + p.2)”2, insteadof a planewave.
As noted in [05 86] both methodsare physically equivalent. The method of the local density

approximationusespion plane wavesat any point, but the relationshipof momentumand energyis
differentat any point, given by the solutionof (8.23),which tells us that the pionenergyaccountsnow
for kinetic andpotentialenergyprovidedby the pion—nucleusinteraction.In the methodof pion waves,
the pion carries a constantenergy,but as it goes deeperinto the nucleusthe pion wave picks up
componentsof largerpionmomentum.Theselargerpion momentaincreasethe mesonicwidth because,
through momentumconservation,they force larger nucleonmomenta,which have more chancesto
overcomethe Fermi momentum.This was the argumentusedin the former section.Here we could
arguealternativelythat largermomentumcomponentsin the pion increasethe nucleartransitionmatrix
element, ~ I I/IN), from the A stateto unoccupiednucleonstates(at q = 0, and for equal is

1 / 2

wave function of A and nucleons,the transition matrix elementto unoccupiedstateswould be zero
becauseof the orthogonalityof the functions).

The nuclearmatterwith local densityapproximationmethodis a semiclassicalapproximationto the
quantummechanicalapproachof the pionwave methodequivalentto havingusedthe WKB approach
to the quantumproblem.

In table 9.1 we showthe resultsof [It 88] for the mesonicwidth of differentnuclei calculatedwith
two differentpion—nucleusopticalpotentials,MSU from [St79] andWHIS from [Wh 86]. The ~Hecase
is comparedwith the experiment[Ba 88c, Sz 87]. Once againthe experimentaldataseemto favor the
resultswith renormalizedpion waves.The approachof the local densityapproximationwith renormal-
ized pions using a shell model A wave function gives [Os86] Fm/Ftree= 0.60 versus the value 0.24
without pion renormalization.Thesevaluesagreeapproximatelywith thoseof table9.1 (0.47with the
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Table 9.1
CalculatedF~o,F~- and F,,, from [It 88) with two different pion—nucleusoptical potentials.

MSU from [St79] andwtiis from [Wh861. Experimentfrom [Ba88a,Sz 87].

1-lypernucleus F,,s F,, -
~He Free 0.088 0.176 0.264

MSU 0.154 0.318 0.472
WHIS 0.108 0.223 0,331
[expJ 0.16i~ 0.43±0.10

Free 0.031 0.062 0.093
MSU 0.072 0.146 0.218
WHIS 0.058 0.122 0.180

Free 0.012 0.023 0.035
MSU 0.032 0.065 0.097
WHI5 0.022 0.050 0.072

~
1Ca Free 0.002 0.004 0.006

MSU 0.016 0.043 0.059
WHIS 0.010 0.062 0.072

MSU pion optical potentialand 0.26, respectively). As the nuclei become bigger there are more
differencesbetweenthe resultsof [OS85a] and [It 88], as can be seenfrom a comparisonof tables8.1
and 9.1. These differencesare essentiallydue to the different input for the opticalpotentialsusedin
both approaches.In [OS85a], as already mentioned,the secondorder repulsives-wave part of the
potentialis missing andthis stressesmorethe effectof the renormalization.The differencebetweenthe
results in [It 88] using different optical potentialsand those of [OS85a] gives clear evidenceof the
sensitivity of the A mesonic width to the pion—nucleus optical potential. Therefore, this width,
measuredin many nuclei, can be used as a tool to select among different pion—nucleusoptical
potentialsproviding an equally good descriptionof low energypion—nucleusscattering.

The role of the AN correlationsdue to short rangeAN repulsionhasbeeninvestigatedin [Ku 85,
Os86]. In [Ku 85] an effective A potential in a 4He cluster is constructedfrom the Dalitz hard core
potential.This leadsto a centralrepulsionin the,~Henucleusand pushesthe A wave functionmoreto
the surfacethan in ordinary shell model potentials. In [Os86] the A wave function used for ~He is
constructedfrom variationalmethodsusinga two-body interactionandan additionalANN three-body
force [Bo 84b]. Oneof the consequencesof the short-rangecorrelationsis thatbecauseof the weaker
AN attractionwith respectto the NN force, theA wave functionis pushedout considerablytowardsthe
surfaceof the nucleus.A measureof this effect is given by the r.m.s. radius.While for the nucleonsof
4He the r.m.s. radiusis 1.5fm, the r.m.s.radiusfor theA wave function is 2.97fm [Bo 84b1. This value
is still largecomparedwith the value2.2fm for the A uncorrelatedwave function that onegetsfrom the
usualA—nucleuspotential V,~ —30 p(r) !p

0.
The consequenceof a A wavefunctionwith more overlapwith the surfaceof the

4He nucleusis an
increaseof the mesonicwidth becausethe Pauli blocking effect becomesless effective. The effects
found in [Ku 85, Os86] are very similar. One finds 40% increasein the mesonicwidth when using
hypernuclearwave functionsconsistentwith the short rangeAN repulsion.If in addition oneconsiders
the effect of the pion renormalization,the mesonicwidth getsfurther increased.However, as onecan
seein table9.2, the resultswith the shell modelwave function or the correlatedoneare very similar
oncethe pion renormalizationis included.On onehandthe correlationspushthe wave functionto the
surface,reducingthe effectof the Pauli blocking. On the otherhand,if the A wavefunction is pushed
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Table 9.2
CalculatedF,,,1F

6,,,,, from [Os86] for ~He.Different combinationsof
unrenormalizedand renormalizedpionsversusshell model andcorre-

lated A wavefunctions areshown.

Shell model Correlated

wavefunction wave function

Freepions 0.24 0.35
renormalizedpions 0.60 0.54

to the surface, the effects of the pion renormalizationare reduced. The two effects seem to
approximatelycancel in this nucleus,althoughit is not clearwhethersuchcancellationwould occur in
heavier nuclei. For these nuclei we expect that the effect of the change in the A wave function
diminishes,becauseevenif the 1s1/2A wave function is changed,it will be anywayburied inside the
nucleus.

Another interesting question in the mesonicwidth is due to the peculiar featuresof the NN

interaction,amongstthem the short rangerepulsion,which haveas a consequencea strongdiversion
from the shell model. The questionof relevancehereis the occupationnumber,which is not equalto
unity for stateswith momentumbelow the Fermi momentum.Although the occupationnumber is
different in differentapproaches,acceptablevaluesrangebetween0.80 and0.90[Ma 85, FP 84, Ra88].
This means~thatthe Pauli blocking effect is only effective for about 80—90%. Thus,evenfor heavy
nuclei we should expecta mesonicwidth of about 0.1 Fffee or larger. Of course,one must take into
accountthe absorptionof the pionsin their way out, but for low energypionsas we haveherethis does
not drasticallyreducethe pion flux andthe mesonicwidths shouldbe in the rangeof a few percentof
the free width. Somecalculationsalongthis direction havebeenperformedin [BT 85]. Assumingabout
90% occupancyin the occupiedstatesof the nucleus,the authorsfind Fr-. 2.5 x 10

2[ree for nuclei
with A — 100. This comparesfavorably with the experimentalnumbersof F~- (1—3) x lO2free
obtainedfrom the data~nm’~’1T~— 100—200for A -= 100 [La 64] togetherwith mm Tot (2~3)Fireeas
implied by existingdata [Ni 76]. However a recentanalysisof the problemhasshown that the above
argument,even if appealing, is incorrect [FO 90]. The reasonis that the magnitude of relevance
enteringthe evaluationof the A width is the spectralfunction, not the occupationnumber.The value
1 — n(k) is obtainedby integratingthe particlespectralfunction from the Fermi energyto infinity, and
for k < kF this function is very smooth.Theconservationof energyimplicit in Tm 1A drasticallyreduces
the interval of integration andone obtains a very small contribution, much smaller than the one
obtainedusing the above intuitive argumentsof the occupationnumber.

The point aboutpion absorptionbringsus to other considerationson the pion renonnalization.In
[It 88, Mo 88] thepion wave distortedwith the pion—nucleusopticalpotentialis used.The distortionof
the pion wave hasasa consequencethe depletionof the pion flux dueto pion absorptionor quasielastic
collisions. The useof thesedistortedpion wavesis fine if one is studyinga transitionfrom the ground
stateof the hypernucleusto a particular discretestate of the final nucleus.But if one looks at the
inclusive processof A—s.urN decay,i.e., without looking at the final nuclearstate,thenby eliminating
in the theoreticalcountingall the eventswherea pion undergoesa quasielasticcollision on its way out,
oneis not countingsomeof the eventswhich will be observedexperimentally,becauseevenif the pion
collides with onenucleonon its way out, the pion is still thereandwill contributeto the experimental
mesonicA width. In otherwords,oneshouldeliminateonly the pionswhich areabsorbedandnot those
which undergo quasielasticevents. The problemis, however, that the pion optical potentialhas an
imaginarypart, whichis responsiblefor bothquasielasticscatteringand absorptionbut doesnot tell us
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how much strengthcorrespondsto each channel.Fortunately, some theoretical schemesare now
availablewhich split the imaginarypart of the optical potentialin differentparts correspondingto the
probabilitiesof the different reactionchannels,[OS85a, Sa88a, KT 88, GO88], andelimination of the
pions absorbedwhile keepingthosewhich undergoquasielasticcollisions is now possible.

An interestingfeature of the shell model calculations[Mo 88] is that, for certainnuclei like ‘~Cor
~Be, F~0is slightly larger than F~- in spiteof the ratio 1/2 thatoneshould expectfrom the 4T 1/2
rule in the absenceof final stateinteractionof the pions. This can appearbecausein the ur°decaysome
T = 0 low lying statesof

8Be and 12C are allowedto be reached,while theseimportanttransitionsare
missing in the ur decay,which leadsonly to the high lying T= 1 states(8B, ‘2N). The samesituation
but interchangingtherole of the ur°and ur appearsin ~Li and1,~B,whereF,~- is furtherenhancedwith
respectto f~o.

Anotherpoint noted in [Mo 88, Ba 88b] is the valuable information thatone can extractfrom the
analysisof the angulardistributionsand pion asymmetriesin the mesonicdecayof polarizedhypernu-
clei [Ej 86, Fu86]. Apart from sensitivity to nuclearstructuredetails,this quantity alsoexhibitsa strong
sensitivity to the renormalizationof pion waves andcould be used,togetherwith other quantities,to
discriminateamongdifferent pion—nucleusopticalpotentials.

10. Non-mesonicdecay: beyond one pion exchange

In section8.3, we had a look at the non-mesonicA decaymediatedby ur exchange.Although the
resultsobtainedfor the non-mesonicA width comparefavorablywith experiment,we could however
seein section8.4 thatone pion exchangealoneled to largediscrepancieswith the experimentalvalues
of the proton to neutroninducedratio.

A model with ur + p exchangeis studiedin detail in [MG 84]. The authorsemploy a number of
different models to describe the p exchange,including a factorization model and one using SU(6)
symmetry. They also explore the role of the urNN and pNN vertex functions and emphasizethe
uncertaintiesin the theoreticalestimatesof the ANM couplingsfor heaviermesons(M). Their results
for the non-mesonicwidth dependstrongly upon the choiceof the relativephasebetweenthe ur andp
couplings. With destructiveinterferencethey get 0.1, versus2.9 with constructiveinterference,for

‘~,m’1~reein nuclearmatter.The contributionfrom ur exchangealoneagreeswith the resultsdiscussed
before.

The samemodel is usedto evaluatethe non-mesonicwidth of the light hypernuclei~He,~Heand~H
in [Ta85]. Their results are summarizedin table 10.1. The experimentalresultscome from an old
analysisof [BD 63], which rely upon the calculationsof Fm of [DL 59]. Recentexperiments[BS86,
Ba88c, Sz 87] in ~He give 0.44±~ The high sensitivityof the resultsto the nucleus,shownin table

Table 10.1
Theoreticalvaluesof ~ from [Ta 851 for different AN—sNN
mechanisms.ir: only pion exchange,s- + p: ir andp exchangewith
constructiveinterference.iT — p: destructiveinterference.“exp”: re-

sultsfrom the analysisof [BD 63).

Nucleus IT + p ir — p “exp”

~He 0.144 0.450 0.033 0.41 ± 0.13
~He 0.126 0.369 0.038 0.14±0.03

0.013 0.013 0.013 0.29±0.14
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10.1, indicates that new measurementsof the non-mesonicwidth along the lines of these latter
experimentswould be very interestingto investigateother ingredientsof the AN—s.NN interaction
beyondthe ur + p model.

Along the samelinesis the work [Na88], wherethe authorcalculatesthe pNA couplingby usinga
pole model and information from weak non-leptonicand radiativedecays.The author obtainsthere
1~im’1~ree= 0.7 for nuclearmatter if vector mesondominanceis assumedto calculate the ratio of the
tensorto vectorcouplingconstantsin the pNNvertex. If the empirical valueof 6.6from [HP 75] is used
for this ratio he obtains~ = 2.1.

Another approachusedin the literature is a hybrid model with nucleonand mesondegreesof
freedomfor distanceslarger thanr

0 0.8—1.0fm and quarkdegreesof freedomfor smaller distances
[Ch83, HK 86]. The contributionto the AN—s.NN processcomesfrom pion exchangefor distances
beyond r0 and from the weak Lagrangianat the quark level, correctedfor the QCD induced
renormalization.The approachattemptsa more microscopicdescriptionof the processbut hasto face
serious problemsstemmingfrom the unsolvedproblemof the strong renormalizationof the non-
leptonicweak transitions.Understandingthe 4T= 1 / 2 dominancehas long beena complexproblem
althoughvery importantprogresshasbeenmaderecently[Pi88]. The Hamiltonianused in [Ch 83, HK
86] is an effective onederivedfrom the weakquarkHamiltonianincluding the renormalizationdueto
strong interactions.This is accomplishedby meansof renormalizationgroup techniquesbasedupon
one-loop diagrams of W’s and gluons [GW791. This effective Hamiltonian does not satisfy the
4 T = 1/2 rule. (Thework of [Pi88] hasthe virtue of showingthe relevantrole of higher QCD ordersin
the enhancementof the zlT= 1/2 contribution.) In addition, in the sharpdivision of the spaceinto a
quarksectoranda nucleonandmesonsectoronehasto rely for the calculationsupon the conceptof a
six quarkbag probability, somewhatimprecisefrom the physicalpoint of view.

For the sakeof comparisonthe authorsalsocalculatethe quarksectorwith the CabibboLagrangian
without strong renormalizationand with a modified form of the [GW 79] Hamiltonian where the
coefficientsarechosensuch as to imposethe 4T = 1/2 rule. In table 10.2 we summarizethe resultsof
the most recentwork of [HK 86], with improvedresultsin the pionic contributionwhich was found to
be negligible in [Ch83].

We can seethat the resultsof the quarksectorarevery sensitiveto the strongrenormalizationand
the way it is implemented.From the tableonecan observea reductionfactorT~(nuclearmatter)If~~

(~C)= 2.34from nuclearmatterto the nucleusof ‘~Cin the caseof 4T = 1/2.This is in contrastto the
value2.0/1.5= 1.33 found in [OS85a] and the value 1.42 quotedin [Du 86b]. Onecan alsoseein the
tablethat for the 4T= 1/2 case,preferredin [HK 86], the pionic contributionis sizeable,since,when
addedcoherentlyto the quark contribution, it increasesthe valueof F,~by a factor 4—5.

The most completemodel for the non-mesonicA decay is the one of [To90], although only

Table 10.2.
Theoreticalvaluesof ~ from [HK 86]. Quark: quark sector
contribution.Total: quarkplus pion exchangecontributions.C: with
Cabibbo Lagrangianfor the quark sector. GW: with the effective
Hamiltonianof 1GW 79]. 4T = 1/2: with a modified version of the

Hamiltonianto enforcethe LIT = 1/2 rule.

NuclearMatter ~C

‘r,,e C GW .I1T=112 C GW zIT=1/2

quark 5.19 2.18 0.73 1.76 0.74 0.24
total 9.96 5.54 3.00 3.87 2.25 1.28
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Fig. 10.1. Meson exchangediagramsusedto evaluatetheAN—sNNtransitionpotential in themodel of [To90, Du86a,86b].

preliminary resultsreportedin conferencesareavailable[Du 86a,b, c]. The modelusedthereis the one
depicted in fig. 10.1. It contains ur, p, ~,cv, K, K* exchange.The full strangeness-changingweak
interactionwhich is responsiblefor the transformationof a A hyperoninto a nucleonis indicatedby a
encircledcross.The other verticesindicatestronginteractions.In addition,diagramswherethe meson
exchangewith strong interactionsare followed or precededby a weak transitionmeson—s.mesonor
baryon—s.baryon,are also considered(indicatedby a cross).

By using SU(6)~symmetry and enforcing the empirical 4T = 1/2 rule they can obtain all the
(M’IHWIM) amplitudesfrom (urlHwlK). Using PCAC, this latter quantity is relatedto the physical
K—s. urur decayrate. In a similar way, by usingPCAC, the baryon—s. baryonamplitudescan be related
to the A and I decay.The strongcouplingsare obtainedby using SU(3) symmetry,PCAC andthe
Goldberger—Treimanrelation. In a similar way all parity conservingbaryon—baryon—mesoncouplings
can be relatedby SU(6)~symmetry and the 4T= 1/2 rule to the urpA and ur°pI+ couplings.The
resultsareevaluatedin nuclearmatterandsummarizedin table10.3. The resultsfor ur exchangewith
andwithoutcorrelationsagreewith [OS85a]. Thosewith ur + p agreequalitatively with [MG 84] in the
caseof constructiveinterference.The inclusionof all otheringredientsbeyondur exchangereducesthe
width by only 30%, thus stressingthe role of ur exchangein non-mesonicA decay. However, the
strengthof the transition is split somewhatdifferently into partial waveswhenall the ingredientsare
consideredand this hasa special repercussionin the ratio of protonto neutroninducedA decay.

An interestingcritical reviewof all theseapproaches,complementaryto the onehere,can be found
in [Mc86].

The ratio of protonto neutroninducedA decayis rathersensitiveto detailsof the interaction.We
already saw in section 8.4 that, by consideringthe direct and exchangeterms in the interaction
mediatedby pion exchange,oneobtaineda valueof 14 for that ratio, while, by consideringthe direct
term only, one obtaineda value of 5 for that ratio. However, the considerationof the exchangeterms

Table 10.3
Theoreticalvaluesof j~=,~j;rooand~ from the model of
[To 90, Du 86a,b] for pion exchange,correlatedpionexchange,iT + p

exchangeand full model.

IT IT

no correlations correlations ir + p w, K, K
5

3.89 1.82 1.55 1.23
11.2 16.6 13.1 2.9
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only increasedthe width by 20%.In a similarway, this ratio is muchmoresensitiveto the detailsof the
interactionthan the A width.

One of the most interestingresults in [Du 86a] is the value of this ratio calculatedfor symmetric
nuclearmatter.It is summarizedin table 10.3. We observetherethatthe resultswith ir exchange,with
or without correlations,provide valuesof 11.2 and 16.6, in qualitative agreementwith the factor 14
obtainedin section8.4. Theseresultsarenot muchalteredwhenthe p contributionis added.However,
the whole model providesa ratio of 2.9, quite different from the results provided by ur or ur + p
exchange.This resultwould be closer to the experimentalvalues, -=2 [Mo 741 or — 1 [Or 85].

The resultsof [Na88] oscillatebetween1.5 if vectormesondominanceis assumedto constructthe
pNNvertex, and0.8 if the experimentalvalueof the tensorcouplingto vectorcouplingfrom [HP75] is
used.In any casetheseresultsdiffer substantiallyfrom thoseof [Du 86a] shownin table 10.3.

In [HK 88] the ratio is alsoevaluatedin ‘~C.They obtaina ratio of 5.3 from the pionic contribution.
This differs substantiallyfrom the factor 14 calculatedin section8.4 or from the resultsof [Du 86a]
shown in table 10.3. However, it agreeswith the factor 5 obtainedin section8.4 when the exchange
termsareomitted. For the quarksectorthe ratio is 3/2,obtainedwith awave function productof single
particle wave functions. With all theseassumptionsthe value obtainedfor the ratio is 2.7. Other
contributionsfrom accountingfor AN—s.IN—s.NN intermediatecontributionshavebeenevaluatedin
[Ba 88d] andlead to an increasein the protonto neutroninducedratio.

The discussionsin this sectionclearly tell us that the valueof the non-mesonicwidth doesnot help
much to discriminate betweenmodels, but selectedquantitieslike the proton to neutroninducedA
decayratio are very sensitiveto details of the models.Another quantity equallysensitiveto detailsof
the model is the ratio of the parity violating to parity conservingcontributions.This quantity changes
from 0.14 with pion exchangeto 0.90 in the full model of [Du 86a].

These findings should serve as a guideline for future experiments.On the other hand, when
analyzingthe dataonemust takepropercareof thefinal stateinteractionbecausethe nucleonsleaving
the nucleuscan be different form thoseprimarily involved in the AN—s.NN reaction.

11. Conclusions

We havemadean exposition of the experimentaland theoreticalsituationsurroundingthe decay
modesand widths of I and A hypernuclei,with emphasison a few particular points.

The I hypernuclearproblemhasbeenthe subjectof intensetheoreticalandexperimentaldebatein
the last few years.In this reportwe havemadea specialeffort to exposein an easy,understandable
way, the basicfeaturesof the problem.For that purposewe havedevelopeda few useful approxima-
tions, which provide handyanalytical formulas,yet very accurate,by meansof which one can get a
better understandingof the essenceof the problem.ThePauli blockingeffect was shownto play only a
moderaterole in reducingI widths. The major ingredientleading to narrow widths in I hypernuclei
was shown to be the polarizationof the medium by the spin—isospininteractionsresponsiblefor the
IN—s.AN transition.This phenomenonproduceda densitydependentquenchingof the imaginarypart
of the .Z self-energy,which had a very small repercussionin I - atoms (low density regime) but
producedI hypernuclearwidths aroundthreetimessmallerthanthoseprovidedby a linear potentialin
the nucleardensityextractedfrom the I - atom data.

With a potentialconsistentwith the I - atom data,andincorporatingthe quenchingeffects from the
polarization, a study of I hypernuclearstatesfor severalnuclei was carriedout with predictionsof
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many is, 2p, 2sstates,which should in principle be distinguishableexperimentallysincethe widths are
narrowerthan the separationenergybetweenthe levels. The caseof the ~He hypernucleuswas also
studiedin the samecontext. The resultsare consistentwith the experimentalfindings for this nucleus
and with the non-observationof a similar state in the 4He(K, ur~)reaction. However, it was also
noted that in very light hypernucleia strong IN repulsionat short distancesalso leadsto narrower
widths.

The relationshipof the problemof narrowI widthswith theoneof pionic anomalousatomswas also
discussed.

In A hypernucleithe two modesof decay,mesonicandnon-mesonichavebeeninvestigatedin the
samemany-bodyframework.We havealso reviewedthe work existingon the subject.The non-mesonic
decaycarriesinformation on the AN—s.NN weak transition. Although manyappropriatemodelsyield
valuesfor the non-mesonicwidth in fair agreementwith experiment,it was shown that this is not the
caseif one looksat selectedmagnitudesof the reactionlike the ratio of proton to neutroninducedA
decayor the ratio of the parity conservingto parity violating parts.

In the mesonicdecay the width is drasticallyreducedwith respectto the free one becauseof the
Pauli exclusionprinciple. An interestingfeatureis the high sensitivityof thiswidth to the propertiesof
the pionsinside the nucleusor equivalentlyto the pion—nucleusopticalpotential.This makesthe meson
decay a useful tool to selectamongmany possible optical potentialsdescribingequally well the low
energypion—nucleusscattering.

With the limited amountof information available,the decayof .1 and A hypernucleihasposeda
number of challenging questionsand has shown that it containsvery valuable information about
magnitudesof muchrelevancein nuclearphysics.The smallamountof dataavailableon thesereactions
andthe difficulties to makerapid progresswith the presentexperimentalfacilities call for aqualitative
changein thesefacilities which would allow a steadydevelopmentof this interestingfield.
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Appendix. The Liudhard function

For complexvaluesof q°,an evaluationof the integral in eq. (4.34) gives [FW71, OP81]

M r 2 ‘z+P 2 z’+l 1
U~(q)=~p k L~(1~)ln~~)+z’+~(1—z’ )ln( )j, (A.i)

qF z z

wherekF is the Fermi momentumand

M /~ q2~ M / ~ q2\
Z = qlk ~q — ~-~j) = ____ — q — ~-M) (A.2)
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For realq°the prescriptionq°—s.q°+ (q°I~q°~)iE shouldbe used.The valueof Re U~(q)is thengiven
by eq. (A.i) but with absolutevalues in the argumentsof the logarithms.The value of Im U~(q)is
given by

Im U~(q)= - ~urpl~~F[(1 - z2)o(1- zI) -(1- z~2)o(i- z’)] (A.3)

Similarly for U~(q),making someapproximations[OP 81], one obtains

U~(q)=~)p ~k~F[~ + - z~)in ( ~~ + z~+ ~(1 - zf) ln ( ~~ ~)], (A.4)

z~_qk(q —

(A.5)

whereWR = M~— M and I~is the 4 width,

*23 _____
T~(q)=~ ~—(!~)~(M + + q~)O(v~- M - p.), (A.6)

s M2 + q2 + 2q°\[M~+ ~ (A.7)

~cm =A~2(s M2, p.2)/2v~~’, (A.8)

or I~(q) = 0 if q°is complex.

References

[Ad67] J.B. Adams,Phys.Rev. 156 (1967) 1611.
[Ak86] Y. Akaishi, Few-BodySystemsSuppl. No. 1 (1986) 120.
[Ar85] H. Arenhovel, in: New Vistas in Electro-NuclearPhysics,NATO ASI seriesB, Vol. 142, edsEL. Tomusiaketal.. p. 251.

[AH79I A. Arima and H. Hyuga,in: Mesonsin Nuclei, Vol. II, edsM. Rho and D.H. Wilkinson (North-Holland,Amsterdam,1979).
[Au871N. Auerbach,Phys. Rev. C 35(1987)1798.
[Ba70]G. Backenstoss,Annu. Rev. Nucl. Sci. 20 (1970) 467.
[Ba78]C.J. Batty et a)., Phys. Lett. B 74 (1978) 27.
[Ba83]C.J. Batty, A. Gal and G. Toker, NucI. Phys. A 402 (1983) 349.
[Ba85] C.J. Batty, private communication.
[Ba86)PD. Barnes,Nucl. Phys.A 450 (1986) 43c.

[Ba88a]H. BandO,T. MotobaandJ. ~ofka, Z. Phys. A 330 (1988) 203.
[Ba88b]H. BandO,T. Motoba, M. Sotonaand J. Zofka, Fukui Univ. preprint, FUMP-1988-8.
[Ba88c]PD. Barnes,Nucl. Phys.A 478 (1988) 127c.
[Ba88d]H. BandO, Y. Shonoand H. Takaki, mt. J. Mod. Phys. A 3(1988)1581.
[BD63]MM. Block and RH. Dalitz, Phys. Rev.Lett. 11(1963)96.
[BD65]J.D. Bjorken and S.D. Drell, RelativisticQuantumFields (McGraw-Hill, New York, 1965).
[Be69]P.R. Bevington,Data Reductionand Analysis for thePhysical Sciences(McGraw-Hill, New York, 1969).
[Be80]R. Bertini et al., Phys. Lett. B 90 (1980) 375.



E. Osetci a!., Decay modesof I andA hypernuclet 143

[Be84JR. Bertini et al., Phys. Lett. B 136 (1984) 29.
[Be85]R. Bertini et al., Phys. Lett. B 158 (1985) 19.
[BJ79]G.E. Brown and AD. Jackson,The Nucleon—NucleonInteraction(North-Holland,Amsterdam,1979). —

[BM8O]L.N. BogdanovaandV.E. Markushin,JEPTLett. 32 (1980) 305.
[BM86]H. Bandöand T. Motoba,Prog. Theor. Phys.76 (1986) 1321.
[BN82]H. Bandö and S. Nagata,Prog. Theor.Phys. 67 (1982) 522.
[Bo70]G. Bohm et a)., Nucl. Phys. B 23 (1970) 93.
[Bo77]A. Bouyssy, Nucl. Phys. A 290 (1977) 324.
[Bo79]A. Bouyssy, Phys. Lett. B 84 (1979) 41.

[Bo84alL.N. Bogdanova,Soy. J. Part. NucI. 15 (1984) 361. :

[Bo84b]AR. Bodmer,Q.U. Usmaniand J. Carison,Phys. Rev.C 29 (1984) 684.
[B082) R. Brockman and E. Oset,Phys. Lett. B 118 (1982) 33.
[B084] R. Brockmanand E. Oset, in: NucleonSpectroscopyandNuclearInteractions,edsH. Ejiri andT. Fukuda(World Scientific,Singapore,

1984) p. 648.
[BO86]R. Brockman and E. Oset,NucI. Phys. A 450 (1986) 353c.
[Br63] G.E. Brown, J.H. GunnandP. Gould, Nuci. Phys.46 (1963) 598.
[Br72)G.E. Brown, Many-Body Problems(North Holland, Amsterdam,1972).
[Br75]W. BrUckneret a)., Phys.Lett. B 55 (1975) 107.
[Br76JW. BrUckneret al., Phys.Lett. B 62 (1976) 481.
[Br78] BA. Brown, W. Chungand B.H. Wildenthal, Phys. Rev. Lett. 40 (1978) 1631.
[BS86]PD. BarnesandJ. J. Szymanski,in: Proc. 1986INSIntern. Symp.on HypernuclearPhysics,edsH. BandU,0. HashimotoandK. Ogawa

(INS, Tokyo) p. 136.
[BT84] H. BandUand H. Takaki, Prog. Theor.Phys. 72 (1984) 106.
[BT85)H. BandUandH. Takaki, Phys. Lett. B 150 (1985) 409.
[Bu86JR. Buttgen, K. Holinde, B. Hoizenkampand J. Speth, in: IntersectionsBetweenParticle andNuclearPhysics(LakeLouise, 1986),ed.

D.F. GeesamanAlP Conf. Proc. no. 150, p. 924.
[Ch83lC.Y. Cheung,D.P. Heddle and L.S. Kisslinger, Phys. Rev.C 27 (1983) 335.
[Ch86] RE. Chrien, ed., Proc. Intern. Sym. on Hypernuclerand Kaon Physics,Nuci. Phys. A 450 (1986).
[Ch87jRE. Chrien, in: SelectedProblemsof ModernNuclearPhysics,Brookhavenpreprint.
[Ch88JRE. Chrien, Nucl. Phys. A 478 (1988)705c.
[Ch89}H.C. Chiang, E. Oset and P. Fernándezde Cdrdoba,University of Valencia preprint (1989).
[CP53]‘N. Chestonand H. Primakoff, Phys. Rev.92 (1953) 1537.
[Da58] RH. Dalitz, Phys. Rev. 112 (1958) 605.
[Da72] RH. Dalitz, R.C. HerndonandY.C. Tang, NucI. Phys. B 47 (1972) 109.
[D~81]1. D~browsky,Nukleonika 26 (1981) 1061.
[DF87) C.B. Dover and H. Feshbach,Phys.Rev. Lett. 59 (1987) 2539.
[DG83JC.B. Dover and A. Gal, Prog.Part. NucI. Phys. 12 (1983) 171.
[DL59] RH. Dalitz and L. Liu, Phys. Rev. 116 (1959) 1312.
[Do71] C.B. Dover, J. HUfner and RH. Lemmer, Ann. Phys.66 (1971) 248.
[Do80] CR. Dover, L. LudekingandG.E. Walker, Phys.Rev. C 22 (1980) 2073.
[DPS3)M. Danyszand J. Pniewski, Philos. Mag. 44 (1953) 348.
[DR81] J. D~browskiand J. Ro~ynek,Phys. Rev.C 23 (1981) 1706.
[DR83JJ. D~browskiandJ. Ro~ynek,Acta Phys.Polon. B 14 (1983) 439.
[Du86a]J.F.Dubach,NucI. Phys. A 450 (1986) 71c.
[Du86b]J. Dubach, in: Intersectionsof Particle and NuclearPhysics(LakeLouise, 1986), ed. D.F. Geesaman,AlP Conf. Proc. no. 150.
[Du86c]J. Dubach, in: Proc. Intern. Conf. on Weak andElectromagneticInteractionsin Nuclei (Heidelberg,1986)ed. H.V. Klapdor, p. 576.
[DW82)C.B. Dover and G.E. Walker, Phys. Rep. 89 (1982) 1.
[EE66) M. Ericson andTED. Ericson, Ann. Phys. 36 (1966) 323.
[Ej86] H. Ejiri, T. Fukuda,T. Shibata,H. BandUandK.I. Kubo, in: Proc. 1986 INS Intern. Symp. on HypernuclearPhysics,edsH. BandU,0.

Hashimotoand K. Ogawa(INS, Tokyo) p. 223.
[En66]R. Engelmann,H. Filthuth, V. Hepp and E. Kiuge, Phys. Lett. 21(1966)587.
[Fa83lS. Fantoni, B.L. Friman andV.R. Pandharipande,NucI. Phys. A 399 (1983) 51.
[Fe85]H. Feshbach,Ann. Phys. 165 (1985) 398.
[Fe86]H. Feshbach, Phys. Lett. B 168 (1986) 318.
[Fe89]P. Fernándezde Córdoba,E. Osetand L.L. Salcedo,Universityof Valencia preprint.

fF090] P. Fernándezde Córdobaand E. Oset,University of Valenciapreprint.
[FP84]S. Fantoni and V.C. Pandharipande,Nucl. Phys. A 427 (1984) 473.
[Fu86]T. Fukuda,H. Ejiri, T. Shibata,H. BandöandT. Motoba,in: Proc. 1986INS Intern. Symp. on Hypernuclear Physics, eds H. Bandfl,0.

Hasimoto and K. Ogawa(INS, Tokyo) p. 170.



144 E. Osetet a!., Decay modesof I and A hypernuc!ei

[FW71]AL. Fetter andJ.D. Walecka,QuantumTheory of Many-ParticleSystems(McGraw-Hill, New York, 1971).
[Ga81]A. Gal, 0. Toker and Y. Alexander,Ann. Phys. 137 (1981) 341.
[Ga86]A. Gal, in: Proc.Intern. Symp. on HypernuclearandKaon Physics(Brookhaven.1985),ed. RE. Chrien,NucI. Phys. A 450 (1986) 343c.
[Ga89[C. GarcIa-Recio,L.L. Salcedoand E. Oset.Phys. Rev. C 39 (1989) 595.

[GD8O]A. Gal and C.B. Dover,Phys. Rev. Lett. 44 (1980) 379.
[G088] C. GarcIa-RecioandE. Oset,Phys. Rev. C 40 (1989) 1308.
[Gr85] R. Grace et al., Phys. Rev. Lett. 55(1985)1055.

[GW79]F.J. Gilman and M. B. Wise. Phys. Rev. D 20 (1979) 2392.
[Ha77]J.M. Haupton,iA. Kadyk and OH. Trilling, Nucl. Phys. B 125 (1977) 29.
[Ha87[R. Hausmann,PB. Siegel, W. Weise and M. Kohno. Phys. Lett. B 199 (1987) 17.

[l-1a88a]R.S. Hayano,NucI. Phys. A 478 (1988) 113c.

jHa88b] R.S. Hayano et al.. Phys. Lett. B 231 (1989) 355.
[Ha88c]R. Hausmann,Nuci. Phys. A 479 (1988) 247.
[Ha89a]T. Harada,S. Shinmura,Y. Akaishi and H. Tanaka,HokkaidoUniversity preprint (1989).
[l-1a89b]T. Harada,S. Shinmura,V. Akaishi and H. Tanaka,Hokkaido Universitypreprint (1989).
[He83]D. W. Herzog et a).. Phys. Rev. Lett. 51(1983)1131.

[HK86] D.P. Heddleand L.S. Kisslinger, Phys. Rev. C 33(1986) 608.
[HK88] D.P. Heddleand L.S. Kisslinger, Universityof Illinois at Urbanapreprint (1988).
[HP75]G. HUler and E. Pietarinen, Nuci. Phys. B 95 (1975) 210.
[Hu75[ J. Hflfner. Phys. Rep.21(1975)1.

[1t88]K. Itonaga,T. Motobaand H. BandU,Z. Phys. A 330 (1988) 209.
[IZ8O]C. ltzikson and J.B. Zuber, QuantumField Theory (McGraw-Hill, New York, 1980).
[Ja74JC.W. deJager,H. de Vries and C. de Vries. At. Data Nucl. Data Tables14 (1974) 479.
[Je76]J.P. Jeukenne.A. Lejeuneand C. Mahaux, Phys. Rep. 25 (1976) 83.
[JT83[J.A. Johnstone and A.W. Thomas. NucI. Phys. A 392 (1983) 409.
jJu72] M. Julieet al., NucI. Phys. B 47 (1972)36.
[Ka71] iA. Kadyk et al.. NucI. Phys. B 27(1971)13.
[Ke70]G. Keyeset al.. Phys. Rev, D 1(1970) 66.
[Ke73]0. Keyeset al.. Nucl. Phys. B 67 (1973) 269.
[Kh89]Khin Swe Myint, S. Tadokoroand V. Akaishi, Hokkaido Universitypreprint, 1989.
[Ki80] L.S. Kisslinger, Phys. Rev. Lett. 44 (1980)968.

[Ko79)J. Konijn et al.. Nucl. Phys.A 326 (1979) 401.
[Ko87a]M. Kohno, R. Hausmann.P. Siegel and W. Weise,Nod. Phys.A 470 (1987) 609.
[Ko87b]J. Konijn et a)., NIKHEF preprint.
[KT88] M. Kh. Khankhasaevand N.S. Topilskaya,Phys. Lett, B 217 (1989) 14.
[Ku85]V. Kurihara, Y. Akaishi and H. Tanaka,Phys. Rev. C 31(1985)97).
[La64j J.P. Lagnauxet al., Nucl. Phys.60 (1964) 97.
[Lo86]M.J.LUpez-Santodomingo,Tesinade Licenciatura,Universityof Valladolid.
[Ma76]RD. Mattuck. A Guideto FeynmanDiagrams in the Many-Body Problem (McGraw-Hill, New York, 1976).
[Ma85[C. Mahaux, P.F. Bortignon, R.A. Broglia and C.H. Dasso, Phys.Rep. 120 (1985) 1.
[Ma87]R. Machleidt, K. 1-lolinde and Ch. Elster, Phys. Rep. 149 (1987) 1.
[Ma88]R. Mach, 0. Zofka. K. ltonaga.T. Motobaand H. BandU,Fukui University preprint.
[Mc86]B.H.J. McKellar, in: Proc. 1986 INS Intern. Symp. on HypernuclearPhysics,eds H. BandU,0. HashimotoandK. Ogawa(INS, Tokyo)

p. 146.
[M084] B.H.J. McKellar and B.F. Gibson,Phys. Rev. C 30 (1984) 322.

[Mi85] E.C. Milner et a).. Phys. Rev. Lett. 54 (1985) 1237.
[Mi88] D.J. Miliener. C.B. Doverand A. Gal, Phys. Rev.C 38 (1988) 2700.
[Mo74j A. Montwill et al., Nuci. Phys. A 234 (1974) 413.
[Mo88]T. Motoba. K. Itonagaand H. BandU, Nucl. Phys. A 489 (1988) 683.
[MY8510. Morimatsu and K. Yazaki. Nucl. Phys. A 435 (1985) 727.
[MY8610. Morimatsuand K. Yazaki. in: Proc. 1986 INS Intern. Symp. on HypernuclearPhysics, eds H. BandU, 0. Hashimotoand K. Ogawa

(INS, Tokyo) p. 50.

[MY88] 0. Morimatsuand K. Yazaki, Nucl. Phys.A 483 (1988) 493.
[Na731MM. Nagels.T.A. Rijken and J.J. de Swart, Ann. Phys. 79 (1973) 338.
(Na77] MM. Nagels. T.A. Rijken and J.J. de Swart, Phys. Rev. 0 15 (1977) 2547.
[Na79]MM. Nagels,TA. Rijken and J.i. de Swart. Phys. Rev. D 20 (1979) 1633.

[Na88]0. Nardulli. Phys. Rev.C 38 (1988) 832.
[Ni76] K.J. Nield et al.. Phys. Rev. C 13(1976)1263.



E. Osetet a!., Decay modesof .1 and A hypernuc!ei 145

[Ni89JJ. Nieves,E. Oset and C. GarcIa-Recio,University of Valenciapreprint (1989).
[0185]A. Olin et al., Nucl. Phys. A 439 (1985) 589. :

[0P81] E. Osetand A. Palanques,Nod. Phys. A 359 (1981) 289.
[0s82] E. Oset,H. Toki andW. Weise,Phys. Rep. 83 (1982) 281.
[0s85] E. Oset,L.L. Salcedoand D. Strottman,Phys. Lett. B 165 (1985) 13.
[0s86] E. Oset,L.L. Salcedoand ON. Usmani, NucI. Phys.A 450 (1986) 67c.

[OS85a]E. Osetand L.L. Salcedo,NucI. Phys. A 443 (1985) 704.
[OS85b]E. Osetand L.L. Salcedo,J. Comput.Phys. 57 (1985) 361.
[0S86]E. Osetand L.L. Salcedo,Nod.Phys. A 450 (1986) 371c.
[0S87]E. Osetand L.L. Salcedo,NucI. Phys. A 468 (1987) 631.

10W79] E. Osetand W. Weise,Nucl. Phys. A 319 (1979) 477.
[Pi82]H. Piekarzet a)., Phys.Lett. B 110 (1982) 428.
[Pi88] A. Pich. CERN preprintTH.5102/88(1988).
[Po76]B. Povh, Rep.Prog. Phys. 39 (1976) 823.
[Po88]S. Polikanov, Nucl. Phys. A 478 (1988) 805c.
[PS64]RI. Premand PH. Steinberg,Phys. Rev.136 (1964) B 1803.
[PS69]RE. Phillips and I. Schneps,Phys. Rev. 180 (1969) 1307.
[Ra88]A. Ramos,Ph.D. thesis, Universityof Barcelona,Spain.

[RD79]J. Ro~ynekand I. D~browski,Phys.Rev. C 20 (1979) 1612.
[RKS6]M. Ruthermanand R. Karplus, Phys. Rev. 102 (1956) 247.
[Sa88a}L.L. Salcedo,E. Oset,Mi. Vicente and C. GarcIa-Recio,NucI. Phys. A 484 (1988) 557.
[Sa88b]A. Sakaguchi et al., Tokyo University preprint.
[Se88]R. Seki, in: Pion Nucleus Physics: FutureDirections andNew Facilitiesat LAMPF (Los Alamos, 1988), eds RI. Petersonand D.

Strottman,AlP Coni. Proc. no. 163, p. 233.
[Sp88]I. Speth,ed.,Proc. Intern. Symp. on Strangenessin HadronicMatter (Bad Honnef. 1987), NucI. Phys. A 479 (1988).
[St79]K. Stricker, H. McManus and l.A. Carr, Phys. Rev. C 19 (1979) 929.

[SW81]W. Stepien-RuzkaandS. Wycech, Nucl. Phys.A 362 (1981) 1706.
[Sz87]ii. Szymansky,Ph.D. dissertation,Carnegie-MellonUniversity (1987).
[Ta84] L. Tauscher,C. Garcia-Recioand E. Oset,Noel. Phys.A 415 (1984) 333.
[Ta85]K. Takeuchi,H. Takaki and H. BandU, Prog. Theor. Phys.73(1985)841, Progr. Lett.
[Ta88}H. Tamuraet al., in: Proc.Intern. Symp. on Strangenessin HadronicMatter(Bad Honnef, 1987),ed. J. Speth,Noel. Phys.A 479 (1988)

161c.
[Te62] V.L. Telegdi,Sci. Am. 206 (1962) 50.
[To90] L. de Ia Torre, iF. Donoghue, I. Dubachand BR. Holstein, to be submitted.
[TY88] H. Toki and T. Yamazaki,Phys. Lett. B 213 (1988) 129.
[Wh86]CS. Whisnant,Phys. Rev. C 34 (1986) 262.
[Wi73] D.H. Wilkinson, Nucl. Phys.A 209 (1973) 470.
[Wi74] D.H. Wilkinson, Nucl. Phys.A 225 (1974) 365.
lYa85) T. Yamazakiet a)., Phys. Rev.Lett. 54 (1985) 102.
[Ya86]T. Yamazakiet a)., Nuci. Phys.A 450 (1986) ic.

1Ya88] T. Yamazaki,R.S. Hayano,0. Morimatsu and K. Yazaki, Phys. Lett. B 207 (1988) 393.
[YB83] V. Yamamotoand H. BandU, Prog. Theor. Phys. 69 (1983) 1312.
[YB85]V. Yamamotoand H. BandU, Prog. Theor. Phys. Suppl. 81(1985)9; Prog. Theor. Phys. 73(1985)905.



This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 139.184.14.159

This content was downloaded on 02/10/2015 at 17:29

Please note that terms and conditions apply.

Proton and light ion induced charge exchange reactions in nuclei

View the table of contents for this issue, or go to the journal homepage for more

1993 Phys. Scr. 48 101

(http://iopscience.iop.org/1402-4896/48/1/017)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1402-4896/48/1
http://iopscience.iop.org/1402-4896
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Physica Scripta. Vol. 48, 101-104, 1993 

Proton and Light Ion Induced Charge Exchange Reactions in 
Nuclei 

E. Oset, P. Fernandez de Cordoba, J. Nieves and M. J. Vicente-Vacas 

Departamento de Fisica Te6rica and IFIC, Centro Mixto Universidad de Valencia-CSIC, 46100 Burjassot, Valencia, Spain 

Received October 15,1992; accepted November 30,1992 

Abstract 
We study the different channels which contribute to the charge exchange 
reactions of the type (’He, t) (p, n) etc., in the region of excitation of the 
delta resonance. We show that the shift of the delta peak in nuclei is due to 
a collaboration of many processes : delta excitation in the projectile, quasi- 
elastic collisions, virtual pion absorption and coherent pion production. 
The first three processes are responsible for a considerable shift of strength 
but do not move the peak position, while the addition of the coherent 
channel produces finally the shift of the peak. 

We concentrate first on the (3He, t) reactions at 2GeV 
kinetic energy of the 3He where the Saclay data [l] show an 
appreciable shift of strength from the proton to the deu- 
teron targets and an even more remarkable shift of the 
strength and the position of the peak for medium and heavy 
nuclei (see Fig. 1). We want to stress two features from this 
picture: On the first hand there is some shift in the deuteron 
target with respect to the d3He, t) reaction. On the second 
one, in ‘*C there is an appreciable amount of strength close 
to the maximum energy of the t, which corresponds to 
quasielastic collisions. With respect to the deuteron, since 
many body effects should be small in this inclusive cross 
section, the most natural assumption is that the (3He, t) 
reaction on the neutron target is different to the one with 
the proton target and has its strength shifted towards higher 
t energies. With respect to the quasielastic peak one can see 
that a smooth extrapolation of this peak to lower t energies 

Y w 
U 
W 
P 
wk 

0.5 U 

1400 1600 I800 
Tt (MeV) 

Fig. 1.  Double differential cross section for (’He, t) on different layer nuclei 
as a function of the t kinetic energy 

a) b )  
Fig .  2. (a) Delta excitation in the target; (b) Delta excitation in the project- 
ile 

necessarily has some strength below the delta peak. We 
have payed attention to these two issues. 

The shift of strength in the deuteron was interpreted in 
Ref. [Z] in terms of A excitation in the projectile. We show 
in Fig. 2(a) and (b) the mechanisms of delta excitation in the 
target (DET) and the projectile (DEP). The two mechanisms 
give rise to very different t energy shapes. Indeed in the 
DET process the A invariant mass is fixed in terms of the t 
four momentum while in the DEP mechanisms this invari- 
ant mass is not fixed and depends explicitly on the pion 
momentum which changes within the phase space. One has 

DET: S, = @He - pt + PN)’ 
DEP: 

which shows explicitly the dependence commented before. 
The values of sp are such that the cross section peaks at 
higher t energies than the DET process. The weight of both 
mechanisms depends on the target and the type of reaction. 
We show in Table I the weight of these mechanisms based 
solely on the isospin counting. 

As we can see, in the (3He, t) reaction in the p target the 
DET mechanism dominates, however in the n target both 
DET and DEP mechanisms have the same weight and as a 
consequence there is a shift of strength in the neutron 
towards high t energies, and correspondingly in the deu- 
teron when one sums the contributions of the p and n to the 

= [@, + P ~ ) ~ ] ’ ’ ~  - 2M 

Table I. Isospin coefficients 

Target Proiectile 

d3He, t) 
n(’He, t) 
p(’He, 3He) 
n(’He, 3He) 
p(4He, 4He) 
I I ( ~ H ~ ,  4He) 

2 
213 
619 
619 
0 
0 

219 
213 

a 1 3  
a 1 3  

13419 
8619 
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1400 1500 1600 1700 I800 I900 2000 
1.- 
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Fig. 3. Double differential cross section in the p(He, t)px+ reaction in the p 
lab system. (1) Results including the DET + DEP + s-wave mechanisms. 
(2) Results with the DET mechanism alone. (3) Results for the n(He, t)Nn 
reaction, including the DET + DEP + s-wave mechanisms 

inclusive (3He, t) reaction. In Table I we also show the 
isospin weight for other reactions, (3He, 3He) and (4He, 
4He). Both of them are dominated by A excitation in the 
projectile. In particular in the (4He, 4He) reaction, for 
obvious reasons of isospin conservation, the DET mecha- 
nism is forbidden and there is only excitation in the project- 
ile. Predictions for the (3He, 3He) reaction are done in Ref. 
[3] and measurements of the p(4He, 4He) reaction have 
been recently done [4], showing a cross section considerably 
larger than the one of the d3He, t), in qualitative agreement 
with the expectations of Table I. Theoretical work under 
these lines is also in progress [SI. In Fig. 3 we show the 
predictions for the (3He, t) cross section on the proton and 
the neutron and in Fig. 4 the predictions for the deuteron. 
As one can see, the shapes of the proton and neutron dis- 
tributions are quite different and the deuteron distribution is 
fairly well reproduced. 

Now we come to the second point and look at all chan- 
nels which contribute to the inclusive (3He, t) reaction on 
nuclei : 

t A 
L 4 

Tm=2 GeV 

e=Do 

1.0 

> 0.6 1 
-U 

0.z 1, , , ,J I I I '; l,,k I , , , , j 
. ..." 

0.0 
1406 I 1500 1600 1700 I800 1900 2000 

T, Imv) 

Fig. 4. Double differential cross section for (3He, t) on deuteron target at 
fixed angle as a function of the t kinetic energy. Dotted curve: DEP mecha- 
nism alone. Solid curve: DET + DEP + s-wave 
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Fig. 5. Process of virtual pion absorption. (a) generic, (b) A dominated 
absorption piece 

(1) Quasielastic collisions which include one step or two 
step processes : 

He + N + t + N 

He + N + He(t) + N followed by He(t) + N + t + N 

He + N + He*(t*) + N followed by He*(t*) + N + t + N 

where in the last process there is a quasielastic collision with 
breakup of the He or t in the first step and recombination in 
the second one. 

(2) Pion production, for which the model of Fig. 2 is used 
including delta excitation in the target and the projectile. 
Two step processes in which a quasielastic collision appears 
before or after pion production are also considered. In all 
these processes the nucleons are ejected to the continuum or 
into "C excited states and the process accounts for incoher- 
ent pion production. 

(3) Virtual pion absorption. These are processes of the 
type of Fig. 5(a) where the dashed circle represents the 
nN + nN amplitude which contains s- and p-waves. A par- 
ticular case of the p-wave piece is shown in Fig. 5(b) corre- 
sponding to delta excitation followed by the non-mesonic A 
decay, AN+". It must be said, however, that at low 
virtual pion energies where this mechanism peaks, the 
mechanism of Fig. 5(b) only accounts for about one-third of 
the strength of the p-wave part, the rest coming from 
nucleon pole or crossed nucleon and delta pole terms and 
the interference with the diagram of Fig. 5(a). The pion in 
Fig. 5 is in practice substituted by the whole spin-isospin 
interaction, like in Fig. 2. 
(4) Coherent pion production: This is a genuine nuclear 

channel which comes when the target nucleus is left in its 
ground state and the production amplitude is summed 
coherently over all the nucleons in the target. Diagram- 
matically it is shown in Fig. qa )  where the pion with the 
shaded circle indicates the renormalized pion in the 

(b) 
Fig. 6. Diagrams for coherent pion production. (a) generic, (b) detailed 
model in the delta resonance region 
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medium. In the resonance region where the Ah excitation 
dominates, the detailed picture would be given by Fig. qb), 
although, as commented, the exchanged pion lines are 
replaced by the spin-isospin interaction. The process, at 
least for forward or small t angles, requires necessarily the 
interaction of the pion with the nucleus, otherwise it does 
not proceed with a free pion alone, even if the 'He and t are 
allowed to interact with the nucleus, as we do. The reason 
can be seen if one uses the Glauber eikonal approximation 
for the 'He or t wavefunctions in the forward direction. The 
wavefunction picks up some transverse momentum com- 
ponents but the free longitudinal momenta are not modified. 
Hence the 'He + t + nf transition is in this case as for- 
bidden as if the 'He or t did not interact with the nucleus. 
For all these reasons the process qualifies as virtual pion 
production followed by elastic scattering of this virtual pion 
with the nucleus till it becomes real. Hence the study of this 
channel is bound to offer valuable information about pion 
nucleus interaction, complementary to the one obtained 
from the scattering of real pions. 

In Fig. 7 we show the contribution of all the channels 
discussed above. As we can see, the one step quasielastic fills 
the region of very high t energy while the two step quasi- 
elastic processes peak somewhat at lower t energies, as also 
does the virtual pion production. The incoherent pion pro- 
duction peaks at the same position as the elementary (3He, 
t) reaction on the p, something confirmed experimentally 
[SI. The most interesting feature, however, is that the peak 
of the coherent pion production is considerably shifted 
(about 70 MeV) with respect to the incoherent one. This 
feature is responsible for the ultimate shift of the peak in the 
total inclusive ('He, t) cross section. We can observe in the 

1 

(He,T) 0.-.6 

1400 1800 1800 2000 
E f W )  

Fig. 7 .  Different contributions to the cross section for the (3He, t) inclusive 
reaction on "C. (1) Quasielastic He + N + t + N. (2) Two step quasielastic 
He + N + He(t) + N followed by He(t) + N' + t + N'. (3) Two step quasi- 
elastic with intermediate He(t) break up: He + N + He*(t*) + N followed 
by He*(t*) + N + t + N. (4) Virtual pion production followed by pion 
absorption. (5) Incoherent pion production. (6)  Coherent x*  production. (7) 
Sum of incoherent processes 1-5. (8) Total: sum of coherent and incoherent 
processes 

figure that the sum of all the incoherent channels shifts con- 
siderably the strength at higher t energies, but the position 
of the peak is not altered. When one then adds the coherent 
pion production cross section the peak is moved and one 
finds agreement with experiment. The reason for the shift of 
the coherent channel has to be seen in the effect of the 
nuclear form factor since the produced virtual pion and the 
detected real ones have the same energy but different 
momenta. At higher energies, for a given angle, I q - 4'1 
increases and the form factor decreases. The multiple scat- 
tering is also relevant, helping split the momentum transfer 
in several collisions and hence reducing the effect of the 
form factor, but at the same time producing and appreciable 
loss of flux into the pion quasielastic or absorption chan- 
nels, as the pion energy increases. 

Another feature of the coherent channel is that the pions 
are created in a very narrow cone around the direction of 
the (He, t) momentum transfer. This property and the fact 
that the nucleus recoil energy is very small, and well known 
if all pions come in the same direction, converts the coher- 
ent pion production in a tool to produce beams of highly 
monochromatic and unidirectional pions. Its potential prac- 
tical use, similar to the tagging of highly monochromatic 
photons, should be investigated, once we know that the 
amount of pions produced is a sizeable fraction of the total 
number of pions (about one-third at the peak of the coher- 
ent channel). 

We do not have a direct measurement of the coherent 
channel although preliminary partial data have been 
extracted from the Saturne measurements [73. However, we 
can compare our results for coherent nf production in the 
analogous reaction (p, n) on "C with the data of Chiba et 
al. [8] when they separate the n+ channel. Even here they 
have a background in this channel of neutral particles 
coming from pn + nnn'. We can see our results in Fig. 8 
compared to the experiment. We have adopted our results 
to the experimental cuts and resolution. One observes that 
our coherent production peaks at the place of the experi- 
mental peak, which is apprecjably shifted with respect to the 
peak of the incoherent pion production. On the other hand 
when our coherent pion production is subtracted from the 
experimental data one obtains a smooth background which 
looks very much like the cross section of the analogous 

\ 

\ 
b 
9 II 
U 

P, I He V /c 3 
Fig. 8. (1) Coherent x +  production with experimental cuts; (2) Idem with 
the folding with the experimental resolution; (3) Difference from experiment 
and the curve 2 
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3He n + tnz' which is contained in the (3He, t) cross 
section on the neutron target of Fig. 3. The bigger weight at 
lower t energies (in the region of the A resonance) for the 
background of the pn -+ nnz' reaction is understandable 
because of the absence of the (3He, t) transition form factor 
that reduces the cross section more strongly at lower t ener- 
gies in this latter reaction. 

As one can see, the information obtained from our theo- 
retical analysis matches so far the available experimental 
information. However, experiments devoted to the measure- 
ments of the coherent channel should definitely be pursued. 

Summarizing, the study done here has shown that the 
shift of the A peak in the (3He, t) [or (p, n)] reaction is due 
to a collaboration of many channels, amongst which the 
coherent pion production plays a crucial qualitative role as 
responsible for the shift of the peak position. This channel 
was implicitly included in the calculations of Refs [9, lo] 
and is the reason, in our opinion, of the shift found there, 
although other reasons were given in those papers. 

Finally, the coherent pion production channel shows up 
as an interesting tool to learn about the pion nuclear inter- 
action. Also, its properties as a source of highly monochro- 
matic and unidirectional pions are bound to have some 
practical use in the future. 
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We have developeda fast codeto calculateBessel functionsof integerand fractional orderbasedon the continued
fractionsmethod.This algorithm is speciallyusefulin thecaseof Besselfunctionsof high orderbecauseit doesnot require
anyrecalculationusingnormalizationrelations.

PROGRAM SUMMARY

Title ofprogram:BESSEL,SPHERICAL Natureof thephysicalproblem
We include two codes in order to evaluate: (a) Bessel

Cataloguenumber:ACNL functionsof fractional order(subroutineSPHERICAL); (b)
Besselfunctionsof integerorder(subroutineBESSEL).

Program obtainable from: CPC Program Library, Queen’s
Universityof Belfast, N. Ireland(seeapplicationform in this Methodof solution

is ) We havedevelopeda fast codeto calculateBesselfunctions
sue of integer and fractional order based on the continued

Licensingprovisions: none fractionsmethod.This algorithmis speciallyusefulin thecase
of Besselfunctionsof high orderbecauseit doesnot require
anyrecalculationusingnormalizationrelations.

Computer:VAX 6410; Installation: InstitutodeFIsicaCorpus-
cular(IFIC), Buliassot(Valencia) Restrictionson thecomplexityof theproblem

We can useouralgorithmfor differentorderBesselfunctions
Operatingsystem:VAX/VMS taking into accountthat the maximum orderNmax that we

canreachwith ourmethod,for a fixed realpositive value of
Programminglanguageused: FORTRAN 77 z, is providedby the maximum real numberdefinedin our

machine:Nmaxwill bethemaximum n for which1~(z)is less
Memoryrequired to executewith typical data: 12 kB thanthe maximumrealnumberof our machine.(Seesection

4 of the Long Write-Up.)
No. ofbits in a word: 32

Typical running time
No. of lines in distributedprogram, including test data, etc.: 382 SeeLongWrite-Up, section3.

Keywords: high order Bessel functions, continuedfractions
method.

Correspondenceto: Yu.L. Ratis,Departamentode FisicaTe6ricaandIFIC, CentroMixto UniversidaddeValencia— CSIC, 46100
Burjassot(Valencia),Spain.
1 Permanentaddress:SamaraAviation Institute,MoskovskoeAvenue,34, 443019,Samara,Russia.

0010-4655/93/$06.00© 1993 — Elsevier SciencePublishersB.V. All rights reserved



382 Yu.L.Ratis, P. FernándezdeCôrdoba / CalculatingBesselfunctionswith thecontinuedfractionsmethod

LONG WRITE-UP

1. Introduction

The usualmethodsto calculateBesselfunctionstakeinto accountnormalizationrelations[1]. In this
paper we introduce an algorithm and correspondingcomputercode to evaluateregularand irregular
Bessel functions without any re-calculationthrough normalizationrelations.Furthermore,the method
maintainsthestability of eachrecurrencerelation, i.e. we useforward recurrencerelationsfor the Bessel
functions (BFs)of the secondkind andbackwardones[2] for the BFs of the first kind.

In fact the algorithm usesforward recurrencerelationsto generateirregular BFs and takesinto
accountthe continuedfraction method to evaluatehigh order regularBFs. From thesevalueswe can
generateregularBFs applying backwardrecurrencerelations.Becauseof this structure(in which we do
not use any normalizationrelation),the algorithmis speciallyuseful for calculatinghigh order BFs. The
codeevaluatessimultaneouslyregular andirregularBFs; in the following sectionswe show in detail the
algorithm for the casesof BFs of fractional and integerorders.

The codehasdirect applicationin a widevarietyof problemswherehigh order BFs arenecessary:in
the evaluationof Lommel’s functionsof two variables[5,61(very often usedin wave and light guides),in
application codeswhere very high order Hankel functions (which include regular and irregular BFs)
appear,and in scatteringtheorywhen one can encounterproblemswhere largevaluesof the impact
parameter(i.e. largevaluesof angularmomentum)are involved (andwhere Glauber’sapproachis not
very appropriate).

2. Besselfunctions of fractional order

We are interestedin presentinga codeto generatethe spherical Bessel functions (SBFs)of the first
and secondkinds.

In this paperwe usethe standardAbramowitzand Stegun[31notationandwe introducethe SBFsof
the first kind, j~(z)= %I1r/2zJ~+l/2(z),and the SBFsof the secondkind, y~(z)= ~4/’rr/2zYfl+l/2(z), as
particularsolutionsof the differential equation:

z
2w”(z) + 2zw’(z) + [z2 —n(n+ 1)]w(z) = 0 (n = 0, ±1, ±2,...). (1)

In the codewe calculatesimultaneouslythe SBFsof all ordersbelow Nmax, i.e. we generatethe set

SB(z)~{j~(z),y~(z);n=0, 1,2,3,..., Nmax}. (2)

The algorithmis organizedin the following way:

— Evaluateall the SBFsof the secondkind, {y~(z),n = 0, 1, 2,..., Nmax}, taking into accountthe
known valuesof y

0(z) = — cos(z)/z and y i( z) = — sin(z)/z — cos(z)/z
2 and using the forward recur-

rencerelation

(2n + 1)
y~÷

1(z)= y~(z)—y~_1(z). (3)

—Use the continuedfractionsmethod[3] to evaluatethe ratio

JNmax( z) ~Nmax+ 112(z)
H(z)~ = _______

JNmax_1(Z) JNmax_1/2(Z)

= 2(Nmax± — 2(Nmax+ — 2(Nmax±flz~ — (4)
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We implementthis methodin our codeby usingSteed’salgorithm[4].

— CalculatetheupperorderSBFsof the first kind, JNmax(2~),usingthe alreadyknown valuesYNmaX(Z)

and YNmax_1(Z), the ratio H(z) andthe valuefor the Wronskianof the SBFs:

W{JNm~(Z), YNm~(Z)) _=JNm~(Z) YNm~_1(Z) ~JNmax1(Z) YNm~(Z)=z~2. (5)

Using (5) we canwrite

JNmax_l(Z) = z2(H(z) YNniax_1(Z) YNmax(Z)) (6)

andthen

JNmax(Z) =H(z) JNmx_l(Z) (7)

Notice that we havecalculatednot only JNmax(2) but also JNm~_l(Z).

— Evaluateall the SBFsof the first kind, {j~(z),n = 0, 1, 2,..., Nmax), taking into accountthe
calculatedvaluesof JNm~(z) and fNmax — ~(z) andusingthe backwardrecurrencerelation:

(2n + 1)
j~_

1(z)= j,~(z)—j~~1(z). (8)

3. Besselfunctionsof integerorder

We require a code to generatethe Bessel functions of the first and secondkinds. (We restrict
attentionto realvaluesof the argumentz). As in the previoussectionwe usethe standardAbramowitz
and Stegunnotation and introduce the BFs of the first kind, J~(z),and the BFs of the secondkind,
Y~(z), as particular solutionsof the differential equation:

z
2w”(z) ±zw’(z)+(z2—n2)w(z)=0. (9)

In the codewe calculatesimultaneouslythe BFs of all order below Nmax,i.e. we generatethe set

B(z) = {J~(z),Y~(z);n =0,1,2,3,..., Nmax}. (10)

The algorithmis organizedin the following way:

— EvaluateY
0(z)and Y1(z)usingthe ascendingseries[3]

(‘z)~ n1 (n—k—i)! k 2
= — 2 (~z2) + —lnQz) J~(z)

k~O k. ii

In
— 2z k=O(~~ (11)

where

~ ( 1z2)”~

J~(z)= (~z)~~k!(n+k)! (12)
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and ijt(.) is definedby

n—i

~I’(n) = —y± ~ k’, (13)
k= I

with y being Euler’s constant.
In the particular caseof Y0( z) we canwrite

~ (14)

where

~z2 (~z2)2 (~z2)3
J0(z)=1— 2± 2 — 2 (15)

(1!) (2!) (3!)

For the case z — ~ (z> 10) we use the Hankel asymptoticexpansionsfor Y()(z) and Y1(z)and we
write

~(z) = ~[P(n, z) sin x±Q(n,z) cos x1~ (16)

where

P(n, z) E (_)k~~2k) (17)
k=O (2z)

Q(n, z) ~ (—) 2k+I (18)
k=() (2z)

with (n, k), the Hankel symbol,

+n ±k)
(n k)= (19)

k!F(4~±n—k)

andx given by

(20)

— Evaluateall the BFs of the secondkind, {1~(z),n = 0, 1, 2,..., Nmax}, taking into accountthe
calculatedvaluesof Y0(z) and Y1(z) andusingthe forward recurrencerelation

2n
= —)‘~(z)— }‘~~(z). (21)

— Usethe continuedfractionsmethodto evaluatethe ratio

jNmax(Z) 1 1 1
H(z)= = __________ _____________ _____________ ... . (22)

‘Nmax_l(Z) 2Nmax z’ — 2(Nmax±1)z~— 2(Nmax+ 2)z’ —
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We implementthis methodin our codeagain,usingSteed’salgorithm[4].

— Calculatethe upper order BFs of the first kind, ~Nm~( z), using the already known values of
YNmax(Z) and YNm _1(z), the ratio H(z) andthe valuefor the Wronskianof the BFs [31:

W{JNm~l(Z), YNm~l(Z)} ~JNm~(Z) YNmaxl(Z) ~JNm~i(Z) YNmax(Z) = ~. (23)

As in the previoussectionwe canwrite

2
JNmax(Z) = (Y() — Y~/H~) (24)

andthen

JNmax_l(Z) =JNm~(Z)/H(Z). (25)

Notice againthat we calculatenot only JNm~(Z) but also ~Nm~ 1(z).

— Evaluate all the BFs of the first kind, {J~(z),n = 0, 1, 2,..., Nmax}, taking into account the
calculatedvaluesof JNm~(Z) and ~Nmax— 1(z) andusingthe backwardrecurrencerelation

2n
J~1(z)= —J~(z)—J~~1(z). (26)

We would like to point out that J0(z) and J1(z) can be used as checks on the accuracyof the
procedure.

We havecomparedour algorithmwith a standardone(subroutineMMBSJN of the IMSL library) by
calculatingdifferentorderBFs with argumentsin the range10 36 <z < iO~and gettinga relativeerror
of iO~ in the valuessuppliedby both methodsif we usea typical value EPS‘~ 1012 to control the
accuracyin the continued fraction method (see subroutineBESSEL in the next section). We have
studiedour algorithmfor differentorderBPstaking into accountthat the maximumorderNmaxthat we
can reachwith our method,for a fixed z, is provided by the maximum real numberdefinedin our
machine: Nmaxwill be the maximum n for which Y,(z) is less than the maximum real numberof our
machine.We haveanalyzedalsothe computertimescalculatinga wide rangeof BFs of differentorders
andargumentsconcludingthat we can calculatesimultaneouslythe set B(z) = (J~(z), }~,(z); n = 0, 1, 2,
3,..., Nmax} approximatelyin the sameCPU time in which the MMBSJN calculatesonly the BFs of the
first kind {J~(z);n = 0, 1, 2, 3,..., Nmax). At this point we would like to mention that approximately
95% of the total CPU time in our methodis consumedin the implementationof Steed’salgorithm.

4. Subprogramspecification

In this section we introducethe two versionsof the codethat we have analyzed:(a) subroutine
SPHERICAL: To evaluateBesselfunctionsof fractional order; (b) subroutineBESSEL: to evaluate
Besselfunctionsof integerorder.

The calling sequencesfor the subroutinesare:

CALL SPHERICAL (Z, NMAX, BJ, BY, EPS,NUEVO) and
CALL BESSEL(Z, NMAX, BJ, BY, EPS,NUEVO)
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where the argumentshavethe following meaning:

SUBROUTINE SPHERICAL(Z, NMAX, BJ, BY, EPS,NUEVO)

INPUT:
Z: argumentof the Besselfunctions.
NMAX: maximum order of the Besselfunctions.We shall get Besselfunctions of all the ordersbelow
MIN(NMAX, NUEVO). NUEVO is definedbelow.
EPS: control of the accuracyin the continuedfraction method.

OUTPUT:
BJ(L ±1): sphericalBesselfunction of the first kind of order L. We shall keepthesevaluesin an array.
BY(L ±1): spherical Besselfunction of the secondkind of order L. We shall keep thesevaluesin an
array.
NUEVO: maximumorder of besselfunctionscalculatedwhen BY(NMAX + 1,Z) is larger than 10**36

NOTE:
This versionof the codeis for all realpositive z andNmax less than500.

SUBROUTINE BESSEL(Z,NMAX,BJ,BY,EPS,NUEVO)

INPUT:
Z: argumentof the Besselfunctions.
NMAX: maximum order of the Besselfunctions.We shall get Besselfunctionsof all the ordersbelow
MIN(NMAX,NUEVO). NUEVO is definedbelow.
EPS:control of the accuracyin the continuedfraction method.

OUTPUT:
BJ(L + 1): Besselfunction of the first kind of order L. We shall keepthesevaluesin an array.
BY(L + 1): Besselfunction of the secondkind of order L. We shall keepthesevaluesin an array.
NUEVO: Maximum orderof besselfunctionscalculatedwhenBY (NMAX ±1 ,Z) is larger than 10 * * 36

NOTE:
This version of the codeis for all realpositive z andNmax less than500.

5. Testrun

The subroutineshavebeenextensivelytested andwe presentat the end of this papera simple test
program (with the correspondingoutput). (We can also call (in the programTEST) the subroutine
SPHERICAL insteadof the Besselonekeepingthe samestructurein the programTEST).

6. Conclusions

We haveanalyzeda methodwhich is especiallyuseful andefficient for the calculationof high order
BFs andwhich is apparentlynumericallystable.The most appealingfeatureof this algorithmis that it
doesnot requireany recalculationusingnormalizationrelations.The basisfor the codeis the useof the
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continuedfraction methodto relate (high order) irregularBFs to regularBPs of the sameorder. This
codehas direct application in a wide variety of problems where high order BFs are necessary,as
indicatedin the introductionabove.
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TEST PROGRAM

PROGRAMTEST

IMPLICIT REAL*8 (1-H.O-z)
DIMENSION BJ(5O1),BY(&O1)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcC

C INPUT C

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

WRITE(6,*) ‘THE VALUE OF Z IS’’

READ(5,*) z
WRITE(6,*) ‘THE VALUE OF NMAX IS?’

READ(5,*) NMAX
WRITE(6,*) ‘THE VALUE OF EPS IS?’
READ(5,*) EPS

WRITE(6,*) ‘WHICH ORDER OF BF DO YOU WANTTO PRINT?’

READ(5,*) L

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C CALLING SEQUENCE C

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CALL BESSEL (Z,NMAX,BJ,BY,EPS,NUEVO)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C OUTPUT C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

WRITE(6,*) ‘z=’,z
WRITE(6,*) ‘NMLX=’ ,NMAI

WRITE(6,*) ‘EPS=’ ,EPS

WRITE(S,*) ‘NUEvo=’,NUzvo

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C NOTICE THAT WE GET THE BESSEL FUNCTIONS OF C

C THE FIRST AND SECONDKIND OF ALL THE ORDERS BELOW C

C THE MINIMUM OF “NMAX’ AND “NUEVO’ C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

WRITE(6,*) ‘WE WANTTO PRINT THE BFS OF ORDER =‘,L
WRITE(6~*) ‘THE HF OF THE FIRST KIND OF ORDERL IS~’, BJ(L+1)
WRITE(6,*) ‘THE BF OF THE SECONDKIND OF ORDER L 15=’, BY(L+1)

STOP
END

TEST RUN OUTPUT

z= S.000000000000000

NMAX= 500
EPS= 1 .0000000000000000E-09
NUEVO= 20
WE WANTTO PRINT THE BESSEL FUNCTIONS OF ORDER = 0

TEE BF OF THE FIRST KIND OP ORDER L IS= -0.1775967713143383
THE BF OF THE SECONDKIND OF ORDER L IS= -0.3085176252490338
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Abstract  

We present an algorithm to evaluate the modified Bessel functions Iv and K,, of integral and half-integral order based on 
the calculation of the continued fraction for the l',s, the Wronskian and the application of forward recurrence relations for 
the K~s and backward recurrence for the l'~s. The main feature of the algorithm is that it does not require recalculations 
using normalization relations nor trial values to start the recurrences; the code evaluates in each step (already normalized) 
Bessei functions. The accuracy of the method ( 10 -16 for half-integral order and better than 2 x 10 -7 for integral order in 
our code) is limited only by the precision in the initial values for the recurrence and the maximum order available for a 
given value of the argument is restricted only by the maximum real number available in the computer. (~) 1997 Elsevier 
Science B.V. 

PACS: 02.60.Gf; 02.30.Gp 
Keywords: Modified Bessel functions; Integral and semi-integral orders; Continued fraction 

P R O G R A M  S U M M A R Y  

~Ttle of program: BESSIMIN, BESSIMSE 

Catalogue identifier: ADGM 

Program obtainable from: CPC Program Library, Queen's Uni- 
versity of Belfast, N. Ireland 

Licensing provisions: none 

Computer for which the program is designed and others on which 

t Postal Address; e-mail: jsegura@dise.ua.es 

0010-4655/97/$17.00 (~) 1997 Elsevier Science B.V. All rights reserved. 
PII S0010-4655 ( 97 ) 00069-6 

it is operable: 
Computers: VAX 6410, HP 712/60; Installations: Instituto de 
Fisica Corpuscular (IFIC), CI Doctor Moliner, 50.  E-46100 
Burjassot (Valencia), Spain 

Operating systems under which the program has been tested: 
VAX/VMS, UNIX 

Programming language used: Fortran 77 

No. of bits in a word: 32 
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No. of bytes in distributed program, including test data. etc.: 
59940 

Distribution format: ASCII 

Keywords: Modified Bessel functions, integral and semi-integral 
orders, continued fraction 

Nature of the physical problem 
We include two codes in order to evaluate: 
( I ) Modified Spherical Bessel functions (subroutine 
BESSIMSE). 
(2) Modified Bessel functions of integral order (subroutine 
BESSIMIN). 
Both codes evaluate Modified Bessel functions from the lower 
(positive) orders to a maximum order NMAX in a same run. 

L O N G  W R I T E - U P  

Method of solution 
We have developed a fast code to calculate modified Besse 
functions of integral and half-integral order based on continue 
fractions. This algorithm is specially useful in the case of Besse 
functions of high order because it does not require any recalcula 
tion using normalization relations. 

Restrictions on the complexity of the problem 
The maximum order that can be reached with our method, for 
fixed real positive value of x, is provided by the maximum tea 
number defined in the machine. The maximum x is limited by th~ 
same kind of restriction; however, the overflow problem for higl 
x can be elihainated by factoring out e z for the Kts and e -x fo 
the Its (see Section 5). 

Typical running time 
See Section 5. 

1. I n t r o d u c t i o n  

The numerical codes to evaluate Bessel functions usually take into account normalization relations [ 1]. 
However, in Ref. [2]  an algori thm based on the continued fraction method has been proposed,  which allows 
to compute  Bessel functions without  any recalculation through normalization relations; besides, the method 
maintains the stabili ty o f  each recurrence relation. Ref. [3]  presents an algorithm, based also on continued 
fractions, to evaluate Modified Bessel functions ( M B F )  for a fixed fractional order; we present two codes (for 
integral or semi-integral order)  which evaluate simultaneously the modified Bessel functions I~, and K~, from 
the lower (posi t ive)  orders to a maximum order ( N M A X )  in the same run. The algori thm takes advantage of 
forward recurrence relations to generate the K~,'s and, after taking into account the continued fraction (CF)  and 
the Wronskian to evaluate high-order Iv's, backward recurrence relations to calculate the l~,'s. Because of  its 
structure, this codes are specially useful to calculate high-order MBFs;  the highest order available for a given 
value o f  the argument is l imited only by the maximum real number available in the computer. 

2. Modi f i ed  Bessel funct ions  o f  ha l f - in tegra l  order 

We are interested in presenting a code" to generate the Modified Spherical Bessel Functions (M SBFs )  of  the 
first and second kinds for real and positive values o f  the argument. This functions are particular solutions o f  

the differential equation 

x2coll(x) + 2 x ( o l ( x )  - [x  2 + n ( n  + 1 ) ] r e (x )  = 0 ,  n = 0 , -g l , - l -2  . . . . .  ( 1 )  

We define the Modified Spherical Bessel functions o f  the first kind (see  [ 1 ] Eqs. (10 .2 .1 -4) ,  

in(X) = ~ / I  qr /x  ]n+l/2(x) , (2) 
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of the second kind, 

/ T  
i-n(X) = V ~Tr/x l-n-I/2(X) , 

and of the third kind, 

(3) 

kn(x)  = V ~ r c / x  Kn+|/2 = / ' r r ( - - l )n+l ( i~ (x )  -- i_, ,(x)  ) , (4) 

which are particular solutions of Eq. (1).  
The pairs in(x) ,  i - n ( x )  and in (x) ,  kn(x)  are linearly independent solutions for every n. We will calculate 

in(x)  and kn(x) ;  the i-n will be related to them through Eq. (4).  
In this code we calculate simultaneously the MSBFs of all orders below Nmax, i.e. we generate the set 

MSB(x)  --= { i ~ ( x ) , k n ( x ) ; n  = O, 1,2,3 . . . . .  Nmax}. (5) 

The algorithm is organized in the following way: 
- We evaluate all the k's {k, ,(x),n = 0, 1,2 ..... Nmax}, taking into account the known values of ko(x)  = 

�89 and kl (x)  = �89 1 /x  + l / x  2) and using the forward recurrence relation 

kn+l(x)  - (2n + 1) kn(x)  + k ~ - l ( x ) .  (6) 
x 

- We use the continued fraction method to evaluate the ratio 

iNmax(X) lNmax+l/2(X) 
H ( x )  ---- inmax-! (x) - lNmax-I/2(X) 

1 1 1 (7) 
= 2(Nmax + � 89  2(Nmax + 3 ) x - I +  2(Nmax + ~ ) x - I +  " '" 

Notice that a similar expression appears for the ratio of the spherical Bessel functions JN+l /2(x ) /J tc - i /2 (x )  
except for the change of sign preceding each fraction [2,1]; this change can be easily traced out from the 
change of sign in the recurrence relation for the in's with respect to the recurrence relation for the jn'S. We 
implement the calculation of this continued fraction by using Steed's algorithm [4].  

- We calculate the upper order iNrnax(X), using the already known values kNmax(x) and kNmax-I (x) ,  the ratio 
H ( x )  and the value for the Wronskian, 

W{kNmax(X), iNmax(X) } ~- iNmax(X)kNmax-I (X) -t- iNmax-I (X)kNmax(X) = / ~ X - 2  �9 ( 8 )  

Using (8) ,  we can write 

~r/2 
i t~ax- I ( x ) = x2 ( H ( x ) kNmax_ l ( x ) + kNmax ( X ) ) 

(9) 

and then 

iNmax(X) = H(x)it~max-t ( x ) .  (10) 

- We evaluate all the MSBFs of the first kind, {in (x) ,  n = 0, 1,2 . . . .  ~ Nmax}, taking into account the calculated 
values of it4max(X) and iNmax-l (X) and using the backward recurrence relation, 

i n - i ( x )  - (2n + 1__.__...~) in(x ) + in+j(x) .  (11) 
x 
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3. Modified Bessel functions of  integral order 

We require a code to generate the modified Bessel functions In(x) and Kn(x). We use the standarc 
Abramowitz and Stegun notation (Eqs. 9.6.1-4) and we introduce the MBFs In(x) and Kn(x) as particu 
lar solutions of the differential equation 

X2altt(x) q- x w t ( x )  -- (X 2 "{- ll2)tO(X) ----- 0 .  ( 12', 

In this code we calculate simultaneously the MBFs of all order below Nmax, i.e. we generate the set 

MB(x) = {In(x), Kn(x); n = 0, 1,2, 3 . . . . .  Nmax}. (13) 

The algorithm is organized in the following way: 
- We evaluate Ko(x) and Kl(X) using the polynomial approximations from [I]  (Eqs. 9.8.1-8). In the code, 

these expansions have been rearranged to minimize the number of required operations [3]. 
- We evaluate all the MBFs {K,,(x), n = 0, 1,2 . . . .  Nmax}, taking into account the calculated values of Ko(x) 

and Ki (x)  and using the forward recurrence relation 

Kn+l(x) = 2nKn(x) + Kn-I(x). (14) 
x 

- We use the continued fraction method to evaluate the ratio 

INmax(X) 1 l I 

H(x) = INmax-I (X) -- 2Nmaxx-1+ 2(Nmax + l)x-l+ 2(Nmax + 2)x-I+ "'" (15) 

We implement this method in our code again, using Steed's algorithm [4]. 
- We calculate the upper order MBFs of the first kind, INmax(X), using the already known values of KNm~,(x) 

and KNm~-I (X), the ratio H(x) and the value for the Wronskian of the MBFs [ I ], 

W{gNmax-I (x) ,  INma.x-I(X) } =-~ INmax(X)gNmax-I(X) q- INmax-I(X)gNm~x(X) = I /X .  (16) 

AS in the previous section, we can write 

1 

INmax (X) = (17) 
X(KNmax-I(X) + KNmax(x)/H(x)) 

and then 

INmax-I (X) = I N m a x ( X ) / n ( x ) .  (18) 

Notice again that we calculate not only l~max(X) but also INm~-l(x).  
- We evaluate all the MBFs {l , , (x) ,n = 0, 1,2 . . . . .  Nmax}, taking into account the calculated values of 

INmaT~X) and INmax-I (X) and using the backward recurrence relation 

In-I(x) = 2n ln(x) + In+l(X). (19) 
x 

4. Subprogram specification 

In this section we introduce the two versions of the code that we have analyzed: 
(a) Subroutine BESSIMSE: to evaluate modified Bessel functions of fractional order; 
(b) Subroutine BESSIMIN: to evaluate modified Bessel functions of integral order. 
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The calling sequences for the subroutines are CALL BESSIMSE (X,NMAX,BI,BK,NUEVO) and CALL 
BESSIMIN (X,NMAX,BI,BK,NUEVO), where the arguments have the following meaning: 

SUBROUTINE BESSIMSE (X,NMAX,BI,BK,NUEVO) 

INPUT: 
X: Argument of the Bessel functions. 
NMAX: Maximum order of the Bessel functions: We shall get Bessel functions of all the orders below 

MIN(NMAX,NUEVO). NUEVO is defined below. 
EPS: Control of the accuracy in the continued fraction method. 

OUTPUT: 
B I ( L + I ) :  Modified Spherical Bessel function it.. We keep these values in an array. 
B K ( L + I ) :  Modified Spherical Bessel function kt.. We keep these values in an array. 
NUEVO: Maximum order of Bessel functions calculated when BK (NMAX+I,X) is larger than 10**EXPMA. 

CALLS: 
SLIMIT(X,EXPMA,MODE,NMAX,NUEVO): Prevents overflows by evaluating the maximum order that can 

be calculated (NUEVO). The program then evaluates Bessel functions only to this order when NMAX > 
NUEVO. This subroutine is optional. 

NOTES: This version of the code is for real positive X and Nmax less than 2000. 
The integer parameter MODE can be used to factor out e +x from the MBFs to prevent overflows for high 

X. MODE=I when factorization is carried and MODE---0 in the other case. EPS=I0 -16 and EXPMA=300 in 
this version of the code. 

SUBROUTINE BESSIMIN (X,NMAX,BI,BK,NUEVO) 

INPUT: 
X: Argument of the Bessel functions 
NMAX: Maximum order of the Bessel functions. We shall get Bessel functions of all the orders below 

MIN(NMAX,NUEVO). NUEVO is defined below. 
EPS: Control of the accuracy in the continued fraction method. 

OUTPUT: 
B I ( L + I ) :  Modified Bessel function It.. We shall keep these values in an array. 
B K ( L + I ) :  Modified Bessel function Kt.. We shall keep these values in an array. 
NUEVO: Maximum order of Bessel functions calculated when BY (NMAX+I,X) is larger than 10**EXPMA. 

CALLS: 
LIMIT(X,EXPMA,MODE,NMAX,NUEVO): Prevents overflows by evaluating the maximum order that can 

be calculated (NUEVO). The program then evaluates Bessel functions only to this order when NMAX > 
NUEVO. This subroutine is optional. 

BESSIM01 (X,MODE,XKO,XK1): Evaluates K(0) and K(1).  

NOTES: 
This version of the code is for real positive X and Nmax less than 2000. 
The integer parameter MODE can be used to factor out e +x from the MBFs to prevent overflows for high X. 

MODE=I when factorization is carried and MODE--0 in the other case. EPS=I0 -s and EXPMA=300 in this 
version of the code. 
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5. Main features of  the code; comparison with other programs 

We have compared our algorithm with standard ones (Numerical Recipes bessi and bessik in double- 
precision) by calculating different order MBFs with arguments in a wide range of values. The numerical 
recipes program bes s •  calculates the MBFs I, for integral order using Miller's algorithm. The program b e s s i k  
calculates the modified Bessel functions 1,,, K,, for fractional order. In our code we calculate simultaneously 
all modified Bessel functions (I,,, K,,) up to a given order NMAX (limited by the overflow/underflow number 
of the machine) for integral or half-integral order, while the N.R. program b e s s i  calculates just one fixed 
integral order I,, and b e s s i k  computes both I,,, K~, and its derivatives for a fixed (real) order. Both N.R. codes 
bess •  and b e s s i k ,  differently form our codes, apply the backward recurrence relation for unnormalized l,,'s; 
to obtain normalized values from these codes one should then renormalize each of the results obtained from the 
recurrence; our codes always use normalized results. It is important to take into account these different features 
when comparing the codes. 

In our code NMAX should be chosen to be the maximum order we want to calculate; since the recurrence 
relations are applied forward for K's, starting from correct, normalized, values and backwards for l's (as has 
to be), there is no need to start the backward recurrence with higher orders than that of  the desired result, 
as happens in Miller's algorithm [ 1 ] where the higher order has to be estimated according to the required 
accuracy; then, choosing EPS for the continued fraction lower than the precision in the calculation of Ko and 
Ki (or k0, kt) ,  the precision achieved by our algorithm is just given by the accuracy in the starting values for 
the K recurrence. The algorithm is stable and keeps the same relative errors for each evaluated MBF; in our 
version of the code the precision is better than 2 x 10 -7 for integral order and 10 -16 for half-integral order. 
We have checked the precision of  our codes by comparing with a double-precision version of  the code b e s s i k .  
In case one needs more precision for the integral case, then one should adopt a more accurate expansion for 
K0, and K1; SLATEC subroutines dbesk0,  dbesk l  and dbsk0e,  d b s k l e  (the last two for exponentially scaled 
functions) do this work. 

Our algorithm proves to be, most of  the times, faster that the two codes from the N.R. (or at least equivalent) 
for the calculation of a fixed given order; recalling that, besides, our code storages all the Bessel function I, 
and If, (or i, and k,) up to this maximum order we have to conclude that, in many situations, our codes will 
be more convenient. Our code b e s s i m i n  is in fact faster than b e s s i  for all values of x and n we show in 
Table 1 (except when n < x).  On the other hand, b e s s i k  becomes comparable to our code, for a same value 
of n (see table) for large enough values of x but our code calculates all K~s and l~s up to the higher order. 

Besides, one should note that our codes reduce the possibility of overflows since no test values for the 
recurrence and no normalization have to be carried. In each step, the codes generate the correct answers. 

Table 1 compares the code b e s s i m i n  (integral order) with b e s s i  and b e s s i k  from Numerical Recipes. 
EPS has been fixed to 10 - s  both in b e s s i m i n  and b e s s i k ;  and the dimension of the arrays in b e s s i m i n  and 
b e s s i m s e  is fixed to 501. Both codes work in MODE 0 in this case. Together with the relative errors for the 
l~s and K~s compared to the results tabulated in [1 ], we show the relative CPU (tel. CPU(i) )  time spent for 
each program, taking our code as reference; positive values show our code is faster for such x and n. We do 
not use the subroutines LIMIT and SLIMIT in this case to make a fair comparison with N.R. routines (they 
do not limit the maximum order); however, this subroutines spend little time, specially when the higher order 
required lies below the overflow capability of the computer, and can be kept without much loss. 

The comparison between b e s s i m s e  and b o s s i k  in CPU time for a precision of 10 -16 is also presented in 
the table; the difference in CPU (rel. CPU(s))  becomes similar except for small x. Numerical results coincide 
with all digits to those tabulated in [ 1 ], and so we do not show the'accuracy in this case with respect to this 
reference. It is again important to note that our code evaluates all the MBFs up to the higher calculated order. 

Both the range of x and the maximum order that can be reached depend on the overflow number of  the 
machine. The values from the table were obtained using a VAX 6410 machine; the overflow number is 1036. 
For such restrictive bound, in MODE 0, the range goes from n ,'.-, 20 for x ~ 1 to n ,--, 180 at x = 86 (maximum 



J. Segura et al./Computer Physics Communications 105 (1997) 263-272 

Table 1 
Comparison in % CPU time between b e s s i m i n  and be s s imse  and the Numerical Recipes codes 

269 

Program x n = NMAX accur. ( I )  accur. (K) rel. CPU(i) tel. CPU(s) 

b e s s i m i n  1.0 20 8 • 10 -8 10 -7 
b e s s i  1.0 20 2 X 10 -7 -I-55% 
b e s s i k  1.0 20 10 -8 10 -8 +85% -t-165% 

b e s s i m i n  2.0 30 1.5 x 10 -8 1.4 X 10 -8 
b e s s i  2.0 30 5 X 10 -8 --t-55% 
b e s s i k  2.0 30 5 X 10 -8 2 X 10 -8 +135% +25% 

bessimin 5.0 40 2 X 10 -9 3 X 10 -9 
b e s s i  5.0 40 6 • 10 -7 -I-70% 
b e s s i k  5.0 40 10 -8 10 -8 +70% +20% 

bessimin 50 10 I0 -9 10 -9  
b e s s i  50 10 2 X 10 - s  --30% 
b e s s i k  50 10 10 -8 3 • 10 -8 +25% +15% 

bessimin 50 I00 I0 -9 10 -9  
bessi 50 I00 4 x 10 -7 +50% 

b e s s i k  50 100 10 -8 6 x 10 -8 +15% +5% 

Rel. CPU(i) accounts for the relative CPU time in the evaluation of integral order; rel. CPU(s) is the relative CPU time for semi-integral 
order. Positive results show our code is faster. 

x = 86 ~ log(1036));  in MODE 1 the maximum order is n ,-~ 20 for x ,'-, I and n ,-~ 500 for x ,,-, 1500; there is 
no limitation for x in this case. Using a less restrictive and more usual overflow number ,--, 1030o x ranges from 
0 to 740 in MODE 0 and n from 150 to 1500, respectively; in MODE 1 n ,~, 150 for x ,--, 1 and n ,',, 1500 for 
x ~ 1500. The maximum order that can be evaluated increases in all cases with increasing x. 

When the evaluation of  high orders is required then one should use subroutines LIMIT and SLIMIT to obtain 
the maximum order and to prevent overflows. 

6. Test run 

We present at the end of  the paper, as a last check, a test program which calculates integral and semi-integral 
MBFs, together with the corresponding output, for several values o f  x; five different Bessel functions are 
shown (with only one call for each x) .  The test program evaluates, for every value o f  the argument, I,, and 
K,, for the higher order  that can be evaluated together with an intermediate order and Io (i0). Parameters: 
MODE--O; EPS=I.d-16 for BESSIMSE; MODE=l ,  EPS=I.d-8 for BESSIMIN. DIMENSION of  the arrays = 
2001. Subroutines LIMIT and SLIMIT are used. 

7. Conclus ions  

We have analyzed an efficient method for the calculation of  MBFs of  integral and half integral order which is 
numerically stable. The most appealing feature of  this algorithm is that it does not require any recalculation using 
normalization relations thus giving in each step of  the recurrences the correct values for the the K~s (l~.s). The 
codes prove to be generally faster than the previous codes for the evaluation o f  a fixed order; taking into account 
that our codes calculate the complete set {In, Kn,n = 0, 1 . . . . .  NMAX} (or  {i,,kn,n = 0, 1 . . . . .  NMAX})  in 
each run we conclude it will be convenient in many situations. The basis for the code is the use o f  the continued 
fraction for the l~s and the Wronskian to relate (high order) K,,'s to L,'s of  the same (high) order. 
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TEST PROGRAM 
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29 
30 
31 
32 
33 

PROGRAM test 
IMPLICIT REAL*8 (a-h,o-z) 
DIMENSION bi(2OOl),bk(2001) 
WRITE(4,29)'SEMI-INTEGRAL ORDER,NMAX=1000,MODE O' 
Nmax=lO00 
WRITE(4,30) 
WRITE(4,31)'x','n','i(n)','k(n)','i(O)' 
DO x=1,5  

CALL bessimse(x,Nmax,bi,bk,nuevo) 
l=nuevo+l 
WRITE(4,32) x, i-i, bi(1),bk(1),bi(1) 
1=21 
WRITE(4,32) x ,  1 -1 ,  b i ( 1 ) , b k ( 1 ) , b i ( 1 )  

ENDD0 
Nmax=2000 
WRITE(4,30) 
WRITE(4,30),'INT. ORDER, NMAX=2000, MODE 1' 
WRITE(4,30) 
WRITE(4,31)'x','n','I(n)','K(n)','I(O)' 
DO ix=O,3,1 

x=lO.DO**ix 
CALL bessimin(x,Nmax,bi,bk,nuevo) 
l=nuevo+l 
WRITE(4,33) x, l-l,bi(1),bk(1),bi(1) 
1=101 
WRITE(4,33) x, l-l,bi(1),bk(1),bi(1) 

ENDDO 
FORMAT (A37) 
FORMAT (A30) 
FORMAT (4X,AI,SX,AI,(1OX,A4),2(12X,A4)) 
FORMAT (F6.0,I4,1x,3D17.11) 
FORMAT (F6.0,I4,1x,3D16.9) 
END 
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TEST RUN OUTPUT 

SEMI-INTEGRAL 0RDER,NMAX=1000,MODE 0 

x n i ( n )  k (n )  1(0)  
1. 145 .20485572393-296 .26349266337+295 .11752011936D+01 
1. 20 .77151475651D-25 .49599176332D+24 .11752011936D+01 
2. 166 .76680319953-299 .30756038851+297 .18134302039D+01 
2. 20 .83767284780D-19 .22759868192D+18 .18134302039D+01 
3. 181 .13646759897-300 .10568251190+299 .33392916425D+01 
3. 20 .29516512906D-15 .42809295308D§ .33392916425D+01 
4. 193 .11908645436-301 .85191012661+299 .68224792993D+01 
4. 20 .10091688321D-12 .93149579165D+11 .68224792993D+01 
5. 202 .48511791184-300 .15985093824§ .14840642116D+02 
5. 20 .97082664411D-11 .76674462354D+09 .14840642116D+02 

INT. ORDER, NMAX=2000, HODE i 

x n I(n) K(n) I(0) 

i .  146 .351583052-298 .974045018+296 .465759631D+00 
1. 100 .311729062-188 .160387677+187 .465759631D+00 

10. 236 .363365299-298 .582539011+296 .127833337D+00 
10. 100 .491383506D-92 .101248485D+91 .127833337D§ 

100. 476 .975988178-302 .105327086+300 .399443796D-O1 
100. 100 .172668628D-21 .204757366D+20 .399443796D-01 

1000. 1235 .101219640-302 .310853068+300 .126172404D-01 
1000. 100 .851558757D-04 .584244656D+01 .126172404D-01 
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Abstract. The static dielectric function of electronic liquids is studied in a wide range of
thermodynamic parameters. The local-field correction to theRPA permeability is modelled to
satisfy the compressibility sum rule and the short-wavelength exact relation to the zero-separation
value of the radial distribution function. The latter is determined by a self-consistency procedure
and is shown to verify all known asymptotic conditions.

1. Introduction

A natural approach to the investigation of static correlations in strongly coupled, specifically,
inertial fusion plasmas, is based on the separation of electronic and ionic components of
the system, so that the interionic interactions are assumed to be screened by the electronic
static dielectric functionεe(k). In dense systems the latter should be treated beyond the
random-phase approximation (RPA), i.e. the calculation ofεe(k) involves the electronic static
local field correction (LFC) Ge(k) = Ge(k, ω = 0),

εe(k) = 1 + Q(k, 0)

1 − Ge(k)Q(k, 0)
(1)

where Q(k, 0) is the productφ(k)50
e(k, ω) at ω = 0, and 50

e(k, ω) is the electronic
polarization operator in theRPA, φ(k) = 4πe2/k2.

There exist various approaches to the computation of theLFC Ge(k) (see, e.g. [1]),
but mostly they are applicable in specific realms of the system phase diagram. The most
notable and far-reaching approach is the modified-convolution approximation (MCA) model
suggested by Ichimaru and his co-workers [1]. We present a simple alternative model which
is to serve as a basis for future studies of various properties of strongly coupled systems.

The aim of this paper is to propose and check a self-consistent method of calculation
of Ge(k) based on its limiting properties and adjusted to the Monte Carlo (MC) data on the
one-component plasma (OCP) equation of state (EOS) [2, 3]. Preliminary results obtained
within this approach were published elsewhere [4].

2. The model

The interpolating formula for the electronicLFC suggested in [3, 4]

Ge(k) = k2

ak2
F + bk2

(2)

† E-mail address: imtk@pleiades.upv.es
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2600 I M Tkachenko et al

incorporates both long- and short-wavelength asymptotic values ofGe(k), kF = (3π2n)1/3

is the Fermi wavenumber.
In particular,

b−1 = lim
k→∞

Ge(k) . (3)

The short-range behaviour ofGe(k) in the low-temperature limit has been studied in
the papers of Shaw [5] and Kimball [6] (see also [7, 8]). Namely, it has been shown that if
T → 0 in hydrogen-like systems,

b−1 = 1 − ge(0) (4)

wherege(r) is the usual electronic radial distribution function. This result is based on the
famous ‘cusp’ condition(

∂g

∂r

)
r=0

= 1

aB

ge(0) (5)

which can be obtained from the s-solution of the two-particle Schrödinger equation atr = 0,
whereaB is the Bohr radius (see, e.g. [6]).

On the other hand, sinceGe(k → ∞) involves only the short-range properties of the
system, one expects the asymptotic value

Ge(∞) = lim
k→∞

Ge(k) (6)

to be finite and the relation

1 − ge(0) = lim
k→∞

Ge(k) (7)

to hold at arbitrary values of temperatureT .
The relation (7) stems from the asymptotic value [6](

∂g(r)

∂r

)
r=0

= 3π

8k3
F

lim
k→∞

(k4(1 − Se(k))) (8)

where

Se(k) = 1 +
∫

dr eikr (ge(r) − 1) (9)

or of electrons.
The long-wavelength behaviour of the latter was studied by Kimball [6, 7] atT = 0:

1 − Se(k) = 8k3
F

3πaBk4
(1 − Ge(∞)) + O

(
1

k6

)
. (10)

At T 6= 0 the same asymptotic formula (10) also follows from the fluctuation–dissipation
theorem,

Se(k) = − h̄

πnφ(k)

∫ +∞

0
coth

(
βh̄ω

2

)
Im

(
ε−1
e (k, ω)

)
dω (11)

and the static-LFC approximation for the dynamic electronic dielectric function,

εe(k, ω) = 1 + Q(k, ω)

1 − Ge(k)Q(k, ω)
. (12)

In equation (11) ¯h is the Planck constant andβ−1 is the system temperatureT in energy
units.
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The imaginary part of50
e(k, ω) is exponentially small ask → ∞ [9], and Imε−1

e (k, ω)

can be substituted by

− π

1 − Ge(∞)
δ (1 + (1 − Ge(∞))ReQ(k → ∞, ω)) (13)

(δ(z) is the Diracδ-function), while the asymptotic form of ReQ(k → ∞, ω) is just [9]

− (
χ2

0/3
)
z−2

(
u2 − z2

)−1
. (14)

Here the Lindhardt notations are introduced:

χ−2
0 = πkF aB z = k/2kF u = (mω)/(h̄kkF ) (15)

wherem is the electronic mass.
The expansion (10) has been confirmed by our computations (see further on) with a

very high precision.
Returning to the interpolation form (2) for theLFC, one notices that the long-wavelength

behaviour of Ge(k → 0) ≈ a−1(k/kF )2 is responsible for the screening of a static
impurity in the plasma. On the other hand, the parametera is determined by the system
thermodynamic properties via the compressibility sum rule,

a−1 =
(

kF

kD

)2

lim
k→0

(
k2
DGe(k)

k2

)
=

(
kF

kD

)2 (
1 − β

(
∂P

∂n

)
β

)
(16)

wherek2
D = 4πne2β is the Debye radius andP is the pressure.

The most recentMC data on theOCP EOS[2]

P = n

β
+ βU

3
≡ n

β
+ nf (0)

3
(17)

(U is the system interaction energy and0 = βe2(4πn/3)1/3) were utilized in this paper
with

f (0) = A0 + B + C0−1/3 + D01/3 (18)

andA = −0.899 374 9,B = −0.224 469 9,C = −0.017 874 7,D = 0.517 575 3.
The interpolation form (17) valid in a very wide region of values of0, 0 6 0 6 200,

brought us to a simple algebraic expression for thea parameter,

a = −(12π2)−1/3

(
A

9
+ B

12
0−1 + 2C

27
0−4/3 + 5D

54
0−2/3

)−1

. (19)

No quantum effects are included in theEOS (17) and, hence, there is discrepancy
between (19) (and, thus, equation (2) too) and our desire to apply it to electron liquids
under ‘quantum’ thermodynamic conditions.

To diminish the influence of this inconsistency, the parameterge(0) (andb of (2)) was
determined by a precise self-consistent procedure. In effect, the value ofge(0) (which itself
has a profound physical meaning [1]) was computed via a simultaneous solution of two
integral equations,

Se(z) =
l1∑

l=−l1

Pe(z, l)

εe(z, l)
(20)

ge(0) = 1 + 12
∫ ∞

0
(Se(z) − 1)z2 dz . (21)
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In equation (20) the summation is over the Matsubara frequencies,vl = (π2l)/(2z),
and

εe(z, l) = 1 + 0

(12π2)1/3

Pe(z, l)

z2
(22)

as usually,2 = 2m/(βh̄2k2
F ), the l1-parameter was determined by the numerical precision.

Pe(z, l) in equation (20) is the dimensionless polarization operator5e(k, ω) with the
LFC,

Pe(z, l) = P0
e (z, l)

(
1 − 0

(12π2)
1
3

Ge(z)P0
e (z, l)

z2

)−1

(23)

Ge(z) =
(

b + a

(2z)2

)−1

b = (1 − ge(0))−1 . (24)

The RPA dimensionless polarization operatorP0
e (z, l) can be calculated (for each value

of density and temperature,z and l) by simple integration,

P0
e (z, l) = 32

4z

∫ ∞

0

y dy

ey2/2−η
ln

∣∣∣∣z + y + ivl

z − y + ivl

∣∣∣∣ (25)

while the chemical potentialη is determined by the normalization condition∫ ∞

0

t1/2 dt

e(t−η) + 1
= 2

3
2−3/2 . (26)

We studied the asymptotic behaviour of the model parameterge(0) and compared (where
possible) our results with those of [1], etc.

The self-consistency procedure, equations (20), (21), proved to be numerically stable,
and the resulting values ofge(0) were independent of the initiation points. The latter did
influence the number of iterations slightly, which varied (for the data given below) between 2
and 5 to ensure the absolute error in the determination ofge(0) was between 10−2 and 10−3.

3. Results and conclusions

The results of the above self-consistent procedure to evaluate the zero-separation value of
the electronic radial distribution functionge(0) are provided in figure 1 . Some additional
points are also given in table 1, where, in particular, we present the values ofge(0) for

Table 1. The zero-separation value of the electronic pair correlation functionge(0) for various
values of electronic density and temperature. The values ofgY

e (0) (last column) are calculated
according to (27) [11]. The values of the parameters0, 2 andrs are given for reference.

ne (1024 cm−3) T (105 K) 0 2 rs ge(0) gY
e (0)

0.2579 1.715 1.0 1.0 1.84 0.026 0.1635
1.6100 6.315 0.5 1.08 1.00 0.1262 0.2661
2.063 3.429 1.0 0.5 0.92 0.1633 0.2792
1.611 1.579 2.0 0.27 1.00 0.1903 0.2662
2.517×101 1.579×101 0.5 0.4342 0.40 0.3198 0.3856
2.579×102 1.715×101 1.0 0.1 0.18 0.4376 0.4430
2.579×105 1.715×103 0.1 0.1 0.02 0.4919 0.4939
2.160×103 3 ×103 0.01 4.24 0.09 0.6960 0.4709
1.250 2.5×102 0.01 50.00 1.09 0.9850 0.2525
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Figure 1. The zero-separation value of the pair correlation functionge(r) in the electron liquid
as a function of thee degeneracy parameter2 and for 0 = 2.0 (one point),0 = 1.0 (long
broken),0 = 0.5 (short broken),0 = 0.1 (dotted) and0 = 0.01 (full). Points represents the
results of the present model, the lines are drawn to distinguish different values of the coupling
parameter0.

the electronic densityne = 1.60 × 1024 cm−3 and temperatureT = 1.579× 105 K and
T = 6.315× 105 K, i.e. rs = 1.0 and 2 = 0.27 and2 = 1.0, respectively,rs being,
as usually, the Wigner–Seitz radius in the units ofaB , rs = 02/0.543. These values
are the only ones for which we could carry out the comparison with the results published
by Tanakaet al [10]. The values ofge(0) (0.1903 and 0.1262) coincide with the data of
[10] corresponding to the approximation, when the electron–ionLFC was set to be zero.
This coincidence is not astonishing, since here we virtually consider the one-component
electronic system.

The self-consistency procedure also permitted us to calculate the static structure factor
of electrons, these results are provided in figure 2 for three characteristic pairs of values of
the parameters0, 2 andge(0) (see table 1).

For the sake of comparison we also present in table 1 the corresponding values ofge(0)

calculated according to the formula, obtained by Yasuhara [11] through a resummation of
the electron–electron ladder diagrams,

ge(0) = [q/I1(q)]2/8 (27)

whereq ' 1.629
√

rs andI1(q) is the first-order modified Bessel function.
Notice, that though we do not include spin effects (bearing in mind that they would

manifest themselves only in magnetized Coulomb systems) it is obvious thatge(r = 0) 6= 0
only for two electrons with opposite spins. Thus, within the Hartree–Fock approximation
when the exchange effects prevail over those of the Coulomb interaction, the value ofge(0)

is just 1
2. This high-degeneracy limiting value is actually the asymptotic value ofge(0)

resulting from our calculations as2 → 0, and the smaller0, the quickerge(0) approaches
the quantum ideal-gas valuegHF

e (0) = 1
2.

On the other hand, as2 grows, the system becomes more and more classical from the
statistical point of view, when no spin effects could manifest themselves. And if, in addition,
the Coulomb interaction is relatively small (0 ' 0.01), the value ofge(0) approaches the
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Figure 2. The self-consistent electronic static structure factorSe(z) (z = k/(2kF )) for three
characteristic pairs of values of density and temperature:0 = 0.01, 2 = 50.0 (broken curve);
0 = 0.5, 2 = 1.0 (full curve); 0 = 2.0, 2 = 0.27 (dotted curve). For other parameters, see
table 1.

classical ideal-gas limiting value of 1 already at2 ' 10. In systems with stronger Coulomb
interactions (0 ' 0.1) this asymptotic value is reached at higher values of2 > 150.

In weakly coupled electron liquids with0 & 0.5 the exchange effects resulting in
attraction of electrons with antiparallel spins are compensated for by the Coulomb repulsion,
and in such systems the value ofge(0) decreases significantly with growing0. Strong
Coulomb coupling (0 & 1) can (asymptotically) reduce the value ofge(0) to zero (pure
Coulomb repulsion). In our model it appears that the exchange contribution toge(0) is
underestimated, so that this reduction already occurs at aboutrs ' 1.84, which is 22% higher
than the value stemming from the high-density expansion of the Yasuhara’s formula [11],
q = 2.

In conclusion, the dielectric formalism is applied to the description of electron one-
component liquids and a simple model expression for the electronic local-field correction
satisfying the compressibility sum rule and the exact short-wavelength limiting (‘cusp’)
condition is studied. The long-wavelength behaviour of theLFC is adjusted to theMC-fitted
equation of state. The model parameterge(0) (the zero-separation value of the electronic
radial distribution function) is obtained by the self-consistency procedure in a wide range of
thermodynamic parameters and is shown to possess physically reasonable limiting properties.

Nevertheless, further studies ofge(0) might be carried out to include low-temperature
[12] and dynamic effects.

In addition, to improve the physical self-consistency of our approach, one needs the
quantal EOS, either theoretical or numerical (obtained, e.g. within a quantum-statistical
variant of theMC method).

The staticLFC determined here is expected to become a reliable tool in the determination
of static and thermodynamic characteristics of dense Coulomb systems at intermediate and
high values of temperature. Their dynamic and kinetic properties can be studied within
an alternative approach to those pointed out by Sturm in his recent paper [13], and based
on the construction of the plasma dynamic dielectric function by the method of frequency
moments using all known exact relations and sum rules (see [4, 14] and references therein).
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Transport properties of strongly coupled plasmas
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A self-consistent field theory is proposed of transport properties of strongly coupled, fully ionized, multi-
component plasmas. The results are compared with those of simulation and experimental studies@for
molecular-dynamics one-component plasmas see J. P. Hansenet al., Phys. Rev. A23, 2041 ~1981!; for
capillary discharges see J. F. Benage, Jr.et al., Phys. Rev. E49, 4391~1994!; for vaporization of copper wires
in water see A. W. DeSilva~private communication!#. Like in previously considered cases@V. M. Adamyan
et al., J. Phys. D27, 927 ~1994!, and references therein#, the agreement is good or reasonable; the approach
possesses no adjustable parameters.@S1063-651X~98!06302-8#

PACS number~s!: 52.25.Fi

I. INTRODUCTION

Recently, there has been an increasing amount of work
both theoretical and experimental, on electrical conductivity
of strongly coupled Coulomb systems. The experimental
studies have been carried out by measuring the resistivity of
a plasma channel produced by strong electrical~capillary!
discharges in dense materials such as polyurethane@1# and
copper@2,3#.

Recent experimental data, especially those of DeSilva and
Kunze and DeSilva, have invited a number of researchers to
compare their theoretical predictions with these data; see
@4,5# and also@6#.

These theoretical approaches either are based, like@7#, on
generalizations of the Ziman formula for resistivity of metals
~see also@8#! or, as in@9#, construct appropriate interpolation
formulas between the Ziman and Spitzer theories@8#. One
should also take into consideration the semiempirical results
of @10#.

More references can be found in the review article by
Iakubov@11#, where it was also pointed out that there was no
theoretical approach capable of describing all experimental
data, despite its ambiguity. In an early work@12# a
correlation-function expression for the collision frequency
was found and shown to reduce to the Ziman and Lenard-
Balescu results in the appropriate limits. The realm of valid-
ity of this expression is limited by the possibility of applying
and solving the hypernetted-chain equations.

In this paper we want to show that the theory of transport
coefficients of dense cold plasmas based on the concept of
self-consistent field and the generalized random-phase ap-
proximation ~RPA! also possesses correct low- and high-
density limiting properties and is in reasonable, taking into
account a low level of precision of resistivity measurements,
agreement with all available experimental data. This theory
considers only fully ionized plasmas and has not yet been
extended to the description of data corresponding to alleged
Mott phase transition conditions.

II. MODEL

We consider dense relatively cold plasmas with tempera-
ture T of about T>104 K and electronic number density
ne>1021 cm23 @13#. Under such conditions all characteristic
lengths such as the Wigner-Seitz radiusd5(3/4pne)

1/3, the
electronic Debye radiuslDe5(4pnee

2b)1/2 (b215kBT, kB
is the Boltzmann constant!, and the de Broglie wavelength
l5p\(2b/m)1/2 (\ is the Planck constant! are of the same
order of a few atomic units and the Debye correction to the
ionization energy becomes comparable to the~hydrogen!
ionization energy itself. Thus, at least the valent atomic elec-
trons become collectivized and one cannot distinguish be-
tween charged and neutral components of the plasma.

The basic idea considered in the present approach is that
of self-consistent field: Each electron~carrier! moves in a
self-consistent field generated by all other free charges in the
system. The finite values of the transport coefficients result
from the electron’s scattering on the self-consistent field
fluctuations.

This approach was outlined and applied in@13#. This
work was based on the paper@14# by Edwards, which related
the Lorentz-model expression for the fully ionized plasma
electrical conductivity to the strict quantum-statistical calcu-
lation involving the Green’s-function formalism with the
self-consistent field potential.

III. THEORY

The starting point for the conductivity calculation is the
quantum-mechanical expression

s5Re
]

]F
j x~rW,t !uF50 , ~1!

where jW(rW,t) is the averaged current density generated in the
system by an external electric fieldFW (F,0,0). We presume
that

F~rW,t !5F exp~dt !, ~2!

with d.0,d→01. This specific time dependence of the field
is introduced to avoid coherent currents inducted at the
switch-on momentt52`. Thus*Electronic address: imtk@iqn.upv.es
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j x~rW,t !5Trr̂~ t !H 2
i\e

2mFC†~rW,2`!
]

]x
C~rW,2`!

2
]

]x
C†~rW,2`!C~rW,2`!G J , ~3!

where only the density matrix operatorr̂(t) depends on the
external field~2!, so that

F ]r̂~ t !

]F
G

F50

5
ie

\ E0

`

e2dsds

3E
V

x@C†~rW,s!C~rW,s!,r̂~2`!#drW. ~4!

@(2e) andm are the electronic charge and mass.# Here

2eFe2dtE
V

xC†~rW,s!C~rW,s!drW

is the interaction contribution to the system Hamiltonian
H(t) and

r̂~2`!5exp$2b@H~2`!2f#%,

exp~2bf!5Tr exp@2bH~2`!#, ~5!

f being the system free energy of Helmholtz andV the
system volume. Thus,

s5
e2

2m
ReE

0

`

e2dsdsE
V

dr8W x8Trr̂~2`!

3FC†~rW,2`!
]

]x
C~rW,2`!2

]

]x
C†~rW,2`!

3C~rW,2`!,C†~r 8W ,s!C~r 8W ,s!G . ~6!

The second-quantized wave functionC(rW,t) is express-
ible in terms of the one-electron wave functioncn(rW) of the
one-electron free HamiltonianH0,

H0cn~rW !5«ncn~rW !, ~7!

C~rW,s!5(
n

anexpS 2
i

\
«nsDcn~rW !, ~8!

an being the corresponding annihilation operator, for which
we have the averaged commutator

Trr̂~2`!@am8
† am ,an8

† an#5dmn8dm8n@wn2wm#, ~9!

where

wn5w~«n!5$exp@b~«n2m!#11%21

is the Fermi-Dirac distribution,m being the electronic sub-
system chemical potential.

The trace in Eq.~6! can thus be simplified to get

s5
e2

2m
ReE

0

`E
0

`

d«1d«2E
V

drW8x8

3 K G~rW,rW8;«1!
]

]x
G~rW,rW8;«2!

2G~rW,rW8;«2!
]

]x
G~rW,rW8;«1!L \@w~«1!2w~«2!#

i ~«12«22 i\d!
.

~10!

Here

G~rW,rW8;«!5(
n

cn
†~rW !cn~rW8!d~«n2«!

is the electronic Green’s function of the Schro¨dinger equa-
tion involving the self-consistent fieldV(rW):

2
\2

2m
DG1eV~rW !G5«G1d~rW2rW !,

G~rW,rW8;«!5G~rW8,rW;«!. ~11!

Averaging in Eq.~10! is to be carried out over the self-
consistent field fluctuations. The symmetry properties of the
Green’s function lead to

s5
pe2\3

m2
ReE

0

`

d«
dv~«!

d« E
V

drW8

3K ]G~rW8,rW;«!

]x8

]G~rW,rW8;«!

]x L . ~12!

An important advantage of formula~12! for s is that it is
analogous to the expression that describes the interaction of
electrons with quantized electromagnetic field and there al-
ready exists the diagrammatic perturbation theory technique
of calculation of the right-hand side of Eq.~12!. In addition,
the present problem lacks the divergence difficulties charac-
teristic of quantum electrodynamics and various approximate
methods of the quantum field theory can be applied to evalu-
ate Eq.~12! without complications.

There is an important difference between Eqs.~1! and~3!,
on the one hand, and Eq.~12!, on the other. The latter per-
mits one to carry out the self-consistent field averaging pro-
cedure before the coordinate integration.

Edwards@14#, who previously obtained Eq.~12!, devel-
oped and applied to it a diagrammatic technique analogous to
that of the quantum field theory. He showed that if the inter-
action operatorÎ could be introduced by the equation

^GG&5^G&^G&1^G&^G& Î ^GG& ~13!

and estimated within a perturbation theory, thefree Green’s
function

G0~rW,rW8;«!5
m

2p2\2

sin~kurW2rW8u!

urW2rW8u
~14!
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@herek5(2m«/\2)1/2# in the presence of the self-consistent
field V(rW) fluctuations should be substituted by

^G~rW,rW8;«!&5
m

2p2\2

sin~kurW2rW8u!

urW2rW8u
expS 2

urW82rWu
g~«!

D ,

~15!

whereg(«) is the electronic mean free path. Then integra-
tion in Eq. ~12! yields

s52
2me2

3p2\3E0

`

E
dw~E!

dE
g~E!dE. ~16!

Since, as in the kinetic theory,

g~E!5~2E/m!1/2t~E!, ~17!

t(E) being the mean relaxation time, Eq.~16! coincides with
the Lorentz formula

s52
4e2

3mE
0

`

E dE
dw~E!

dE
r~E!t~E!, ~18!

where r(E)5(2m3E)1/2/2p2\3 is the density of one-
electron states in the energy space. Generally speaking, the
mean free pathg(E) or the mean relaxation timet(E) of Eq.
~18! is determined by the exact pairwise scattering cross sec-
tion. Notice also that the averaging over the self-consistent
field thermal fluctuations includesconfigurationsfor which
the conductivity is infinite. We attribute to such contributions
of V(rW) a negligible statistical weight.

IV. CALCULATION OF CONDUCTIVITY

It was shown in@14# that Eq.~15! for the averaged one-
electron Green’s function̂G& is a result of summation of
infinite series in powers of the pairwise-interaction transport
cross section. That is why, though we substitute the latter by
its first Born approximation and thus neglect a good deal of
diagrammatic contributions tôG& @13#, we can consider
Coulomb systems with relatively strong interactions. Thus
we express the inverse mean relaxation time in terms of the
self-consistent field correlation function

t21~E!5
me2

4p~2mE!3/2E0

Q

q3dqE
2`

`

^uV̂~qW ,v!u2&dv.

~19!

HereQ5(8mE/\2)1/2, the momentum\Q being the maxi-
mum possible variation of the electronic momentum as a
result of the scattering process, and

V̂~qW ,v!5
4pe

q2«~q,v!
(

a
ka~q!r̂a~qW ,v! ~20!

is the field potential operator complete Fourier transform,
r̂a(qW ,v) being thea-species density operator in (qW ,v) space
and «21(q,v) the plasma dynamic screening function. The
system is presumed to contain electrons (e) andp ionic spe-
cies (i 1 ,i 2 , . . . ,i p) characterized by their respective form
factorska(q), a5e,i 1 ,i 2 , . . . ,i p , which describe the inter-

nal charge distribution of the speciesa, ke521, and
k i(0)5Zi , the charge number of ionsi . The field potential
correlation function thus equals

^uV̂~qW ,v!u2&5S 4pe

q2«~q,v!
D 2

(
a,b

ka~q!kb~q!Sab~qW ,v!.

~21!

The dynamic structure factor of the speciesa andb,

Sab~qW ,v!5^r̂a* ~qW ,v!r̂b~qW ,v!&, ~22!

is related, by the fluctuation dissipation theorem@15#

Sab~qW ,v!5
\

2p
coth~b\v/2!ImXab~qW ,v!, ~23!

to the partial density-response~Green’s! function

Xab~qW ,v!5Pa~q,v!dab2Pa~q,v!Pb~q,v!Jab~qW ,v!,
~24!

Jab~qW ,v!5
4pe2

q2

ka~q!kb~q!

«~q,v!
~25!

being the full vertex part andPa(q,v) the a-species polar-
ization operators, which also determine the dielectric func-
tion in Eq. ~20! and

«~q,v!511
4pe2

q2 (
a

ka
2~q!Pa~q,v!. ~26!

Substitution of Eqs.~21!–~25! into Eq. ~19! and integra-
tion @15# yields

t21~E!5
4pme4

b~2mE!3/2E0

Qdq

q (
a,l

ka
2~q!Pa~q,l !

«3~q,l !
. ~27!

~A corresponding expression from@16# is valid for hydrogen
plasmas only.! Here thel summation is spread over the poles

V l52p l /b\ ~ l 50,61,62, . . . ! ~28!

of coth(b\z/2) on the imaginaryz-axis, i.e., over the Mat-
subara frequencies@17#, andPa(q,l ) are the real parts of the
Pa(q,v) operators atv5 iV l . Equation~27! together with
Eq. ~18!, forms a general algorithm of conductivity calcula-
tion, as soon as specific approximate expressions are used for
the density-response functions and the polarization operators.

In our computations we evaluated the real partPa(q,l ) of
the a-species polarization operator beyond the standard
RPA, using the temperature-dependent static local-field cor-
rection Ge(q) @18,16,19# parametrized to satisfy both the
compressibility sum rule@with the electronic subsystem
compressibility determined from the one-component plasma
excess interaction energy determined by the Monte Carlo
~MC! simulation@20## and the long-wavelength limiting con-
dition of Kimball @21#

Ge~q!5Ge~z!5@b1a/~2z!2#21. ~29!

Hereb5@12ge(0)#21 anda was estimated as in@19#:
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a52~12p2!21/3S A

9
1

B

12
G211

2C

27
G24/31

5D

54
G22/3D 21

.

~30!

HereG5be2(4pne/3)1/3 measures the rate of Coulomb cou-
pling in the system,z5q/kF , kF5(3p2ne)

1/3 is the Fermi
wave vector, and A520.899 374 9, B520.224 469 9,
C520.017 874 7,D520.517 575 3,@20#.

The model parameterge(0), which is the zero-separation
value of the electronic radial distribution function was deter-
mined by a self-consistent procedure: It was computed via a
simultaneous solution of two integral equations

Se~z!5 (
l 52 l 1

l 1 Pe~z,l !

«e~z,l !
, ~31!

ge~0!51112E
0

`

~Se~z!21!z2dz. ~32!

In Eq. ~31! the summation is spread over the Matsubara di-
mensionless frequencies

v l5p l /2Dz; ~33!

«e~z,l !511
G

~12p2!1/3

Pe~z,l !

z2
~34!

is the electronic dielectric function; the value ofl 1 in Eq.
~31! was determined by the numerical precision.

Here D5u215b\2kf
2/2m is another dimensionless pa-

rameter measuring the plasma degeneracy rate; notice that
the Brueckner parameter

r s5Gu/0.543. ~35!

Pe(z,l ) in Eq. ~31! is the dimensionless polarization op-
erator Pe(q,l )5Pe(q,iV l) with the local-field correction
included:

Pe~z,l !5Pe
0~z,l !S 12

G

~12p2!1/3

Ge~z!Pe
0~z,l !

z2 D 21

.

~36!

The RPA dimensionless polarization operatorPe
0(z,l ) can be

calculated~for each value of density and temperature,z and
l ) by simple integration@22#,

Pe
0~z,l !5

3u

4zE0

` y dy

ey2/u2h11
lnUz1y1 iv l

z2y1 iv l
U, ~37!

while the dimensionless chemical potentialh5bm is deter-
mined by the normalization condition

E
0

` t1/2

e~ t2h!11
5

2

3
u23/2. ~38!

Thus we used in Eq.~27!

Pe~q,l !5nebPe
0~z,l ! ~39!

for the electronic polarization operator and@8#

P i~z,l !5bnd l ,0S 12
G

~12p2!1/3

Gi~z!

z2 D 21

~40!

with

Gi~z!5$b@«e~z,l !#1a/~2z!2%21, ~41!

for the ionic one (d l ,m is the Kronecker delta symbol! and
thus obtained a closed expression for the conductivity coef-
ficient. Notice that the influence of the value ofge(0) proved
to be quite small; see, nevertheless, Sec. VII A.

V. LIMITING CASES

Despite the approximations made to obtain our expression
for the plasma conductivity, it possesses correct limiting
forms corresponding to the cases of dilute gas plasma and
metal-density Coulomb systems. In particular, if we omit the
electronic contribution in Eq.~27! and neglect the screening
effects~i.e., set«(q,l )51) and the momentum dependence
of the ionic form factors, the sum on the right-hand side of
Eq. ~27! becomes a constant

b(
i

Zi
2ni .

If further we presumeE to be equal to the mean kinetic
energy of an electron, we retrieve from Eq.~27! the Cou-
lomb logarithm, and Eq.~18! with w(E) substituted by the
Boltzmann distribution takes the form of the Spitzer formula
without corrections due to electron-electron interactions@23#.
We have estimated the relative weight of this last correction.
In particular, in the dilute plasma regime, we calculated the
conductivity contribution due to scattering on ions only. Hy-
drogenlike plasmas were considered in these computations
with ne5Zni and the screening function was substituted by
its long-range static limiting form

«~q,v!→~11q2/ks
2!21

with the screening lengthks
21 chosen to be either the elec-

tronic Debye radiusk1
215(4pnee

2b)21/2 or the complete
Debye radiusk2

215@4p(11Z)nee
2b#21/2. Thus we em-

ployed instead of the relaxation time of Eq.~27! the limiting
expression

ts
21~E!5

4pmZ2e4ni

~2mE!3/2 E
0

Q q5dq

~q21ks
2!3

. ~42!

These estimates are provided in Table I, labeleds1 and
s2, along with the results of our complete calculations, la-
beleds and obtained as explained in Sec. VII C. It is seen
that the electron-electron interactions are responsible for up
to 45% of the resistivity value.

On the other hand, if we consider the low-temperature
limiting case (b21→0), the Fermi-Dirac distribution deriva-
tive in Eq. ~18! turns into2d(E2EF) with EF5\2kF

2/2m
andQ becomes equal to 2kF , so that we immediately regain
the Ziman specific resistance formula@24#.

Notice that no special effort was doneab initio to guar-
antee the correct limiting behavior of our model. Neverthe-
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less, further studies of the limiting behavior of our model and
a comparison with other general expressions for the collision
frequency~e.g.,@12#! or for the conductivity itself~see@25#!
are to be carried out.

In general, the difference between our expression and that
of Ziman~widely used lately to calculate conductivity@4–6#!
is that we include the energy-dependent relaxation time@Eq.
~27!# and the Ziman formula takes it atE5EF . In addition,
we have the electron-electron interaction included explicitly
via the structure factorSee(q,v).

The s(T) dependence at constant density~see @16#! is
characterized by a minimum corresponding to a transition
from the low-temperature regime with decreasing~with
growing T) conductivity characteristic for metals and liquid
metals~Ziman regime! to that of increasing conductivity at
higher temperatures, characteristic for dilute plasmas
~Spitzer regime!. Thermodynamic conditions were specified
in @16# corresponding to the domain of values of the elec-
tronic concentration and the plasma temperature~in hydro-
gen plasmas! where our expression asymptotically ap-
proaches the Spitzer regime withsSp(T)}T3/2.

Finally, relative contributions due to various factors in Eq.
~27! were also estimated. We found that at least forT520
kK and ne>1021 cm23 ~conditions considered earlier in
@13#!, the value of conductivity calculated with the sum in
Eq. ~27! substituted by

@Pe~q,0!1Z2P i~q,0!#/«~q,0!

~as in @13#! was about 50% higher than the complete calcu-
lation results given in Tables I and III.

VI. OTHER TRANSPORT COEFFICIENTS

If the initial state of plasma is not far from that of ther-
modynamic equilibrium, the generalized transport equations
for the mean current densityJW and for the thermal fluxQW can
be written as@26#

JW5e2K0FW 1T21eK1~2¹W T!, ~43!

QW 5eK1FW 1T21K2~2¹W T!. ~44!

T is the plasma temperature and no magnetic effects are
taken into account. The transport coefficientsKi ( i 50,1,2)
in Eqs. ~43! and ~44! satisfy the Onsager relations@26# and
within the same approximation instead of Eq.~18! we have

Ki52
4

3mE
0

`

Er~E!t~E!
dw~E!

dE
~E2m! idE, ~45!

wherem is the electronic subsystem chemical potential and
t(E) is the same relaxation time defined by Eq.~27!. The
transport coefficientK0 determines the static conductivity

s5e2K0 , ~46!

while the static thermal conductivity

k5
1

T
~K22K1

2/K0! ~47!

and the thermal electromotive potential

a5K1~eTK0!21. ~48!

In the case of complete degeneracy of the electronic sub-
system the conductivitiesk and s are related by the
Wiedemann-Franz law

k

s
5

p2

3 S kB

e D 2

T. ~49!

If the degeneracy is incomplete, like in our case, there
appear temperature-dependent corrections to Eq.~49!. Nev-
ertheless, we will see that these corrections under the condi-
tions we consider are quite small.

VII. RESULTS AND CONCLUSIONS

Extensive studies of electrical and thermal conductivities
in a wide range of variation of temperature and electronic
density in hydrogenlike plasmas~with ne5Zni) were carried
out in @16,27,28#. Here we report our results on the conduc-
tivities obtained for the conditions corresponding to~i!
model Coulomb plasmas@29#, ~ii ! capillary discharges in
polyurethane@1#, and~iii ! copper plasmas obtained by vapor-
izing copper wire in a water bath@3#.

A. Microscopic simulation of hydrogen plasma

Fully ionized strongly coupled hydrogen plasmas were
simulated using the method of molecular dynamics~MD! in
well-known studies by Hansen and McDonald@29#. Quan-
tum effects were taken into account in these simulations
through the use of effective pair potentials; at short distances
these differed significantly from the bare Coulomb potential.
Reasonable agreement with the conductivity results of@29#

TABLE I. Relative contributions to the plasma conductivitys of Table III, ss (s51,2), are calculated
according to Eq.~18! but with ts(E) from Eq.~40! with k15A4pnee

2b andk25A4p(11Z)nee
2b, respec-

tively. T,ne are the temperature and electronic number density in copper andZe is the effective ion charge.

T ~kK! ne310221 (cm23) Z s31024 ~S/m! s131024 ~S/m! s231024 ~S/m!

20 3.18 1.3 2.12 3.13 4.07
20 7.69 1.2 2.94 4.55 6.34
30 4.07 1.6 3.03 4.02 5.21
30 6.03 1.6 3.42 4.47 5.97
40 4.33 2.0 3.66 4.37 5.72
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was obtained in@12# ~see Table II, where the results are
presented for the dimensionless conductivitys* 5s/vpe
(vpe5(4pnee

2/m)1/2 being the electronic plasma fre-
quency!. The dynamical results of @29# were successfully
considered in@30#.

The static conductivity of model plasmas was obtained in
@29# on the basis of the Nernst-Einstein law in terms of elec-
tronic and ionic diffusion coefficients directly estimated by
MD simulations:

sD5bnee
2~Di1De!. ~50!

In addition,s was determined, at least forG52 and r s
51, through the electric current autocorrelation function in
the relaxation time approximation@29#.

Notice that the simulation data forG52 andr s51 were
obtained in@29# by MD calculations; in this case the value
sD* was calculated as

sD* 5
3G

4pS m

M DDi* 1De* , ~51!

De* and Di* being the dimensionless diffusion coefficients
determined in@29#. Other results were found in@29# by ex-
trapolation. In these casesDi* was set equal to zero~not
determined in@29#!; M is the proton mass.

The value ofsL* was obtained in@29# by a limiting pro-
cedure over the dynamic conductivitys(k,v),

sL5 lim
v→0

lim
k→0

Res~k,v!, ~52!

and thus related via the fluctuation-dissipation theorem to the
dynamiccharge-chargestructure factor. The limiting value
of Eq. ~50! could be found in@29# only by extrapolation of
long-wavelength MD data~see Table IV of@29#!. The point
with G52.0 was the only point really simulated in@29#. The
other two points were obtained in this work using an ex-
trapolation procedure; its precision is unknown to us. We
would rather not considersL* 5sL /vpe ~characterized in
@29# as thetrue value! to be much more reliable thansD* .

We computed the conductivity of strongly coupled hydro-
gen plasma for all three cases considered in@29# and using
the static local field correction of Eq.~29!. The calculations
were carried out for both the Coulomb interaction and the
model pseudopotential suggested by Deutsch and co-workers
in @31# and employed in@29#. In the case of Coulomb inter-
actions the relaxation time was calculated according to Eq.
~27! with ka

2(q)51,a5e,i ; see thesCp* data in Table II.

The model pseudopotential of@31,29# is determined by
the interacting particles charge numbers and their reduced
masses. The species form factors cannot be introduced, so
that Eq.~21! should be modified:

^uV̂~qW ,v!u2&5S 4pe

q2«~q,v!
D 2

(
a,b

Yab~q!Sab~qW ,v!,

~53!

where

Yab~q!5Yba~q!5ZaZb@11~qlab!
2#21, ~54!

«~q,v!511
4pe2

q2 (
a

Yaa
2 ~q!Pa~q,v!, ~55!

and

lab5F\b

2p
~ma

211mb
21!G1/2

, ~56!

ma andZa being thea species mass and charge number. In
hydrogen plasmasme5m and mi5M , while Ze521 and
Zi51.

The pseudoparticles screened interaction energy is equal
to 4pe2Yab /q2«(q,v) and the relaxation time expression of
Eq. ~27! becomes more complicated:

tpp
21~E!5

4pme4

b~2mE!3/2E0

Qdq

q (
l

@Yee
2 Pe1Yii

2P i

12~YeeYii 2Yei
2 !PeP i #/«

3~q,l !. ~57!

The results of our computations with all these changes
included, labeledspp* , are also provided in Table II. We
cannot overestimate the fact thatspp* virtually coincides with
the true conductivity valuesL* at G52.0. More simulation
results on both transport and dynamic plasma properties are
needed to decide whether, and to what extent, the behavior
of the classical pseudoparticles with the pseudopotential of
@31,29# imitates that of the true quantum system. We con-
clude that overall satisfactory agreement with available
plasma-simulation data is achieved.

B. Capillary discharge in polyurethane

Dense strongly coupled plasmas were created in a well-
diagnosed uniform discharge in polyurethane with density
1.26531022 g/cm3 and temperatures in the 25–30 eV range

TABLE II. sL* are the results of the extrapolation procedure according to Eq.~50! andsD* were calculated
in terms of the diffusion coefficients as explained in Sec. VII A.sCp* are the results of the present work
computed using the Coulomb potential andspp* represent our results calculated with the model pseudopo-
tential suggested in@31# and employed in@29#; sBRD* stands for the results of@12#.

ne310224 (cm23) T31025 ~K! G r s sL* sD* sCp* spp* sBRD*

1.611 1.579 2.0 1.00 1.1 0.60 0.59 1.20 3.72
1.610 6.315 0.5 1.00 2.15 0.86 1.00 1.40 2.13
25.170 15.79 0.5 0.40 3.6 1.47 1.80 2.70 4.13
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@1#. These results were compared in@1# with several dense
plasma theories@32,33,12,34# and showed to be in a signifi-
cant disagreement.

Preliminary experiments of this type were reported in
@35–37#. Reasonable agreement with these data was obtained
in @16#, especially atT517–18 eV@37#, but within the hy-
drogen model.

An effective average ionic charge numberZ52.3 was ob-
tained in@1# presuming Saha equilibrium. This permitted us
to carry out the calculation of the electrical conductivity of a
multiply ionized two-component plasma in the rangene
5(4.825.2)31021 cm23 and T5(2.524.0)3105 K. The
same local field correction as in Sec. VII A was employed
with ge(0)50 ~see@19# and above!.

The experimental data of@1# ~provided graphically for the
resistivity! range between 2.03105 and 3.33105 (V m)21.
Our results varied between 3.33105 (V m)21 ~for ne55.2
31021 cm23 and T52.53105 K! and about 106 (V m)21

~for ne54.831021 cm23 and T54.03105 K!, taking the
value of s55.03105 (V m)21 at about 33105 K and ne
5531021 cm23. This last value is characteristic for the re-
sults of dense plasma theories@32,33,12,34# referred to in
@1#. Notice that the lowest conductivity value reached by
these theories is about 4.23105 (V m)21 @1# and also that
under these specific conditions, i.e., atG50.18–0.12, the
dimensionless~normalized to the plasma frequency! com-
puted plasma conductivity can be fitted to a simple potential
function of the coupling parameterG only:

s* ~G!5u/Gv ~58!

with u51.7031022 andv52.27.

C. Discharges in water

We have also carried out a broad comparison with the
conductivity data measured by vaporizing copper wires in a
water bath@3#. Plasma densities observed ranged from about
2.5 g/cm3 down to 0.025 g/cm3 and temperatures varied be-

tween 10 and 30 kK. The ionization state used by DeSilva
and in our computations was taken from the Fermi-Thomas
model by More@38#. The plasma coupling and degeneracy
parameters ranged fromG50.66 toG510.12 andu50.167
to u516.5, respectively; see Table III.

We considered three shots of data of@3# and calculated
both electrical and thermal conductivities. The results are
provided in Table III, where f is the dimensionless
Wiedemann-Franz ratio

f 5
3

p2
~ke2/skB

2T!. ~59!

First of all, we observe a good level of verification of the
Wiedemann-Franz law: We neglected the ionic transport. A
reasonable 30% agreement is observed in the majority of
points, especially at higher densities. A factor of 2–3 dis-
agreement detected at 14–16 kK and low densities is attrib-
utable to the possible onset at the conductor-dielectric phase
transition: The copper plasma begins to undergo a transfor-
mation from the fully ionized state corresponding to our
model into the partially ionized state where charge-atom in-
teractions are to be taken into account. TheSESAMEcode ‘‘is
increasingly inaccurate with the onset of strong Coulomb
interaction’’ @39# and cannot include the possible Mott-type
phase transition. The precision level of this code is not
known. In addition, the experimental measurements are quite
difficult @2,3# and we believe that an overall precision of the
experimental data of@3# is of the order of 30–100 %.

Notice once more that no adjustable parameters were used
in our computations. The only input data were the plasma
temperature (T) and density (r) ~provided by theSESAME

code; see@3#! and the precalculated charge numberZ ~see
above!.

Calculations were carried out for different values of the
local-field correction static parameterge(0), ranging accord-
ing to its definition between zero and unity. No appreciable
dependence on the value ofge(0) was detected; further cal-

TABLE III. s are the results of the present work, the experimental valuessexpt are by DeSilva@3#, T and
r are the temperature and mass density of copper,Ze is the effective ion charge, andf is the dimensionless
Wiedemann-Franz ratio~59!.

T ~kK! r (g/cm3) Z G u sexpt31024 ~S/m! s31024 ~S/m! f

20 0.7930 1.5 2.97 1.020 5.1 10.50 0.99
10 2.4550 2.3 10.12 0.167 32.1 21.00 0.99
14 1.2036 1.7 5.15 0.460 9.5 11.95 0.98
20 0.1557 1.2 1.62 3.240 2.2 4.12 1.11
26 0.0580 1.4 0.94 7.340 3.9 3.44 1.11
30 0.0400 1.6 0.75 9.930 4.8 3.42 1.11
40 0.0230 2.0 0.51 16.50 5.8 3.66 1.10
10 1.3546 1.7 7.51 0.304 8.3 11.27 0.99
14 0.3500 1.1 2.95 1.401 1.3 4.90 1.05
20 0.0260 1.3 0.92 10.13 2.0 2.12 1.11
10 2.2616 2.2 9.70 0.182 27.1 19.10 0.99
14 0.9704 1.5 4.60 0.577 6.4 9.86 0.99
16 0.1323 1.1 1.87 3.060 1.2 3.27 1.11
20 0.0680 1.2 1.62 5.630 2.2 2.94 1.11
30 0.0270 1.6 0.66 12.61 4.4 3.03 1.11
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culations were carried out withge(0) set to be zero. Thus the
only experimentaldata our results are based on is the com-
puter fit to the one-component plasma interaction energy ob-
tained by MC simulations@20#.

In conclusion, a theory of transport coefficients of fully
ionized strongly coupled plasmas, based on the self-
consistent field concept and having no adjustable parameters,
is presented. The self-consistent field theory suggested in
@13#, outlined in detail, modified, and applied here to various
model and real plasmas, is not based on the solution of ki-
netic equations. In particular, we do not have to introduce
into our expression the order of 2 correction@40# ~see also
@12,7,8#! that takes into account higher-order Sonine polyno-

mials contributions to the solution of the kinetic equation.
The theory is applicable to multiple-component~non-
hydrogen-like! plasmas with variable ionization states, and is
shown to possess correct low-density~Spitzer! and metal-
density~Ziman! limiting forms.
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